Update core ZFS code from build 121 to build 141.
[zfs.git] / module / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dnode.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/dmu_zfetch.h>
30 #include <sys/dmu.h>
31 #include <sys/dbuf.h>
32 #include <sys/kstat.h>
33
34 /*
35  * I'm against tune-ables, but these should probably exist as tweakable globals
36  * until we can get this working the way we want it to.
37  */
38
39 int zfs_prefetch_disable = 0;
40
41 /* max # of streams per zfetch */
42 uint32_t        zfetch_max_streams = 8;
43 /* min time before stream reclaim */
44 uint32_t        zfetch_min_sec_reap = 2;
45 /* max number of blocks to fetch at a time */
46 uint32_t        zfetch_block_cap = 256;
47 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
48 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
49
50 /* forward decls for static routines */
51 static int              dmu_zfetch_colinear(zfetch_t *, zstream_t *);
52 static void             dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
53 static uint64_t         dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
54 static uint64_t         dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
55 static int              dmu_zfetch_find(zfetch_t *, zstream_t *, int);
56 static int              dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
57 static zstream_t        *dmu_zfetch_stream_reclaim(zfetch_t *);
58 static void             dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
59 static int              dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
60
61 typedef struct zfetch_stats {
62         kstat_named_t zfetchstat_hits;
63         kstat_named_t zfetchstat_misses;
64         kstat_named_t zfetchstat_colinear_hits;
65         kstat_named_t zfetchstat_colinear_misses;
66         kstat_named_t zfetchstat_stride_hits;
67         kstat_named_t zfetchstat_stride_misses;
68         kstat_named_t zfetchstat_reclaim_successes;
69         kstat_named_t zfetchstat_reclaim_failures;
70         kstat_named_t zfetchstat_stream_resets;
71         kstat_named_t zfetchstat_stream_noresets;
72         kstat_named_t zfetchstat_bogus_streams;
73 } zfetch_stats_t;
74
75 static zfetch_stats_t zfetch_stats = {
76         { "hits",                       KSTAT_DATA_UINT64 },
77         { "misses",                     KSTAT_DATA_UINT64 },
78         { "colinear_hits",              KSTAT_DATA_UINT64 },
79         { "colinear_misses",            KSTAT_DATA_UINT64 },
80         { "stride_hits",                KSTAT_DATA_UINT64 },
81         { "stride_misses",              KSTAT_DATA_UINT64 },
82         { "reclaim_successes",          KSTAT_DATA_UINT64 },
83         { "reclaim_failures",           KSTAT_DATA_UINT64 },
84         { "streams_resets",             KSTAT_DATA_UINT64 },
85         { "streams_noresets",           KSTAT_DATA_UINT64 },
86         { "bogus_streams",              KSTAT_DATA_UINT64 },
87 };
88
89 #define ZFETCHSTAT_INCR(stat, val) \
90         atomic_add_64(&zfetch_stats.stat.value.ui64, (val));
91
92 #define ZFETCHSTAT_BUMP(stat)           ZFETCHSTAT_INCR(stat, 1);
93
94 kstat_t         *zfetch_ksp;
95
96 /*
97  * Given a zfetch structure and a zstream structure, determine whether the
98  * blocks to be read are part of a co-linear pair of existing prefetch
99  * streams.  If a set is found, coalesce the streams, removing one, and
100  * configure the prefetch so it looks for a strided access pattern.
101  *
102  * In other words: if we find two sequential access streams that are
103  * the same length and distance N appart, and this read is N from the
104  * last stream, then we are probably in a strided access pattern.  So
105  * combine the two sequential streams into a single strided stream.
106  *
107  * If no co-linear streams are found, return NULL.
108  */
109 static int
110 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
111 {
112         zstream_t       *z_walk;
113         zstream_t       *z_comp;
114
115         if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
116                 return (0);
117
118         if (zh == NULL) {
119                 rw_exit(&zf->zf_rwlock);
120                 return (0);
121         }
122
123         for (z_walk = list_head(&zf->zf_stream); z_walk;
124             z_walk = list_next(&zf->zf_stream, z_walk)) {
125                 for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
126                     z_comp = list_next(&zf->zf_stream, z_comp)) {
127                         int64_t         diff;
128
129                         if (z_walk->zst_len != z_walk->zst_stride ||
130                             z_comp->zst_len != z_comp->zst_stride) {
131                                 continue;
132                         }
133
134                         diff = z_comp->zst_offset - z_walk->zst_offset;
135                         if (z_comp->zst_offset + diff == zh->zst_offset) {
136                                 z_walk->zst_offset = zh->zst_offset;
137                                 z_walk->zst_direction = diff < 0 ? -1 : 1;
138                                 z_walk->zst_stride =
139                                     diff * z_walk->zst_direction;
140                                 z_walk->zst_ph_offset =
141                                     zh->zst_offset + z_walk->zst_stride;
142                                 dmu_zfetch_stream_remove(zf, z_comp);
143                                 mutex_destroy(&z_comp->zst_lock);
144                                 kmem_free(z_comp, sizeof (zstream_t));
145
146                                 dmu_zfetch_dofetch(zf, z_walk);
147
148                                 rw_exit(&zf->zf_rwlock);
149                                 return (1);
150                         }
151
152                         diff = z_walk->zst_offset - z_comp->zst_offset;
153                         if (z_walk->zst_offset + diff == zh->zst_offset) {
154                                 z_walk->zst_offset = zh->zst_offset;
155                                 z_walk->zst_direction = diff < 0 ? -1 : 1;
156                                 z_walk->zst_stride =
157                                     diff * z_walk->zst_direction;
158                                 z_walk->zst_ph_offset =
159                                     zh->zst_offset + z_walk->zst_stride;
160                                 dmu_zfetch_stream_remove(zf, z_comp);
161                                 mutex_destroy(&z_comp->zst_lock);
162                                 kmem_free(z_comp, sizeof (zstream_t));
163
164                                 dmu_zfetch_dofetch(zf, z_walk);
165
166                                 rw_exit(&zf->zf_rwlock);
167                                 return (1);
168                         }
169                 }
170         }
171
172         rw_exit(&zf->zf_rwlock);
173         return (0);
174 }
175
176 /*
177  * Given a zstream_t, determine the bounds of the prefetch.  Then call the
178  * routine that actually prefetches the individual blocks.
179  */
180 static void
181 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
182 {
183         uint64_t        prefetch_tail;
184         uint64_t        prefetch_limit;
185         uint64_t        prefetch_ofst;
186         uint64_t        prefetch_len;
187         uint64_t        blocks_fetched;
188
189         zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
190         zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
191
192         prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
193             (int64_t)(zs->zst_offset + zs->zst_stride));
194         /*
195          * XXX: use a faster division method?
196          */
197         prefetch_limit = zs->zst_offset + zs->zst_len +
198             (zs->zst_cap * zs->zst_stride) / zs->zst_len;
199
200         while (prefetch_tail < prefetch_limit) {
201                 prefetch_ofst = zs->zst_offset + zs->zst_direction *
202                     (prefetch_tail - zs->zst_offset);
203
204                 prefetch_len = zs->zst_len;
205
206                 /*
207                  * Don't prefetch beyond the end of the file, if working
208                  * backwards.
209                  */
210                 if ((zs->zst_direction == ZFETCH_BACKWARD) &&
211                     (prefetch_ofst > prefetch_tail)) {
212                         prefetch_len += prefetch_ofst;
213                         prefetch_ofst = 0;
214                 }
215
216                 /* don't prefetch more than we're supposed to */
217                 if (prefetch_len > zs->zst_len)
218                         break;
219
220                 blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
221                     prefetch_ofst, zs->zst_len);
222
223                 prefetch_tail += zs->zst_stride;
224                 /* stop if we've run out of stuff to prefetch */
225                 if (blocks_fetched < zs->zst_len)
226                         break;
227         }
228         zs->zst_ph_offset = prefetch_tail;
229         zs->zst_last = ddi_get_lbolt();
230 }
231
232 void
233 zfetch_init(void)
234 {
235
236         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
237             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
238             KSTAT_FLAG_VIRTUAL);
239
240         if (zfetch_ksp != NULL) {
241                 zfetch_ksp->ks_data = &zfetch_stats;
242                 kstat_install(zfetch_ksp);
243         }
244 }
245
246 void
247 zfetch_fini(void)
248 {
249         if (zfetch_ksp != NULL) {
250                 kstat_delete(zfetch_ksp);
251                 zfetch_ksp = NULL;
252         }
253 }
254
255 /*
256  * This takes a pointer to a zfetch structure and a dnode.  It performs the
257  * necessary setup for the zfetch structure, grokking data from the
258  * associated dnode.
259  */
260 void
261 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
262 {
263         if (zf == NULL) {
264                 return;
265         }
266
267         zf->zf_dnode = dno;
268         zf->zf_stream_cnt = 0;
269         zf->zf_alloc_fail = 0;
270
271         list_create(&zf->zf_stream, sizeof (zstream_t),
272             offsetof(zstream_t, zst_node));
273
274         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
275 }
276
277 /*
278  * This function computes the actual size, in blocks, that can be prefetched,
279  * and fetches it.
280  */
281 static uint64_t
282 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
283 {
284         uint64_t        fetchsz;
285         uint64_t        i;
286
287         fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
288
289         for (i = 0; i < fetchsz; i++) {
290                 dbuf_prefetch(dn, blkid + i);
291         }
292
293         return (fetchsz);
294 }
295
296 /*
297  * this function returns the number of blocks that would be prefetched, based
298  * upon the supplied dnode, blockid, and nblks.  This is used so that we can
299  * update streams in place, and then prefetch with their old value after the
300  * fact.  This way, we can delay the prefetch, but subsequent accesses to the
301  * stream won't result in the same data being prefetched multiple times.
302  */
303 static uint64_t
304 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
305 {
306         uint64_t        fetchsz;
307
308         if (blkid > dn->dn_maxblkid) {
309                 return (0);
310         }
311
312         /* compute fetch size */
313         if (blkid + nblks + 1 > dn->dn_maxblkid) {
314                 fetchsz = (dn->dn_maxblkid - blkid) + 1;
315                 ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
316         } else {
317                 fetchsz = nblks;
318         }
319
320
321         return (fetchsz);
322 }
323
324 /*
325  * given a zfetch and a zstream structure, see if there is an associated zstream
326  * for this block read.  If so, it starts a prefetch for the stream it
327  * located and returns true, otherwise it returns false
328  */
329 static int
330 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
331 {
332         zstream_t       *zs;
333         int64_t         diff;
334         int             reset = !prefetched;
335         int             rc = 0;
336
337         if (zh == NULL)
338                 return (0);
339
340         /*
341          * XXX: This locking strategy is a bit coarse; however, it's impact has
342          * yet to be tested.  If this turns out to be an issue, it can be
343          * modified in a number of different ways.
344          */
345
346         rw_enter(&zf->zf_rwlock, RW_READER);
347 top:
348
349         for (zs = list_head(&zf->zf_stream); zs;
350             zs = list_next(&zf->zf_stream, zs)) {
351
352                 /*
353                  * XXX - should this be an assert?
354                  */
355                 if (zs->zst_len == 0) {
356                         /* bogus stream */
357                         ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
358                         continue;
359                 }
360
361                 /*
362                  * We hit this case when we are in a strided prefetch stream:
363                  * we will read "len" blocks before "striding".
364                  */
365                 if (zh->zst_offset >= zs->zst_offset &&
366                     zh->zst_offset < zs->zst_offset + zs->zst_len) {
367                         if (prefetched) {
368                                 /* already fetched */
369                                 ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
370                                 rc = 1;
371                                 goto out;
372                         } else {
373                                 ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
374                         }
375                 }
376
377                 /*
378                  * This is the forward sequential read case: we increment
379                  * len by one each time we hit here, so we will enter this
380                  * case on every read.
381                  */
382                 if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
383
384                         reset = !prefetched && zs->zst_len > 1;
385
386                         mutex_enter(&zs->zst_lock);
387
388                         if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
389                                 mutex_exit(&zs->zst_lock);
390                                 goto top;
391                         }
392                         zs->zst_len += zh->zst_len;
393                         diff = zs->zst_len - zfetch_block_cap;
394                         if (diff > 0) {
395                                 zs->zst_offset += diff;
396                                 zs->zst_len = zs->zst_len > diff ?
397                                     zs->zst_len - diff : 0;
398                         }
399                         zs->zst_direction = ZFETCH_FORWARD;
400
401                         break;
402
403                 /*
404                  * Same as above, but reading backwards through the file.
405                  */
406                 } else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
407                         /* backwards sequential access */
408
409                         reset = !prefetched && zs->zst_len > 1;
410
411                         mutex_enter(&zs->zst_lock);
412
413                         if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
414                                 mutex_exit(&zs->zst_lock);
415                                 goto top;
416                         }
417
418                         zs->zst_offset = zs->zst_offset > zh->zst_len ?
419                             zs->zst_offset - zh->zst_len : 0;
420                         zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
421                             zs->zst_ph_offset - zh->zst_len : 0;
422                         zs->zst_len += zh->zst_len;
423
424                         diff = zs->zst_len - zfetch_block_cap;
425                         if (diff > 0) {
426                                 zs->zst_ph_offset = zs->zst_ph_offset > diff ?
427                                     zs->zst_ph_offset - diff : 0;
428                                 zs->zst_len = zs->zst_len > diff ?
429                                     zs->zst_len - diff : zs->zst_len;
430                         }
431                         zs->zst_direction = ZFETCH_BACKWARD;
432
433                         break;
434
435                 } else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
436                     zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
437                         /* strided forward access */
438
439                         mutex_enter(&zs->zst_lock);
440
441                         if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
442                             zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
443                                 mutex_exit(&zs->zst_lock);
444                                 goto top;
445                         }
446
447                         zs->zst_offset += zs->zst_stride;
448                         zs->zst_direction = ZFETCH_FORWARD;
449
450                         break;
451
452                 } else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
453                     zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
454                         /* strided reverse access */
455
456                         mutex_enter(&zs->zst_lock);
457
458                         if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
459                             zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
460                                 mutex_exit(&zs->zst_lock);
461                                 goto top;
462                         }
463
464                         zs->zst_offset = zs->zst_offset > zs->zst_stride ?
465                             zs->zst_offset - zs->zst_stride : 0;
466                         zs->zst_ph_offset = (zs->zst_ph_offset >
467                             (2 * zs->zst_stride)) ?
468                             (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
469                         zs->zst_direction = ZFETCH_BACKWARD;
470
471                         break;
472                 }
473         }
474
475         if (zs) {
476                 if (reset) {
477                         zstream_t *remove = zs;
478
479                         ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
480                         rc = 0;
481                         mutex_exit(&zs->zst_lock);
482                         rw_exit(&zf->zf_rwlock);
483                         rw_enter(&zf->zf_rwlock, RW_WRITER);
484                         /*
485                          * Relocate the stream, in case someone removes
486                          * it while we were acquiring the WRITER lock.
487                          */
488                         for (zs = list_head(&zf->zf_stream); zs;
489                             zs = list_next(&zf->zf_stream, zs)) {
490                                 if (zs == remove) {
491                                         dmu_zfetch_stream_remove(zf, zs);
492                                         mutex_destroy(&zs->zst_lock);
493                                         kmem_free(zs, sizeof (zstream_t));
494                                         break;
495                                 }
496                         }
497                 } else {
498                         ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
499                         rc = 1;
500                         dmu_zfetch_dofetch(zf, zs);
501                         mutex_exit(&zs->zst_lock);
502                 }
503         }
504 out:
505         rw_exit(&zf->zf_rwlock);
506         return (rc);
507 }
508
509 /*
510  * Clean-up state associated with a zfetch structure.  This frees allocated
511  * structure members, empties the zf_stream tree, and generally makes things
512  * nice.  This doesn't free the zfetch_t itself, that's left to the caller.
513  */
514 void
515 dmu_zfetch_rele(zfetch_t *zf)
516 {
517         zstream_t       *zs;
518         zstream_t       *zs_next;
519
520         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
521
522         for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
523                 zs_next = list_next(&zf->zf_stream, zs);
524
525                 list_remove(&zf->zf_stream, zs);
526                 mutex_destroy(&zs->zst_lock);
527                 kmem_free(zs, sizeof (zstream_t));
528         }
529         list_destroy(&zf->zf_stream);
530         rw_destroy(&zf->zf_rwlock);
531
532         zf->zf_dnode = NULL;
533 }
534
535 /*
536  * Given a zfetch and zstream structure, insert the zstream structure into the
537  * AVL tree contained within the zfetch structure.  Peform the appropriate
538  * book-keeping.  It is possible that another thread has inserted a stream which
539  * matches one that we are about to insert, so we must be sure to check for this
540  * case.  If one is found, return failure, and let the caller cleanup the
541  * duplicates.
542  */
543 static int
544 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
545 {
546         zstream_t       *zs_walk;
547         zstream_t       *zs_next;
548
549         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
550
551         for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
552                 zs_next = list_next(&zf->zf_stream, zs_walk);
553
554                 if (dmu_zfetch_streams_equal(zs_walk, zs)) {
555                         return (0);
556                 }
557         }
558
559         list_insert_head(&zf->zf_stream, zs);
560         zf->zf_stream_cnt++;
561         return (1);
562 }
563
564
565 /*
566  * Walk the list of zstreams in the given zfetch, find an old one (by time), and
567  * reclaim it for use by the caller.
568  */
569 static zstream_t *
570 dmu_zfetch_stream_reclaim(zfetch_t *zf)
571 {
572         zstream_t       *zs;
573
574         if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
575                 return (0);
576
577         for (zs = list_head(&zf->zf_stream); zs;
578             zs = list_next(&zf->zf_stream, zs)) {
579
580                 if (((ddi_get_lbolt() - zs->zst_last)/hz) > zfetch_min_sec_reap)
581                         break;
582         }
583
584         if (zs) {
585                 dmu_zfetch_stream_remove(zf, zs);
586                 mutex_destroy(&zs->zst_lock);
587                 bzero(zs, sizeof (zstream_t));
588         } else {
589                 zf->zf_alloc_fail++;
590         }
591         rw_exit(&zf->zf_rwlock);
592
593         return (zs);
594 }
595
596 /*
597  * Given a zfetch and zstream structure, remove the zstream structure from its
598  * container in the zfetch structure.  Perform the appropriate book-keeping.
599  */
600 static void
601 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
602 {
603         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
604
605         list_remove(&zf->zf_stream, zs);
606         zf->zf_stream_cnt--;
607 }
608
609 static int
610 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
611 {
612         if (zs1->zst_offset != zs2->zst_offset)
613                 return (0);
614
615         if (zs1->zst_len != zs2->zst_len)
616                 return (0);
617
618         if (zs1->zst_stride != zs2->zst_stride)
619                 return (0);
620
621         if (zs1->zst_ph_offset != zs2->zst_ph_offset)
622                 return (0);
623
624         if (zs1->zst_cap != zs2->zst_cap)
625                 return (0);
626
627         if (zs1->zst_direction != zs2->zst_direction)
628                 return (0);
629
630         return (1);
631 }
632
633 /*
634  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
635  * routines to create, delete, find, or operate upon prefetch streams.
636  */
637 void
638 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
639 {
640         zstream_t       zst;
641         zstream_t       *newstream;
642         int             fetched;
643         int             inserted;
644         unsigned int    blkshft;
645         uint64_t        blksz;
646
647         if (zfs_prefetch_disable)
648                 return;
649
650         /* files that aren't ln2 blocksz are only one block -- nothing to do */
651         if (!zf->zf_dnode->dn_datablkshift)
652                 return;
653
654         /* convert offset and size, into blockid and nblocks */
655         blkshft = zf->zf_dnode->dn_datablkshift;
656         blksz = (1 << blkshft);
657
658         bzero(&zst, sizeof (zstream_t));
659         zst.zst_offset = offset >> blkshft;
660         zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
661             P2ALIGN(offset, blksz)) >> blkshft;
662
663         fetched = dmu_zfetch_find(zf, &zst, prefetched);
664         if (fetched) {
665                 ZFETCHSTAT_BUMP(zfetchstat_hits);
666         } else {
667                 ZFETCHSTAT_BUMP(zfetchstat_misses);
668                 if (fetched = dmu_zfetch_colinear(zf, &zst)) {
669                         ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
670                 } else {
671                         ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
672                 }
673         }
674
675         if (!fetched) {
676                 newstream = dmu_zfetch_stream_reclaim(zf);
677
678                 /*
679                  * we still couldn't find a stream, drop the lock, and allocate
680                  * one if possible.  Otherwise, give up and go home.
681                  */
682                 if (newstream) {
683                         ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
684                 } else {
685                         uint64_t        maxblocks;
686                         uint32_t        max_streams;
687                         uint32_t        cur_streams;
688
689                         ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
690                         cur_streams = zf->zf_stream_cnt;
691                         maxblocks = zf->zf_dnode->dn_maxblkid;
692
693                         max_streams = MIN(zfetch_max_streams,
694                             (maxblocks / zfetch_block_cap));
695                         if (max_streams == 0) {
696                                 max_streams++;
697                         }
698
699                         if (cur_streams >= max_streams) {
700                                 return;
701                         }
702                         newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
703                 }
704
705                 newstream->zst_offset = zst.zst_offset;
706                 newstream->zst_len = zst.zst_len;
707                 newstream->zst_stride = zst.zst_len;
708                 newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
709                 newstream->zst_cap = zst.zst_len;
710                 newstream->zst_direction = ZFETCH_FORWARD;
711                 newstream->zst_last = ddi_get_lbolt();
712
713                 mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
714
715                 rw_enter(&zf->zf_rwlock, RW_WRITER);
716                 inserted = dmu_zfetch_stream_insert(zf, newstream);
717                 rw_exit(&zf->zf_rwlock);
718
719                 if (!inserted) {
720                         mutex_destroy(&newstream->zst_lock);
721                         kmem_free(newstream, sizeof (zstream_t));
722                 }
723         }
724 }