06c7d0c8937b5f36c7ae86fe80194f38a0bc0484
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56         &vdev_disk_ops,
57         &vdev_file_ops,
58         &vdev_missing_ops,
59         &vdev_hole_ops,
60         NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72         vdev_ops_t *ops, **opspp;
73
74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75                 if (strcmp(ops->vdev_op_type, type) == 0)
76                         break;
77
78         return (ops);
79 }
80
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89         uint64_t csize;
90         int c;
91
92         for (c = 0; c < vd->vdev_children; c++) {
93                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94                 asize = MAX(asize, csize);
95         }
96
97         return (asize);
98 }
99
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109         vdev_t *pvd = vd->vdev_parent;
110
111         /*
112          * The our parent is NULL (inactive spare or cache) or is the root,
113          * just return our own asize.
114          */
115         if (pvd == NULL)
116                 return (vd->vdev_asize);
117
118         /*
119          * The top-level vdev just returns the allocatable size rounded
120          * to the nearest metaslab.
121          */
122         if (vd == vd->vdev_top)
123                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125         /*
126          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127          * so each child must provide at least 1/Nth of its asize.
128          */
129         if (pvd->vdev_ops == &vdev_raidz_ops)
130                 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132         return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138         int c;
139         vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141         for (c = 0; c < vd->vdev_children; c++)
142                 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         vdev_t *mvd;
164         int c;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220         int c;
221         uint_t id = cvd->vdev_id;
222
223         ASSERT(cvd->vdev_parent == pvd);
224
225         if (pvd == NULL)
226                 return;
227
228         ASSERT(id < pvd->vdev_children);
229         ASSERT(pvd->vdev_child[id] == cvd);
230
231         pvd->vdev_child[id] = NULL;
232         cvd->vdev_parent = NULL;
233
234         for (c = 0; c < pvd->vdev_children; c++)
235                 if (pvd->vdev_child[c])
236                         break;
237
238         if (c == pvd->vdev_children) {
239                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240                 pvd->vdev_child = NULL;
241                 pvd->vdev_children = 0;
242         }
243
244         /*
245          * Walk up all ancestors to update guid sum.
246          */
247         for (; pvd != NULL; pvd = pvd->vdev_parent)
248                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260         int c;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
269
270         for (c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289         int t;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         list_link_init(&vd->vdev_config_dirty_node);
324         list_link_init(&vd->vdev_state_dirty_node);
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (EINVAL);
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (EINVAL);
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (EINVAL);
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (ENOTSUP);
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (EINVAL);
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (ENOTSUP);
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (ENOTSUP);
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (EINVAL);
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         int c, t;
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         if (tvd->vdev_mg)
676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677         tvd->vdev_mg = svd->vdev_mg;
678         tvd->vdev_ms = svd->vdev_ms;
679
680         svd->vdev_mg = NULL;
681         svd->vdev_ms = NULL;
682
683         if (tvd->vdev_mg != NULL)
684                 tvd->vdev_mg->mg_vd = tvd;
685
686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690         svd->vdev_stat.vs_alloc = 0;
691         svd->vdev_stat.vs_space = 0;
692         svd->vdev_stat.vs_dspace = 0;
693
694         for (t = 0; t < TXG_SIZE; t++) {
695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701         }
702
703         if (list_link_active(&svd->vdev_config_dirty_node)) {
704                 vdev_config_clean(svd);
705                 vdev_config_dirty(tvd);
706         }
707
708         if (list_link_active(&svd->vdev_state_dirty_node)) {
709                 vdev_state_clean(svd);
710                 vdev_state_dirty(tvd);
711         }
712
713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714         svd->vdev_deflate_ratio = 0;
715
716         tvd->vdev_islog = svd->vdev_islog;
717         svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723         int c;
724
725         if (vd == NULL)
726                 return;
727
728         vd->vdev_top = tvd;
729
730         for (c = 0; c < vd->vdev_children; c++)
731                 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735  * Add a mirror/replacing vdev above an existing vdev.
736  */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740         spa_t *spa = cvd->vdev_spa;
741         vdev_t *pvd = cvd->vdev_parent;
742         vdev_t *mvd;
743
744         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748         mvd->vdev_asize = cvd->vdev_asize;
749         mvd->vdev_min_asize = cvd->vdev_min_asize;
750         mvd->vdev_ashift = cvd->vdev_ashift;
751         mvd->vdev_state = cvd->vdev_state;
752         mvd->vdev_crtxg = cvd->vdev_crtxg;
753
754         vdev_remove_child(pvd, cvd);
755         vdev_add_child(pvd, mvd);
756         cvd->vdev_id = mvd->vdev_children;
757         vdev_add_child(mvd, cvd);
758         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
759
760         if (mvd == mvd->vdev_top)
761                 vdev_top_transfer(cvd, mvd);
762
763         return (mvd);
764 }
765
766 /*
767  * Remove a 1-way mirror/replacing vdev from the tree.
768  */
769 void
770 vdev_remove_parent(vdev_t *cvd)
771 {
772         vdev_t *mvd = cvd->vdev_parent;
773         vdev_t *pvd = mvd->vdev_parent;
774
775         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
776
777         ASSERT(mvd->vdev_children == 1);
778         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
779             mvd->vdev_ops == &vdev_replacing_ops ||
780             mvd->vdev_ops == &vdev_spare_ops);
781         cvd->vdev_ashift = mvd->vdev_ashift;
782
783         vdev_remove_child(mvd, cvd);
784         vdev_remove_child(pvd, mvd);
785
786         /*
787          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
788          * Otherwise, we could have detached an offline device, and when we
789          * go to import the pool we'll think we have two top-level vdevs,
790          * instead of a different version of the same top-level vdev.
791          */
792         if (mvd->vdev_top == mvd) {
793                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
794                 cvd->vdev_orig_guid = cvd->vdev_guid;
795                 cvd->vdev_guid += guid_delta;
796                 cvd->vdev_guid_sum += guid_delta;
797         }
798         cvd->vdev_id = mvd->vdev_id;
799         vdev_add_child(pvd, cvd);
800         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
801
802         if (cvd == cvd->vdev_top)
803                 vdev_top_transfer(mvd, cvd);
804
805         ASSERT(mvd->vdev_children == 0);
806         vdev_free(mvd);
807 }
808
809 int
810 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
811 {
812         spa_t *spa = vd->vdev_spa;
813         objset_t *mos = spa->spa_meta_objset;
814         uint64_t m;
815         uint64_t oldc = vd->vdev_ms_count;
816         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
817         metaslab_t **mspp;
818         int error;
819
820         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
821
822         /*
823          * This vdev is not being allocated from yet or is a hole.
824          */
825         if (vd->vdev_ms_shift == 0)
826                 return (0);
827
828         ASSERT(!vd->vdev_ishole);
829
830         /*
831          * Compute the raidz-deflation ratio.  Note, we hard-code
832          * in 128k (1 << 17) because it is the current "typical" blocksize.
833          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
834          * or we will inconsistently account for existing bp's.
835          */
836         vd->vdev_deflate_ratio = (1 << 17) /
837             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
838
839         ASSERT(oldc <= newc);
840
841         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
842
843         if (oldc != 0) {
844                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
845                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
846         }
847
848         vd->vdev_ms = mspp;
849         vd->vdev_ms_count = newc;
850
851         for (m = oldc; m < newc; m++) {
852                 space_map_obj_t smo = { 0, 0, 0 };
853                 if (txg == 0) {
854                         uint64_t object = 0;
855                         error = dmu_read(mos, vd->vdev_ms_array,
856                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
857                             DMU_READ_PREFETCH);
858                         if (error)
859                                 return (error);
860                         if (object != 0) {
861                                 dmu_buf_t *db;
862                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
863                                 if (error)
864                                         return (error);
865                                 ASSERT3U(db->db_size, >=, sizeof (smo));
866                                 bcopy(db->db_data, &smo, sizeof (smo));
867                                 ASSERT3U(smo.smo_object, ==, object);
868                                 dmu_buf_rele(db, FTAG);
869                         }
870                 }
871                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
872                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
873         }
874
875         if (txg == 0)
876                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
877
878         /*
879          * If the vdev is being removed we don't activate
880          * the metaslabs since we want to ensure that no new
881          * allocations are performed on this device.
882          */
883         if (oldc == 0 && !vd->vdev_removing)
884                 metaslab_group_activate(vd->vdev_mg);
885
886         if (txg == 0)
887                 spa_config_exit(spa, SCL_ALLOC, FTAG);
888
889         return (0);
890 }
891
892 void
893 vdev_metaslab_fini(vdev_t *vd)
894 {
895         uint64_t m;
896         uint64_t count = vd->vdev_ms_count;
897
898         if (vd->vdev_ms != NULL) {
899                 metaslab_group_passivate(vd->vdev_mg);
900                 for (m = 0; m < count; m++)
901                         if (vd->vdev_ms[m] != NULL)
902                                 metaslab_fini(vd->vdev_ms[m]);
903                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
904                 vd->vdev_ms = NULL;
905         }
906 }
907
908 typedef struct vdev_probe_stats {
909         boolean_t       vps_readable;
910         boolean_t       vps_writeable;
911         int             vps_flags;
912 } vdev_probe_stats_t;
913
914 static void
915 vdev_probe_done(zio_t *zio)
916 {
917         spa_t *spa = zio->io_spa;
918         vdev_t *vd = zio->io_vd;
919         vdev_probe_stats_t *vps = zio->io_private;
920
921         ASSERT(vd->vdev_probe_zio != NULL);
922
923         if (zio->io_type == ZIO_TYPE_READ) {
924                 if (zio->io_error == 0)
925                         vps->vps_readable = 1;
926                 if (zio->io_error == 0 && spa_writeable(spa)) {
927                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
928                             zio->io_offset, zio->io_size, zio->io_data,
929                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
930                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
931                 } else {
932                         zio_buf_free(zio->io_data, zio->io_size);
933                 }
934         } else if (zio->io_type == ZIO_TYPE_WRITE) {
935                 if (zio->io_error == 0)
936                         vps->vps_writeable = 1;
937                 zio_buf_free(zio->io_data, zio->io_size);
938         } else if (zio->io_type == ZIO_TYPE_NULL) {
939                 zio_t *pio;
940
941                 vd->vdev_cant_read |= !vps->vps_readable;
942                 vd->vdev_cant_write |= !vps->vps_writeable;
943
944                 if (vdev_readable(vd) &&
945                     (vdev_writeable(vd) || !spa_writeable(spa))) {
946                         zio->io_error = 0;
947                 } else {
948                         ASSERT(zio->io_error != 0);
949                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
950                             spa, vd, NULL, 0, 0);
951                         zio->io_error = ENXIO;
952                 }
953
954                 mutex_enter(&vd->vdev_probe_lock);
955                 ASSERT(vd->vdev_probe_zio == zio);
956                 vd->vdev_probe_zio = NULL;
957                 mutex_exit(&vd->vdev_probe_lock);
958
959                 while ((pio = zio_walk_parents(zio)) != NULL)
960                         if (!vdev_accessible(vd, pio))
961                                 pio->io_error = ENXIO;
962
963                 kmem_free(vps, sizeof (*vps));
964         }
965 }
966
967 /*
968  * Determine whether this device is accessible by reading and writing
969  * to several known locations: the pad regions of each vdev label
970  * but the first (which we leave alone in case it contains a VTOC).
971  */
972 zio_t *
973 vdev_probe(vdev_t *vd, zio_t *zio)
974 {
975         spa_t *spa = vd->vdev_spa;
976         vdev_probe_stats_t *vps = NULL;
977         zio_t *pio;
978         int l;
979
980         ASSERT(vd->vdev_ops->vdev_op_leaf);
981
982         /*
983          * Don't probe the probe.
984          */
985         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
986                 return (NULL);
987
988         /*
989          * To prevent 'probe storms' when a device fails, we create
990          * just one probe i/o at a time.  All zios that want to probe
991          * this vdev will become parents of the probe io.
992          */
993         mutex_enter(&vd->vdev_probe_lock);
994
995         if ((pio = vd->vdev_probe_zio) == NULL) {
996                 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
997
998                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
999                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1000                     ZIO_FLAG_TRYHARD;
1001
1002                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1003                         /*
1004                          * vdev_cant_read and vdev_cant_write can only
1005                          * transition from TRUE to FALSE when we have the
1006                          * SCL_ZIO lock as writer; otherwise they can only
1007                          * transition from FALSE to TRUE.  This ensures that
1008                          * any zio looking at these values can assume that
1009                          * failures persist for the life of the I/O.  That's
1010                          * important because when a device has intermittent
1011                          * connectivity problems, we want to ensure that
1012                          * they're ascribed to the device (ENXIO) and not
1013                          * the zio (EIO).
1014                          *
1015                          * Since we hold SCL_ZIO as writer here, clear both
1016                          * values so the probe can reevaluate from first
1017                          * principles.
1018                          */
1019                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1020                         vd->vdev_cant_read = B_FALSE;
1021                         vd->vdev_cant_write = B_FALSE;
1022                 }
1023
1024                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1025                     vdev_probe_done, vps,
1026                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1027
1028                 /*
1029                  * We can't change the vdev state in this context, so we
1030                  * kick off an async task to do it on our behalf.
1031                  */
1032                 if (zio != NULL) {
1033                         vd->vdev_probe_wanted = B_TRUE;
1034                         spa_async_request(spa, SPA_ASYNC_PROBE);
1035                 }
1036         }
1037
1038         if (zio != NULL)
1039                 zio_add_child(zio, pio);
1040
1041         mutex_exit(&vd->vdev_probe_lock);
1042
1043         if (vps == NULL) {
1044                 ASSERT(zio != NULL);
1045                 return (NULL);
1046         }
1047
1048         for (l = 1; l < VDEV_LABELS; l++) {
1049                 zio_nowait(zio_read_phys(pio, vd,
1050                     vdev_label_offset(vd->vdev_psize, l,
1051                     offsetof(vdev_label_t, vl_pad2)),
1052                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1053                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1054                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1055         }
1056
1057         if (zio == NULL)
1058                 return (pio);
1059
1060         zio_nowait(pio);
1061         return (NULL);
1062 }
1063
1064 static void
1065 vdev_open_child(void *arg)
1066 {
1067         vdev_t *vd = arg;
1068
1069         vd->vdev_open_thread = curthread;
1070         vd->vdev_open_error = vdev_open(vd);
1071         vd->vdev_open_thread = NULL;
1072 }
1073
1074 boolean_t
1075 vdev_uses_zvols(vdev_t *vd)
1076 {
1077 /*
1078  * Stacking zpools on top of zvols is unsupported until we implement a method
1079  * for determining if an arbitrary block device is a zvol without using the
1080  * path.  Solaris would check the 'zvol' path component but this does not
1081  * exist in the Linux port, so we really should do something like stat the
1082  * file and check the major number.  This is complicated by the fact that
1083  * we need to do this portably in user or kernel space.
1084  */
1085 #if 0
1086         int c;
1087
1088         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1089             strlen(ZVOL_DIR)) == 0)
1090                 return (B_TRUE);
1091         for (c = 0; c < vd->vdev_children; c++)
1092                 if (vdev_uses_zvols(vd->vdev_child[c]))
1093                         return (B_TRUE);
1094 #endif
1095         return (B_FALSE);
1096 }
1097
1098 void
1099 vdev_open_children(vdev_t *vd)
1100 {
1101         taskq_t *tq;
1102         int children = vd->vdev_children;
1103         int c;
1104
1105         /*
1106          * in order to handle pools on top of zvols, do the opens
1107          * in a single thread so that the same thread holds the
1108          * spa_namespace_lock
1109          */
1110         if (vdev_uses_zvols(vd)) {
1111                 for (c = 0; c < children; c++)
1112                         vd->vdev_child[c]->vdev_open_error =
1113                             vdev_open(vd->vdev_child[c]);
1114                 return;
1115         }
1116         tq = taskq_create("vdev_open", children, minclsyspri,
1117             children, children, TASKQ_PREPOPULATE);
1118
1119         for (c = 0; c < children; c++)
1120                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1121                     TQ_SLEEP) != 0);
1122
1123         taskq_destroy(tq);
1124 }
1125
1126 /*
1127  * Prepare a virtual device for access.
1128  */
1129 int
1130 vdev_open(vdev_t *vd)
1131 {
1132         spa_t *spa = vd->vdev_spa;
1133         int error;
1134         uint64_t osize = 0;
1135         uint64_t asize, psize;
1136         uint64_t ashift = 0;
1137         int c;
1138
1139         ASSERT(vd->vdev_open_thread == curthread ||
1140             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1141         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1142             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1143             vd->vdev_state == VDEV_STATE_OFFLINE);
1144
1145         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1146         vd->vdev_cant_read = B_FALSE;
1147         vd->vdev_cant_write = B_FALSE;
1148         vd->vdev_min_asize = vdev_get_min_asize(vd);
1149
1150         /*
1151          * If this vdev is not removed, check its fault status.  If it's
1152          * faulted, bail out of the open.
1153          */
1154         if (!vd->vdev_removed && vd->vdev_faulted) {
1155                 ASSERT(vd->vdev_children == 0);
1156                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1157                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1158                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1159                     vd->vdev_label_aux);
1160                 return (ENXIO);
1161         } else if (vd->vdev_offline) {
1162                 ASSERT(vd->vdev_children == 0);
1163                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1164                 return (ENXIO);
1165         }
1166
1167         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1168
1169         /*
1170          * Reset the vdev_reopening flag so that we actually close
1171          * the vdev on error.
1172          */
1173         vd->vdev_reopening = B_FALSE;
1174         if (zio_injection_enabled && error == 0)
1175                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1176
1177         if (error) {
1178                 if (vd->vdev_removed &&
1179                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1180                         vd->vdev_removed = B_FALSE;
1181
1182                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1183                     vd->vdev_stat.vs_aux);
1184                 return (error);
1185         }
1186
1187         vd->vdev_removed = B_FALSE;
1188
1189         /*
1190          * Recheck the faulted flag now that we have confirmed that
1191          * the vdev is accessible.  If we're faulted, bail.
1192          */
1193         if (vd->vdev_faulted) {
1194                 ASSERT(vd->vdev_children == 0);
1195                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1196                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1197                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1198                     vd->vdev_label_aux);
1199                 return (ENXIO);
1200         }
1201
1202         if (vd->vdev_degraded) {
1203                 ASSERT(vd->vdev_children == 0);
1204                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1205                     VDEV_AUX_ERR_EXCEEDED);
1206         } else {
1207                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1208         }
1209
1210         /*
1211          * For hole or missing vdevs we just return success.
1212          */
1213         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1214                 return (0);
1215
1216         for (c = 0; c < vd->vdev_children; c++) {
1217                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1218                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1219                             VDEV_AUX_NONE);
1220                         break;
1221                 }
1222         }
1223
1224         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1225
1226         if (vd->vdev_children == 0) {
1227                 if (osize < SPA_MINDEVSIZE) {
1228                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229                             VDEV_AUX_TOO_SMALL);
1230                         return (EOVERFLOW);
1231                 }
1232                 psize = osize;
1233                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1234         } else {
1235                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1236                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1237                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238                             VDEV_AUX_TOO_SMALL);
1239                         return (EOVERFLOW);
1240                 }
1241                 psize = 0;
1242                 asize = osize;
1243         }
1244
1245         vd->vdev_psize = psize;
1246
1247         /*
1248          * Make sure the allocatable size hasn't shrunk.
1249          */
1250         if (asize < vd->vdev_min_asize) {
1251                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252                     VDEV_AUX_BAD_LABEL);
1253                 return (EINVAL);
1254         }
1255
1256         if (vd->vdev_asize == 0) {
1257                 /*
1258                  * This is the first-ever open, so use the computed values.
1259                  * For testing purposes, a higher ashift can be requested.
1260                  */
1261                 vd->vdev_asize = asize;
1262                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1263         } else {
1264                 /*
1265                  * Make sure the alignment requirement hasn't increased.
1266                  */
1267                 if (ashift > vd->vdev_top->vdev_ashift) {
1268                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1269                             VDEV_AUX_BAD_LABEL);
1270                         return (EINVAL);
1271                 }
1272         }
1273
1274         /*
1275          * If all children are healthy and the asize has increased,
1276          * then we've experienced dynamic LUN growth.  If automatic
1277          * expansion is enabled then use the additional space.
1278          */
1279         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1280             (vd->vdev_expanding || spa->spa_autoexpand))
1281                 vd->vdev_asize = asize;
1282
1283         vdev_set_min_asize(vd);
1284
1285         /*
1286          * Ensure we can issue some IO before declaring the
1287          * vdev open for business.
1288          */
1289         if (vd->vdev_ops->vdev_op_leaf &&
1290             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1292                     VDEV_AUX_ERR_EXCEEDED);
1293                 return (error);
1294         }
1295
1296         /*
1297          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1298          * resilver.  But don't do this if we are doing a reopen for a scrub,
1299          * since this would just restart the scrub we are already doing.
1300          */
1301         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1302             vdev_resilver_needed(vd, NULL, NULL))
1303                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1304
1305         return (0);
1306 }
1307
1308 /*
1309  * Called once the vdevs are all opened, this routine validates the label
1310  * contents.  This needs to be done before vdev_load() so that we don't
1311  * inadvertently do repair I/Os to the wrong device.
1312  *
1313  * If 'strict' is false ignore the spa guid check. This is necessary because
1314  * if the machine crashed during a re-guid the new guid might have been written
1315  * to all of the vdev labels, but not the cached config. The strict check
1316  * will be performed when the pool is opened again using the mos config.
1317  *
1318  * This function will only return failure if one of the vdevs indicates that it
1319  * has since been destroyed or exported.  This is only possible if
1320  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1321  * will be updated but the function will return 0.
1322  */
1323 int
1324 vdev_validate(vdev_t *vd, boolean_t strict)
1325 {
1326         spa_t *spa = vd->vdev_spa;
1327         nvlist_t *label;
1328         uint64_t guid = 0, top_guid;
1329         uint64_t state;
1330         int c;
1331
1332         for (c = 0; c < vd->vdev_children; c++)
1333                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1334                         return (EBADF);
1335
1336         /*
1337          * If the device has already failed, or was marked offline, don't do
1338          * any further validation.  Otherwise, label I/O will fail and we will
1339          * overwrite the previous state.
1340          */
1341         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1342                 uint64_t aux_guid = 0;
1343                 nvlist_t *nvl;
1344
1345                 if ((label = vdev_label_read_config(vd)) == NULL) {
1346                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1347                             VDEV_AUX_BAD_LABEL);
1348                         return (0);
1349                 }
1350
1351                 /*
1352                  * Determine if this vdev has been split off into another
1353                  * pool.  If so, then refuse to open it.
1354                  */
1355                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1356                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1357                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1358                             VDEV_AUX_SPLIT_POOL);
1359                         nvlist_free(label);
1360                         return (0);
1361                 }
1362
1363                 if (strict && (nvlist_lookup_uint64(label,
1364                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1365                     guid != spa_guid(spa))) {
1366                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367                             VDEV_AUX_CORRUPT_DATA);
1368                         nvlist_free(label);
1369                         return (0);
1370                 }
1371
1372                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1373                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1374                     &aux_guid) != 0)
1375                         aux_guid = 0;
1376
1377                 /*
1378                  * If this vdev just became a top-level vdev because its
1379                  * sibling was detached, it will have adopted the parent's
1380                  * vdev guid -- but the label may or may not be on disk yet.
1381                  * Fortunately, either version of the label will have the
1382                  * same top guid, so if we're a top-level vdev, we can
1383                  * safely compare to that instead.
1384                  *
1385                  * If we split this vdev off instead, then we also check the
1386                  * original pool's guid.  We don't want to consider the vdev
1387                  * corrupt if it is partway through a split operation.
1388                  */
1389                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1390                     &guid) != 0 ||
1391                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1392                     &top_guid) != 0 ||
1393                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1394                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1395                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1396                             VDEV_AUX_CORRUPT_DATA);
1397                         nvlist_free(label);
1398                         return (0);
1399                 }
1400
1401                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1402                     &state) != 0) {
1403                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1404                             VDEV_AUX_CORRUPT_DATA);
1405                         nvlist_free(label);
1406                         return (0);
1407                 }
1408
1409                 nvlist_free(label);
1410
1411                 /*
1412                  * If this is a verbatim import, no need to check the
1413                  * state of the pool.
1414                  */
1415                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1416                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1417                     state != POOL_STATE_ACTIVE)
1418                         return (EBADF);
1419
1420                 /*
1421                  * If we were able to open and validate a vdev that was
1422                  * previously marked permanently unavailable, clear that state
1423                  * now.
1424                  */
1425                 if (vd->vdev_not_present)
1426                         vd->vdev_not_present = 0;
1427         }
1428
1429         return (0);
1430 }
1431
1432 /*
1433  * Close a virtual device.
1434  */
1435 void
1436 vdev_close(vdev_t *vd)
1437 {
1438         vdev_t *pvd = vd->vdev_parent;
1439         ASSERTV(spa_t *spa = vd->vdev_spa);
1440
1441         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1442
1443         /*
1444          * If our parent is reopening, then we are as well, unless we are
1445          * going offline.
1446          */
1447         if (pvd != NULL && pvd->vdev_reopening)
1448                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1449
1450         vd->vdev_ops->vdev_op_close(vd);
1451
1452         vdev_cache_purge(vd);
1453
1454         /*
1455          * We record the previous state before we close it, so that if we are
1456          * doing a reopen(), we don't generate FMA ereports if we notice that
1457          * it's still faulted.
1458          */
1459         vd->vdev_prevstate = vd->vdev_state;
1460
1461         if (vd->vdev_offline)
1462                 vd->vdev_state = VDEV_STATE_OFFLINE;
1463         else
1464                 vd->vdev_state = VDEV_STATE_CLOSED;
1465         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1466 }
1467
1468 void
1469 vdev_hold(vdev_t *vd)
1470 {
1471         spa_t *spa = vd->vdev_spa;
1472         int c;
1473
1474         ASSERT(spa_is_root(spa));
1475         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1476                 return;
1477
1478         for (c = 0; c < vd->vdev_children; c++)
1479                 vdev_hold(vd->vdev_child[c]);
1480
1481         if (vd->vdev_ops->vdev_op_leaf)
1482                 vd->vdev_ops->vdev_op_hold(vd);
1483 }
1484
1485 void
1486 vdev_rele(vdev_t *vd)
1487 {
1488         int c;
1489
1490         ASSERT(spa_is_root(vd->vdev_spa));
1491         for (c = 0; c < vd->vdev_children; c++)
1492                 vdev_rele(vd->vdev_child[c]);
1493
1494         if (vd->vdev_ops->vdev_op_leaf)
1495                 vd->vdev_ops->vdev_op_rele(vd);
1496 }
1497
1498 /*
1499  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1500  * reopen leaf vdevs which had previously been opened as they might deadlock
1501  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1502  * If the leaf has never been opened then open it, as usual.
1503  */
1504 void
1505 vdev_reopen(vdev_t *vd)
1506 {
1507         spa_t *spa = vd->vdev_spa;
1508
1509         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1510
1511         /* set the reopening flag unless we're taking the vdev offline */
1512         vd->vdev_reopening = !vd->vdev_offline;
1513         vdev_close(vd);
1514         (void) vdev_open(vd);
1515
1516         /*
1517          * Call vdev_validate() here to make sure we have the same device.
1518          * Otherwise, a device with an invalid label could be successfully
1519          * opened in response to vdev_reopen().
1520          */
1521         if (vd->vdev_aux) {
1522                 (void) vdev_validate_aux(vd);
1523                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1524                     vd->vdev_aux == &spa->spa_l2cache &&
1525                     !l2arc_vdev_present(vd))
1526                         l2arc_add_vdev(spa, vd);
1527         } else {
1528                 (void) vdev_validate(vd, B_TRUE);
1529         }
1530
1531         /*
1532          * Reassess parent vdev's health.
1533          */
1534         vdev_propagate_state(vd);
1535 }
1536
1537 int
1538 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1539 {
1540         int error;
1541
1542         /*
1543          * Normally, partial opens (e.g. of a mirror) are allowed.
1544          * For a create, however, we want to fail the request if
1545          * there are any components we can't open.
1546          */
1547         error = vdev_open(vd);
1548
1549         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1550                 vdev_close(vd);
1551                 return (error ? error : ENXIO);
1552         }
1553
1554         /*
1555          * Recursively initialize all labels.
1556          */
1557         if ((error = vdev_label_init(vd, txg, isreplacing ?
1558             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1559                 vdev_close(vd);
1560                 return (error);
1561         }
1562
1563         return (0);
1564 }
1565
1566 void
1567 vdev_metaslab_set_size(vdev_t *vd)
1568 {
1569         /*
1570          * Aim for roughly 200 metaslabs per vdev.
1571          */
1572         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1573         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1574 }
1575
1576 void
1577 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1578 {
1579         ASSERT(vd == vd->vdev_top);
1580         ASSERT(!vd->vdev_ishole);
1581         ASSERT(ISP2(flags));
1582         ASSERT(spa_writeable(vd->vdev_spa));
1583
1584         if (flags & VDD_METASLAB)
1585                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1586
1587         if (flags & VDD_DTL)
1588                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1589
1590         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1591 }
1592
1593 /*
1594  * DTLs.
1595  *
1596  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1597  * the vdev has less than perfect replication.  There are four kinds of DTL:
1598  *
1599  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1600  *
1601  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1602  *
1603  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1604  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1605  *      txgs that was scrubbed.
1606  *
1607  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1608  *      persistent errors or just some device being offline.
1609  *      Unlike the other three, the DTL_OUTAGE map is not generally
1610  *      maintained; it's only computed when needed, typically to
1611  *      determine whether a device can be detached.
1612  *
1613  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1614  * either has the data or it doesn't.
1615  *
1616  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1617  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1618  * if any child is less than fully replicated, then so is its parent.
1619  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1620  * comprising only those txgs which appear in 'maxfaults' or more children;
1621  * those are the txgs we don't have enough replication to read.  For example,
1622  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1623  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1624  * two child DTL_MISSING maps.
1625  *
1626  * It should be clear from the above that to compute the DTLs and outage maps
1627  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1628  * Therefore, that is all we keep on disk.  When loading the pool, or after
1629  * a configuration change, we generate all other DTLs from first principles.
1630  */
1631 void
1632 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1633 {
1634         space_map_t *sm = &vd->vdev_dtl[t];
1635
1636         ASSERT(t < DTL_TYPES);
1637         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1638         ASSERT(spa_writeable(vd->vdev_spa));
1639
1640         mutex_enter(sm->sm_lock);
1641         if (!space_map_contains(sm, txg, size))
1642                 space_map_add(sm, txg, size);
1643         mutex_exit(sm->sm_lock);
1644 }
1645
1646 boolean_t
1647 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1648 {
1649         space_map_t *sm = &vd->vdev_dtl[t];
1650         boolean_t dirty = B_FALSE;
1651
1652         ASSERT(t < DTL_TYPES);
1653         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1654
1655         mutex_enter(sm->sm_lock);
1656         if (sm->sm_space != 0)
1657                 dirty = space_map_contains(sm, txg, size);
1658         mutex_exit(sm->sm_lock);
1659
1660         return (dirty);
1661 }
1662
1663 boolean_t
1664 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1665 {
1666         space_map_t *sm = &vd->vdev_dtl[t];
1667         boolean_t empty;
1668
1669         mutex_enter(sm->sm_lock);
1670         empty = (sm->sm_space == 0);
1671         mutex_exit(sm->sm_lock);
1672
1673         return (empty);
1674 }
1675
1676 /*
1677  * Reassess DTLs after a config change or scrub completion.
1678  */
1679 void
1680 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1681 {
1682         spa_t *spa = vd->vdev_spa;
1683         avl_tree_t reftree;
1684         int c, t, minref;
1685
1686         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1687
1688         for (c = 0; c < vd->vdev_children; c++)
1689                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1690                     scrub_txg, scrub_done);
1691
1692         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1693                 return;
1694
1695         if (vd->vdev_ops->vdev_op_leaf) {
1696                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1697
1698                 mutex_enter(&vd->vdev_dtl_lock);
1699                 if (scrub_txg != 0 &&
1700                     (spa->spa_scrub_started ||
1701                     (scn && scn->scn_phys.scn_errors == 0))) {
1702                         /*
1703                          * We completed a scrub up to scrub_txg.  If we
1704                          * did it without rebooting, then the scrub dtl
1705                          * will be valid, so excise the old region and
1706                          * fold in the scrub dtl.  Otherwise, leave the
1707                          * dtl as-is if there was an error.
1708                          *
1709                          * There's little trick here: to excise the beginning
1710                          * of the DTL_MISSING map, we put it into a reference
1711                          * tree and then add a segment with refcnt -1 that
1712                          * covers the range [0, scrub_txg).  This means
1713                          * that each txg in that range has refcnt -1 or 0.
1714                          * We then add DTL_SCRUB with a refcnt of 2, so that
1715                          * entries in the range [0, scrub_txg) will have a
1716                          * positive refcnt -- either 1 or 2.  We then convert
1717                          * the reference tree into the new DTL_MISSING map.
1718                          */
1719                         space_map_ref_create(&reftree);
1720                         space_map_ref_add_map(&reftree,
1721                             &vd->vdev_dtl[DTL_MISSING], 1);
1722                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1723                         space_map_ref_add_map(&reftree,
1724                             &vd->vdev_dtl[DTL_SCRUB], 2);
1725                         space_map_ref_generate_map(&reftree,
1726                             &vd->vdev_dtl[DTL_MISSING], 1);
1727                         space_map_ref_destroy(&reftree);
1728                 }
1729                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1730                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1731                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1732                 if (scrub_done)
1733                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1734                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1735                 if (!vdev_readable(vd))
1736                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1737                 else
1738                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1739                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1740                 mutex_exit(&vd->vdev_dtl_lock);
1741
1742                 if (txg != 0)
1743                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1744                 return;
1745         }
1746
1747         mutex_enter(&vd->vdev_dtl_lock);
1748         for (t = 0; t < DTL_TYPES; t++) {
1749                 /* account for child's outage in parent's missing map */
1750                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1751                 if (t == DTL_SCRUB)
1752                         continue;                       /* leaf vdevs only */
1753                 if (t == DTL_PARTIAL)
1754                         minref = 1;                     /* i.e. non-zero */
1755                 else if (vd->vdev_nparity != 0)
1756                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1757                 else
1758                         minref = vd->vdev_children;     /* any kind of mirror */
1759                 space_map_ref_create(&reftree);
1760                 for (c = 0; c < vd->vdev_children; c++) {
1761                         vdev_t *cvd = vd->vdev_child[c];
1762                         mutex_enter(&cvd->vdev_dtl_lock);
1763                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1764                         mutex_exit(&cvd->vdev_dtl_lock);
1765                 }
1766                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1767                 space_map_ref_destroy(&reftree);
1768         }
1769         mutex_exit(&vd->vdev_dtl_lock);
1770 }
1771
1772 static int
1773 vdev_dtl_load(vdev_t *vd)
1774 {
1775         spa_t *spa = vd->vdev_spa;
1776         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1777         objset_t *mos = spa->spa_meta_objset;
1778         dmu_buf_t *db;
1779         int error;
1780
1781         ASSERT(vd->vdev_children == 0);
1782
1783         if (smo->smo_object == 0)
1784                 return (0);
1785
1786         ASSERT(!vd->vdev_ishole);
1787
1788         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1789                 return (error);
1790
1791         ASSERT3U(db->db_size, >=, sizeof (*smo));
1792         bcopy(db->db_data, smo, sizeof (*smo));
1793         dmu_buf_rele(db, FTAG);
1794
1795         mutex_enter(&vd->vdev_dtl_lock);
1796         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1797             NULL, SM_ALLOC, smo, mos);
1798         mutex_exit(&vd->vdev_dtl_lock);
1799
1800         return (error);
1801 }
1802
1803 void
1804 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1805 {
1806         spa_t *spa = vd->vdev_spa;
1807         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1808         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1809         objset_t *mos = spa->spa_meta_objset;
1810         space_map_t smsync;
1811         kmutex_t smlock;
1812         dmu_buf_t *db;
1813         dmu_tx_t *tx;
1814
1815         ASSERT(!vd->vdev_ishole);
1816
1817         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1818
1819         if (vd->vdev_detached) {
1820                 if (smo->smo_object != 0) {
1821                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1822                         smo->smo_object = 0;
1823                 }
1824                 dmu_tx_commit(tx);
1825                 return;
1826         }
1827
1828         if (smo->smo_object == 0) {
1829                 ASSERT(smo->smo_objsize == 0);
1830                 ASSERT(smo->smo_alloc == 0);
1831                 smo->smo_object = dmu_object_alloc(mos,
1832                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1833                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1834                 ASSERT(smo->smo_object != 0);
1835                 vdev_config_dirty(vd->vdev_top);
1836         }
1837
1838         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1839
1840         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1841             &smlock);
1842
1843         mutex_enter(&smlock);
1844
1845         mutex_enter(&vd->vdev_dtl_lock);
1846         space_map_walk(sm, space_map_add, &smsync);
1847         mutex_exit(&vd->vdev_dtl_lock);
1848
1849         space_map_truncate(smo, mos, tx);
1850         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1851
1852         space_map_destroy(&smsync);
1853
1854         mutex_exit(&smlock);
1855         mutex_destroy(&smlock);
1856
1857         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1858         dmu_buf_will_dirty(db, tx);
1859         ASSERT3U(db->db_size, >=, sizeof (*smo));
1860         bcopy(smo, db->db_data, sizeof (*smo));
1861         dmu_buf_rele(db, FTAG);
1862
1863         dmu_tx_commit(tx);
1864 }
1865
1866 /*
1867  * Determine whether the specified vdev can be offlined/detached/removed
1868  * without losing data.
1869  */
1870 boolean_t
1871 vdev_dtl_required(vdev_t *vd)
1872 {
1873         spa_t *spa = vd->vdev_spa;
1874         vdev_t *tvd = vd->vdev_top;
1875         uint8_t cant_read = vd->vdev_cant_read;
1876         boolean_t required;
1877
1878         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1879
1880         if (vd == spa->spa_root_vdev || vd == tvd)
1881                 return (B_TRUE);
1882
1883         /*
1884          * Temporarily mark the device as unreadable, and then determine
1885          * whether this results in any DTL outages in the top-level vdev.
1886          * If not, we can safely offline/detach/remove the device.
1887          */
1888         vd->vdev_cant_read = B_TRUE;
1889         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1890         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1891         vd->vdev_cant_read = cant_read;
1892         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1893
1894         if (!required && zio_injection_enabled)
1895                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1896
1897         return (required);
1898 }
1899
1900 /*
1901  * Determine if resilver is needed, and if so the txg range.
1902  */
1903 boolean_t
1904 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1905 {
1906         boolean_t needed = B_FALSE;
1907         uint64_t thismin = UINT64_MAX;
1908         uint64_t thismax = 0;
1909         int c;
1910
1911         if (vd->vdev_children == 0) {
1912                 mutex_enter(&vd->vdev_dtl_lock);
1913                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1914                     vdev_writeable(vd)) {
1915                         space_seg_t *ss;
1916
1917                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1918                         thismin = ss->ss_start - 1;
1919                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1920                         thismax = ss->ss_end;
1921                         needed = B_TRUE;
1922                 }
1923                 mutex_exit(&vd->vdev_dtl_lock);
1924         } else {
1925                 for (c = 0; c < vd->vdev_children; c++) {
1926                         vdev_t *cvd = vd->vdev_child[c];
1927                         uint64_t cmin, cmax;
1928
1929                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1930                                 thismin = MIN(thismin, cmin);
1931                                 thismax = MAX(thismax, cmax);
1932                                 needed = B_TRUE;
1933                         }
1934                 }
1935         }
1936
1937         if (needed && minp) {
1938                 *minp = thismin;
1939                 *maxp = thismax;
1940         }
1941         return (needed);
1942 }
1943
1944 void
1945 vdev_load(vdev_t *vd)
1946 {
1947         int c;
1948
1949         /*
1950          * Recursively load all children.
1951          */
1952         for (c = 0; c < vd->vdev_children; c++)
1953                 vdev_load(vd->vdev_child[c]);
1954
1955         /*
1956          * If this is a top-level vdev, initialize its metaslabs.
1957          */
1958         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1959             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1960             vdev_metaslab_init(vd, 0) != 0))
1961                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1962                     VDEV_AUX_CORRUPT_DATA);
1963
1964         /*
1965          * If this is a leaf vdev, load its DTL.
1966          */
1967         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1968                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1969                     VDEV_AUX_CORRUPT_DATA);
1970 }
1971
1972 /*
1973  * The special vdev case is used for hot spares and l2cache devices.  Its
1974  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1975  * we make sure that we can open the underlying device, then try to read the
1976  * label, and make sure that the label is sane and that it hasn't been
1977  * repurposed to another pool.
1978  */
1979 int
1980 vdev_validate_aux(vdev_t *vd)
1981 {
1982         nvlist_t *label;
1983         uint64_t guid, version;
1984         uint64_t state;
1985
1986         if (!vdev_readable(vd))
1987                 return (0);
1988
1989         if ((label = vdev_label_read_config(vd)) == NULL) {
1990                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1991                     VDEV_AUX_CORRUPT_DATA);
1992                 return (-1);
1993         }
1994
1995         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1996             version > SPA_VERSION ||
1997             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1998             guid != vd->vdev_guid ||
1999             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2000                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2001                     VDEV_AUX_CORRUPT_DATA);
2002                 nvlist_free(label);
2003                 return (-1);
2004         }
2005
2006         /*
2007          * We don't actually check the pool state here.  If it's in fact in
2008          * use by another pool, we update this fact on the fly when requested.
2009          */
2010         nvlist_free(label);
2011         return (0);
2012 }
2013
2014 void
2015 vdev_remove(vdev_t *vd, uint64_t txg)
2016 {
2017         spa_t *spa = vd->vdev_spa;
2018         objset_t *mos = spa->spa_meta_objset;
2019         dmu_tx_t *tx;
2020         int m;
2021
2022         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2023
2024         if (vd->vdev_dtl_smo.smo_object) {
2025                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2026                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2027                 vd->vdev_dtl_smo.smo_object = 0;
2028         }
2029
2030         if (vd->vdev_ms != NULL) {
2031                 for (m = 0; m < vd->vdev_ms_count; m++) {
2032                         metaslab_t *msp = vd->vdev_ms[m];
2033
2034                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2035                                 continue;
2036
2037                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2038                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2039                         msp->ms_smo.smo_object = 0;
2040                 }
2041         }
2042
2043         if (vd->vdev_ms_array) {
2044                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2045                 vd->vdev_ms_array = 0;
2046                 vd->vdev_ms_shift = 0;
2047         }
2048         dmu_tx_commit(tx);
2049 }
2050
2051 void
2052 vdev_sync_done(vdev_t *vd, uint64_t txg)
2053 {
2054         metaslab_t *msp;
2055         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2056
2057         ASSERT(!vd->vdev_ishole);
2058
2059         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2060                 metaslab_sync_done(msp, txg);
2061
2062         if (reassess)
2063                 metaslab_sync_reassess(vd->vdev_mg);
2064 }
2065
2066 void
2067 vdev_sync(vdev_t *vd, uint64_t txg)
2068 {
2069         spa_t *spa = vd->vdev_spa;
2070         vdev_t *lvd;
2071         metaslab_t *msp;
2072         dmu_tx_t *tx;
2073
2074         ASSERT(!vd->vdev_ishole);
2075
2076         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2077                 ASSERT(vd == vd->vdev_top);
2078                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2079                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2080                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2081                 ASSERT(vd->vdev_ms_array != 0);
2082                 vdev_config_dirty(vd);
2083                 dmu_tx_commit(tx);
2084         }
2085
2086         /*
2087          * Remove the metadata associated with this vdev once it's empty.
2088          */
2089         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2090                 vdev_remove(vd, txg);
2091
2092         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2093                 metaslab_sync(msp, txg);
2094                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2095         }
2096
2097         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2098                 vdev_dtl_sync(lvd, txg);
2099
2100         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2101 }
2102
2103 uint64_t
2104 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2105 {
2106         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2107 }
2108
2109 /*
2110  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2111  * not be opened, and no I/O is attempted.
2112  */
2113 int
2114 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2115 {
2116         vdev_t *vd, *tvd;
2117
2118         spa_vdev_state_enter(spa, SCL_NONE);
2119
2120         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2121                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2122
2123         if (!vd->vdev_ops->vdev_op_leaf)
2124                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2125
2126         tvd = vd->vdev_top;
2127
2128         /*
2129          * We don't directly use the aux state here, but if we do a
2130          * vdev_reopen(), we need this value to be present to remember why we
2131          * were faulted.
2132          */
2133         vd->vdev_label_aux = aux;
2134
2135         /*
2136          * Faulted state takes precedence over degraded.
2137          */
2138         vd->vdev_delayed_close = B_FALSE;
2139         vd->vdev_faulted = 1ULL;
2140         vd->vdev_degraded = 0ULL;
2141         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2142
2143         /*
2144          * If this device has the only valid copy of the data, then
2145          * back off and simply mark the vdev as degraded instead.
2146          */
2147         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2148                 vd->vdev_degraded = 1ULL;
2149                 vd->vdev_faulted = 0ULL;
2150
2151                 /*
2152                  * If we reopen the device and it's not dead, only then do we
2153                  * mark it degraded.
2154                  */
2155                 vdev_reopen(tvd);
2156
2157                 if (vdev_readable(vd))
2158                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2159         }
2160
2161         return (spa_vdev_state_exit(spa, vd, 0));
2162 }
2163
2164 /*
2165  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2166  * user that something is wrong.  The vdev continues to operate as normal as far
2167  * as I/O is concerned.
2168  */
2169 int
2170 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2171 {
2172         vdev_t *vd;
2173
2174         spa_vdev_state_enter(spa, SCL_NONE);
2175
2176         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2177                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2178
2179         if (!vd->vdev_ops->vdev_op_leaf)
2180                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2181
2182         /*
2183          * If the vdev is already faulted, then don't do anything.
2184          */
2185         if (vd->vdev_faulted || vd->vdev_degraded)
2186                 return (spa_vdev_state_exit(spa, NULL, 0));
2187
2188         vd->vdev_degraded = 1ULL;
2189         if (!vdev_is_dead(vd))
2190                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2191                     aux);
2192
2193         return (spa_vdev_state_exit(spa, vd, 0));
2194 }
2195
2196 /*
2197  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2198  * any attached spare device should be detached when the device finishes
2199  * resilvering.  Second, the online should be treated like a 'test' online case,
2200  * so no FMA events are generated if the device fails to open.
2201  */
2202 int
2203 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2204 {
2205         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2206
2207         spa_vdev_state_enter(spa, SCL_NONE);
2208
2209         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2210                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2211
2212         if (!vd->vdev_ops->vdev_op_leaf)
2213                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2214
2215         tvd = vd->vdev_top;
2216         vd->vdev_offline = B_FALSE;
2217         vd->vdev_tmpoffline = B_FALSE;
2218         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2219         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2220
2221         /* XXX - L2ARC 1.0 does not support expansion */
2222         if (!vd->vdev_aux) {
2223                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2224                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2225         }
2226
2227         vdev_reopen(tvd);
2228         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2229
2230         if (!vd->vdev_aux) {
2231                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2232                         pvd->vdev_expanding = B_FALSE;
2233         }
2234
2235         if (newstate)
2236                 *newstate = vd->vdev_state;
2237         if ((flags & ZFS_ONLINE_UNSPARE) &&
2238             !vdev_is_dead(vd) && vd->vdev_parent &&
2239             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2240             vd->vdev_parent->vdev_child[0] == vd)
2241                 vd->vdev_unspare = B_TRUE;
2242
2243         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2244
2245                 /* XXX - L2ARC 1.0 does not support expansion */
2246                 if (vd->vdev_aux)
2247                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2248                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2249         }
2250         return (spa_vdev_state_exit(spa, vd, 0));
2251 }
2252
2253 static int
2254 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2255 {
2256         vdev_t *vd, *tvd;
2257         int error = 0;
2258         uint64_t generation;
2259         metaslab_group_t *mg;
2260
2261 top:
2262         spa_vdev_state_enter(spa, SCL_ALLOC);
2263
2264         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2265                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2266
2267         if (!vd->vdev_ops->vdev_op_leaf)
2268                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2269
2270         tvd = vd->vdev_top;
2271         mg = tvd->vdev_mg;
2272         generation = spa->spa_config_generation + 1;
2273
2274         /*
2275          * If the device isn't already offline, try to offline it.
2276          */
2277         if (!vd->vdev_offline) {
2278                 /*
2279                  * If this device has the only valid copy of some data,
2280                  * don't allow it to be offlined. Log devices are always
2281                  * expendable.
2282                  */
2283                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2284                     vdev_dtl_required(vd))
2285                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2286
2287                 /*
2288                  * If the top-level is a slog and it has had allocations
2289                  * then proceed.  We check that the vdev's metaslab group
2290                  * is not NULL since it's possible that we may have just
2291                  * added this vdev but not yet initialized its metaslabs.
2292                  */
2293                 if (tvd->vdev_islog && mg != NULL) {
2294                         /*
2295                          * Prevent any future allocations.
2296                          */
2297                         metaslab_group_passivate(mg);
2298                         (void) spa_vdev_state_exit(spa, vd, 0);
2299
2300                         error = spa_offline_log(spa);
2301
2302                         spa_vdev_state_enter(spa, SCL_ALLOC);
2303
2304                         /*
2305                          * Check to see if the config has changed.
2306                          */
2307                         if (error || generation != spa->spa_config_generation) {
2308                                 metaslab_group_activate(mg);
2309                                 if (error)
2310                                         return (spa_vdev_state_exit(spa,
2311                                             vd, error));
2312                                 (void) spa_vdev_state_exit(spa, vd, 0);
2313                                 goto top;
2314                         }
2315                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2316                 }
2317
2318                 /*
2319                  * Offline this device and reopen its top-level vdev.
2320                  * If the top-level vdev is a log device then just offline
2321                  * it. Otherwise, if this action results in the top-level
2322                  * vdev becoming unusable, undo it and fail the request.
2323                  */
2324                 vd->vdev_offline = B_TRUE;
2325                 vdev_reopen(tvd);
2326
2327                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2328                     vdev_is_dead(tvd)) {
2329                         vd->vdev_offline = B_FALSE;
2330                         vdev_reopen(tvd);
2331                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2332                 }
2333
2334                 /*
2335                  * Add the device back into the metaslab rotor so that
2336                  * once we online the device it's open for business.
2337                  */
2338                 if (tvd->vdev_islog && mg != NULL)
2339                         metaslab_group_activate(mg);
2340         }
2341
2342         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2343
2344         return (spa_vdev_state_exit(spa, vd, 0));
2345 }
2346
2347 int
2348 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2349 {
2350         int error;
2351
2352         mutex_enter(&spa->spa_vdev_top_lock);
2353         error = vdev_offline_locked(spa, guid, flags);
2354         mutex_exit(&spa->spa_vdev_top_lock);
2355
2356         return (error);
2357 }
2358
2359 /*
2360  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2361  * vdev_offline(), we assume the spa config is locked.  We also clear all
2362  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2363  */
2364 void
2365 vdev_clear(spa_t *spa, vdev_t *vd)
2366 {
2367         vdev_t *rvd = spa->spa_root_vdev;
2368         int c;
2369
2370         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2371
2372         if (vd == NULL)
2373                 vd = rvd;
2374
2375         vd->vdev_stat.vs_read_errors = 0;
2376         vd->vdev_stat.vs_write_errors = 0;
2377         vd->vdev_stat.vs_checksum_errors = 0;
2378
2379         for (c = 0; c < vd->vdev_children; c++)
2380                 vdev_clear(spa, vd->vdev_child[c]);
2381
2382         /*
2383          * If we're in the FAULTED state or have experienced failed I/O, then
2384          * clear the persistent state and attempt to reopen the device.  We
2385          * also mark the vdev config dirty, so that the new faulted state is
2386          * written out to disk.
2387          */
2388         if (vd->vdev_faulted || vd->vdev_degraded ||
2389             !vdev_readable(vd) || !vdev_writeable(vd)) {
2390
2391                 /*
2392                  * When reopening in reponse to a clear event, it may be due to
2393                  * a fmadm repair request.  In this case, if the device is
2394                  * still broken, we want to still post the ereport again.
2395                  */
2396                 vd->vdev_forcefault = B_TRUE;
2397
2398                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2399                 vd->vdev_cant_read = B_FALSE;
2400                 vd->vdev_cant_write = B_FALSE;
2401
2402                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2403
2404                 vd->vdev_forcefault = B_FALSE;
2405
2406                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2407                         vdev_state_dirty(vd->vdev_top);
2408
2409                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2410                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2411
2412                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2413         }
2414
2415         /*
2416          * When clearing a FMA-diagnosed fault, we always want to
2417          * unspare the device, as we assume that the original spare was
2418          * done in response to the FMA fault.
2419          */
2420         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2421             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2422             vd->vdev_parent->vdev_child[0] == vd)
2423                 vd->vdev_unspare = B_TRUE;
2424 }
2425
2426 boolean_t
2427 vdev_is_dead(vdev_t *vd)
2428 {
2429         /*
2430          * Holes and missing devices are always considered "dead".
2431          * This simplifies the code since we don't have to check for
2432          * these types of devices in the various code paths.
2433          * Instead we rely on the fact that we skip over dead devices
2434          * before issuing I/O to them.
2435          */
2436         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2437             vd->vdev_ops == &vdev_missing_ops);
2438 }
2439
2440 boolean_t
2441 vdev_readable(vdev_t *vd)
2442 {
2443         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2444 }
2445
2446 boolean_t
2447 vdev_writeable(vdev_t *vd)
2448 {
2449         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2450 }
2451
2452 boolean_t
2453 vdev_allocatable(vdev_t *vd)
2454 {
2455         uint64_t state = vd->vdev_state;
2456
2457         /*
2458          * We currently allow allocations from vdevs which may be in the
2459          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2460          * fails to reopen then we'll catch it later when we're holding
2461          * the proper locks.  Note that we have to get the vdev state
2462          * in a local variable because although it changes atomically,
2463          * we're asking two separate questions about it.
2464          */
2465         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2466             !vd->vdev_cant_write && !vd->vdev_ishole);
2467 }
2468
2469 boolean_t
2470 vdev_accessible(vdev_t *vd, zio_t *zio)
2471 {
2472         ASSERT(zio->io_vd == vd);
2473
2474         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2475                 return (B_FALSE);
2476
2477         if (zio->io_type == ZIO_TYPE_READ)
2478                 return (!vd->vdev_cant_read);
2479
2480         if (zio->io_type == ZIO_TYPE_WRITE)
2481                 return (!vd->vdev_cant_write);
2482
2483         return (B_TRUE);
2484 }
2485
2486 /*
2487  * Get statistics for the given vdev.
2488  */
2489 void
2490 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2491 {
2492         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2493         int c, t;
2494
2495         mutex_enter(&vd->vdev_stat_lock);
2496         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2497         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2498         vs->vs_state = vd->vdev_state;
2499         vs->vs_rsize = vdev_get_min_asize(vd);
2500         if (vd->vdev_ops->vdev_op_leaf)
2501                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2502         mutex_exit(&vd->vdev_stat_lock);
2503
2504         /*
2505          * If we're getting stats on the root vdev, aggregate the I/O counts
2506          * over all top-level vdevs (i.e. the direct children of the root).
2507          */
2508         if (vd == rvd) {
2509                 for (c = 0; c < rvd->vdev_children; c++) {
2510                         vdev_t *cvd = rvd->vdev_child[c];
2511                         vdev_stat_t *cvs = &cvd->vdev_stat;
2512
2513                         mutex_enter(&vd->vdev_stat_lock);
2514                         for (t = 0; t < ZIO_TYPES; t++) {
2515                                 vs->vs_ops[t] += cvs->vs_ops[t];
2516                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2517                         }
2518                         cvs->vs_scan_removing = cvd->vdev_removing;
2519                         mutex_exit(&vd->vdev_stat_lock);
2520                 }
2521         }
2522 }
2523
2524 void
2525 vdev_clear_stats(vdev_t *vd)
2526 {
2527         mutex_enter(&vd->vdev_stat_lock);
2528         vd->vdev_stat.vs_space = 0;
2529         vd->vdev_stat.vs_dspace = 0;
2530         vd->vdev_stat.vs_alloc = 0;
2531         mutex_exit(&vd->vdev_stat_lock);
2532 }
2533
2534 void
2535 vdev_scan_stat_init(vdev_t *vd)
2536 {
2537         vdev_stat_t *vs = &vd->vdev_stat;
2538         int c;
2539
2540         for (c = 0; c < vd->vdev_children; c++)
2541                 vdev_scan_stat_init(vd->vdev_child[c]);
2542
2543         mutex_enter(&vd->vdev_stat_lock);
2544         vs->vs_scan_processed = 0;
2545         mutex_exit(&vd->vdev_stat_lock);
2546 }
2547
2548 void
2549 vdev_stat_update(zio_t *zio, uint64_t psize)
2550 {
2551         spa_t *spa = zio->io_spa;
2552         vdev_t *rvd = spa->spa_root_vdev;
2553         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2554         vdev_t *pvd;
2555         uint64_t txg = zio->io_txg;
2556         vdev_stat_t *vs = &vd->vdev_stat;
2557         zio_type_t type = zio->io_type;
2558         int flags = zio->io_flags;
2559
2560         /*
2561          * If this i/o is a gang leader, it didn't do any actual work.
2562          */
2563         if (zio->io_gang_tree)
2564                 return;
2565
2566         if (zio->io_error == 0) {
2567                 /*
2568                  * If this is a root i/o, don't count it -- we've already
2569                  * counted the top-level vdevs, and vdev_get_stats() will
2570                  * aggregate them when asked.  This reduces contention on
2571                  * the root vdev_stat_lock and implicitly handles blocks
2572                  * that compress away to holes, for which there is no i/o.
2573                  * (Holes never create vdev children, so all the counters
2574                  * remain zero, which is what we want.)
2575                  *
2576                  * Note: this only applies to successful i/o (io_error == 0)
2577                  * because unlike i/o counts, errors are not additive.
2578                  * When reading a ditto block, for example, failure of
2579                  * one top-level vdev does not imply a root-level error.
2580                  */
2581                 if (vd == rvd)
2582                         return;
2583
2584                 ASSERT(vd == zio->io_vd);
2585
2586                 if (flags & ZIO_FLAG_IO_BYPASS)
2587                         return;
2588
2589                 mutex_enter(&vd->vdev_stat_lock);
2590
2591                 if (flags & ZIO_FLAG_IO_REPAIR) {
2592                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2593                                 dsl_scan_phys_t *scn_phys =
2594                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2595                                 uint64_t *processed = &scn_phys->scn_processed;
2596
2597                                 /* XXX cleanup? */
2598                                 if (vd->vdev_ops->vdev_op_leaf)
2599                                         atomic_add_64(processed, psize);
2600                                 vs->vs_scan_processed += psize;
2601                         }
2602
2603                         if (flags & ZIO_FLAG_SELF_HEAL)
2604                                 vs->vs_self_healed += psize;
2605                 }
2606
2607                 vs->vs_ops[type]++;
2608                 vs->vs_bytes[type] += psize;
2609
2610                 mutex_exit(&vd->vdev_stat_lock);
2611                 return;
2612         }
2613
2614         if (flags & ZIO_FLAG_SPECULATIVE)
2615                 return;
2616
2617         /*
2618          * If this is an I/O error that is going to be retried, then ignore the
2619          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2620          * hard errors, when in reality they can happen for any number of
2621          * innocuous reasons (bus resets, MPxIO link failure, etc).
2622          */
2623         if (zio->io_error == EIO &&
2624             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2625                 return;
2626
2627         /*
2628          * Intent logs writes won't propagate their error to the root
2629          * I/O so don't mark these types of failures as pool-level
2630          * errors.
2631          */
2632         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2633                 return;
2634
2635         mutex_enter(&vd->vdev_stat_lock);
2636         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2637                 if (zio->io_error == ECKSUM)
2638                         vs->vs_checksum_errors++;
2639                 else
2640                         vs->vs_read_errors++;
2641         }
2642         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2643                 vs->vs_write_errors++;
2644         mutex_exit(&vd->vdev_stat_lock);
2645
2646         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2647             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2648             (flags & ZIO_FLAG_SCAN_THREAD) ||
2649             spa->spa_claiming)) {
2650                 /*
2651                  * This is either a normal write (not a repair), or it's
2652                  * a repair induced by the scrub thread, or it's a repair
2653                  * made by zil_claim() during spa_load() in the first txg.
2654                  * In the normal case, we commit the DTL change in the same
2655                  * txg as the block was born.  In the scrub-induced repair
2656                  * case, we know that scrubs run in first-pass syncing context,
2657                  * so we commit the DTL change in spa_syncing_txg(spa).
2658                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2659                  *
2660                  * We currently do not make DTL entries for failed spontaneous
2661                  * self-healing writes triggered by normal (non-scrubbing)
2662                  * reads, because we have no transactional context in which to
2663                  * do so -- and it's not clear that it'd be desirable anyway.
2664                  */
2665                 if (vd->vdev_ops->vdev_op_leaf) {
2666                         uint64_t commit_txg = txg;
2667                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2668                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2669                                 ASSERT(spa_sync_pass(spa) == 1);
2670                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2671                                 commit_txg = spa_syncing_txg(spa);
2672                         } else if (spa->spa_claiming) {
2673                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2674                                 commit_txg = spa_first_txg(spa);
2675                         }
2676                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2677                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2678                                 return;
2679                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2680                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2681                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2682                 }
2683                 if (vd != rvd)
2684                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2685         }
2686 }
2687
2688 /*
2689  * Update the in-core space usage stats for this vdev, its metaslab class,
2690  * and the root vdev.
2691  */
2692 void
2693 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2694     int64_t space_delta)
2695 {
2696         int64_t dspace_delta = space_delta;
2697         spa_t *spa = vd->vdev_spa;
2698         vdev_t *rvd = spa->spa_root_vdev;
2699         metaslab_group_t *mg = vd->vdev_mg;
2700         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2701
2702         ASSERT(vd == vd->vdev_top);
2703
2704         /*
2705          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2706          * factor.  We must calculate this here and not at the root vdev
2707          * because the root vdev's psize-to-asize is simply the max of its
2708          * childrens', thus not accurate enough for us.
2709          */
2710         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2711         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2712         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2713             vd->vdev_deflate_ratio;
2714
2715         mutex_enter(&vd->vdev_stat_lock);
2716         vd->vdev_stat.vs_alloc += alloc_delta;
2717         vd->vdev_stat.vs_space += space_delta;
2718         vd->vdev_stat.vs_dspace += dspace_delta;
2719         mutex_exit(&vd->vdev_stat_lock);
2720
2721         if (mc == spa_normal_class(spa)) {
2722                 mutex_enter(&rvd->vdev_stat_lock);
2723                 rvd->vdev_stat.vs_alloc += alloc_delta;
2724                 rvd->vdev_stat.vs_space += space_delta;
2725                 rvd->vdev_stat.vs_dspace += dspace_delta;
2726                 mutex_exit(&rvd->vdev_stat_lock);
2727         }
2728
2729         if (mc != NULL) {
2730                 ASSERT(rvd == vd->vdev_parent);
2731                 ASSERT(vd->vdev_ms_count != 0);
2732
2733                 metaslab_class_space_update(mc,
2734                     alloc_delta, defer_delta, space_delta, dspace_delta);
2735         }
2736 }
2737
2738 /*
2739  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2740  * so that it will be written out next time the vdev configuration is synced.
2741  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2742  */
2743 void
2744 vdev_config_dirty(vdev_t *vd)
2745 {
2746         spa_t *spa = vd->vdev_spa;
2747         vdev_t *rvd = spa->spa_root_vdev;
2748         int c;
2749
2750         ASSERT(spa_writeable(spa));
2751
2752         /*
2753          * If this is an aux vdev (as with l2cache and spare devices), then we
2754          * update the vdev config manually and set the sync flag.
2755          */
2756         if (vd->vdev_aux != NULL) {
2757                 spa_aux_vdev_t *sav = vd->vdev_aux;
2758                 nvlist_t **aux;
2759                 uint_t naux;
2760
2761                 for (c = 0; c < sav->sav_count; c++) {
2762                         if (sav->sav_vdevs[c] == vd)
2763                                 break;
2764                 }
2765
2766                 if (c == sav->sav_count) {
2767                         /*
2768                          * We're being removed.  There's nothing more to do.
2769                          */
2770                         ASSERT(sav->sav_sync == B_TRUE);
2771                         return;
2772                 }
2773
2774                 sav->sav_sync = B_TRUE;
2775
2776                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2777                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2778                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2779                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2780                 }
2781
2782                 ASSERT(c < naux);
2783
2784                 /*
2785                  * Setting the nvlist in the middle if the array is a little
2786                  * sketchy, but it will work.
2787                  */
2788                 nvlist_free(aux[c]);
2789                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2790
2791                 return;
2792         }
2793
2794         /*
2795          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2796          * must either hold SCL_CONFIG as writer, or must be the sync thread
2797          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2798          * so this is sufficient to ensure mutual exclusion.
2799          */
2800         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2801             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2802             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2803
2804         if (vd == rvd) {
2805                 for (c = 0; c < rvd->vdev_children; c++)
2806                         vdev_config_dirty(rvd->vdev_child[c]);
2807         } else {
2808                 ASSERT(vd == vd->vdev_top);
2809
2810                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2811                     !vd->vdev_ishole)
2812                         list_insert_head(&spa->spa_config_dirty_list, vd);
2813         }
2814 }
2815
2816 void
2817 vdev_config_clean(vdev_t *vd)
2818 {
2819         spa_t *spa = vd->vdev_spa;
2820
2821         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2822             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2823             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2824
2825         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2826         list_remove(&spa->spa_config_dirty_list, vd);
2827 }
2828
2829 /*
2830  * Mark a top-level vdev's state as dirty, so that the next pass of
2831  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2832  * the state changes from larger config changes because they require
2833  * much less locking, and are often needed for administrative actions.
2834  */
2835 void
2836 vdev_state_dirty(vdev_t *vd)
2837 {
2838         spa_t *spa = vd->vdev_spa;
2839
2840         ASSERT(spa_writeable(spa));
2841         ASSERT(vd == vd->vdev_top);
2842
2843         /*
2844          * The state list is protected by the SCL_STATE lock.  The caller
2845          * must either hold SCL_STATE as writer, or must be the sync thread
2846          * (which holds SCL_STATE as reader).  There's only one sync thread,
2847          * so this is sufficient to ensure mutual exclusion.
2848          */
2849         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2850             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2851             spa_config_held(spa, SCL_STATE, RW_READER)));
2852
2853         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2854                 list_insert_head(&spa->spa_state_dirty_list, vd);
2855 }
2856
2857 void
2858 vdev_state_clean(vdev_t *vd)
2859 {
2860         spa_t *spa = vd->vdev_spa;
2861
2862         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2863             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2864             spa_config_held(spa, SCL_STATE, RW_READER)));
2865
2866         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2867         list_remove(&spa->spa_state_dirty_list, vd);
2868 }
2869
2870 /*
2871  * Propagate vdev state up from children to parent.
2872  */
2873 void
2874 vdev_propagate_state(vdev_t *vd)
2875 {
2876         spa_t *spa = vd->vdev_spa;
2877         vdev_t *rvd = spa->spa_root_vdev;
2878         int degraded = 0, faulted = 0;
2879         int corrupted = 0;
2880         vdev_t *child;
2881         int c;
2882
2883         if (vd->vdev_children > 0) {
2884                 for (c = 0; c < vd->vdev_children; c++) {
2885                         child = vd->vdev_child[c];
2886
2887                         /*
2888                          * Don't factor holes into the decision.
2889                          */
2890                         if (child->vdev_ishole)
2891                                 continue;
2892
2893                         if (!vdev_readable(child) ||
2894                             (!vdev_writeable(child) && spa_writeable(spa))) {
2895                                 /*
2896                                  * Root special: if there is a top-level log
2897                                  * device, treat the root vdev as if it were
2898                                  * degraded.
2899                                  */
2900                                 if (child->vdev_islog && vd == rvd)
2901                                         degraded++;
2902                                 else
2903                                         faulted++;
2904                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2905                                 degraded++;
2906                         }
2907
2908                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2909                                 corrupted++;
2910                 }
2911
2912                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2913
2914                 /*
2915                  * Root special: if there is a top-level vdev that cannot be
2916                  * opened due to corrupted metadata, then propagate the root
2917                  * vdev's aux state as 'corrupt' rather than 'insufficient
2918                  * replicas'.
2919                  */
2920                 if (corrupted && vd == rvd &&
2921                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2922                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2923                             VDEV_AUX_CORRUPT_DATA);
2924         }
2925
2926         if (vd->vdev_parent)
2927                 vdev_propagate_state(vd->vdev_parent);
2928 }
2929
2930 /*
2931  * Set a vdev's state.  If this is during an open, we don't update the parent
2932  * state, because we're in the process of opening children depth-first.
2933  * Otherwise, we propagate the change to the parent.
2934  *
2935  * If this routine places a device in a faulted state, an appropriate ereport is
2936  * generated.
2937  */
2938 void
2939 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2940 {
2941         uint64_t save_state;
2942         spa_t *spa = vd->vdev_spa;
2943
2944         if (state == vd->vdev_state) {
2945                 vd->vdev_stat.vs_aux = aux;
2946                 return;
2947         }
2948
2949         save_state = vd->vdev_state;
2950
2951         vd->vdev_state = state;
2952         vd->vdev_stat.vs_aux = aux;
2953
2954         /*
2955          * If we are setting the vdev state to anything but an open state, then
2956          * always close the underlying device unless the device has requested
2957          * a delayed close (i.e. we're about to remove or fault the device).
2958          * Otherwise, we keep accessible but invalid devices open forever.
2959          * We don't call vdev_close() itself, because that implies some extra
2960          * checks (offline, etc) that we don't want here.  This is limited to
2961          * leaf devices, because otherwise closing the device will affect other
2962          * children.
2963          */
2964         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2965             vd->vdev_ops->vdev_op_leaf)
2966                 vd->vdev_ops->vdev_op_close(vd);
2967
2968         /*
2969          * If we have brought this vdev back into service, we need
2970          * to notify fmd so that it can gracefully repair any outstanding
2971          * cases due to a missing device.  We do this in all cases, even those
2972          * that probably don't correlate to a repaired fault.  This is sure to
2973          * catch all cases, and we let the zfs-retire agent sort it out.  If
2974          * this is a transient state it's OK, as the retire agent will
2975          * double-check the state of the vdev before repairing it.
2976          */
2977         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2978             vd->vdev_prevstate != state)
2979                 zfs_post_state_change(spa, vd);
2980
2981         if (vd->vdev_removed &&
2982             state == VDEV_STATE_CANT_OPEN &&
2983             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2984                 /*
2985                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2986                  * device was previously marked removed and someone attempted to
2987                  * reopen it.  If this failed due to a nonexistent device, then
2988                  * keep the device in the REMOVED state.  We also let this be if
2989                  * it is one of our special test online cases, which is only
2990                  * attempting to online the device and shouldn't generate an FMA
2991                  * fault.
2992                  */
2993                 vd->vdev_state = VDEV_STATE_REMOVED;
2994                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2995         } else if (state == VDEV_STATE_REMOVED) {
2996                 vd->vdev_removed = B_TRUE;
2997         } else if (state == VDEV_STATE_CANT_OPEN) {
2998                 /*
2999                  * If we fail to open a vdev during an import or recovery, we
3000                  * mark it as "not available", which signifies that it was
3001                  * never there to begin with.  Failure to open such a device
3002                  * is not considered an error.
3003                  */
3004                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3005                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3006                     vd->vdev_ops->vdev_op_leaf)
3007                         vd->vdev_not_present = 1;
3008
3009                 /*
3010                  * Post the appropriate ereport.  If the 'prevstate' field is
3011                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3012                  * that this is part of a vdev_reopen().  In this case, we don't
3013                  * want to post the ereport if the device was already in the
3014                  * CANT_OPEN state beforehand.
3015                  *
3016                  * If the 'checkremove' flag is set, then this is an attempt to
3017                  * online the device in response to an insertion event.  If we
3018                  * hit this case, then we have detected an insertion event for a
3019                  * faulted or offline device that wasn't in the removed state.
3020                  * In this scenario, we don't post an ereport because we are
3021                  * about to replace the device, or attempt an online with
3022                  * vdev_forcefault, which will generate the fault for us.
3023                  */
3024                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3025                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3026                     vd != spa->spa_root_vdev) {
3027                         const char *class;
3028
3029                         switch (aux) {
3030                         case VDEV_AUX_OPEN_FAILED:
3031                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3032                                 break;
3033                         case VDEV_AUX_CORRUPT_DATA:
3034                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3035                                 break;
3036                         case VDEV_AUX_NO_REPLICAS:
3037                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3038                                 break;
3039                         case VDEV_AUX_BAD_GUID_SUM:
3040                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3041                                 break;
3042                         case VDEV_AUX_TOO_SMALL:
3043                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3044                                 break;
3045                         case VDEV_AUX_BAD_LABEL:
3046                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3047                                 break;
3048                         default:
3049                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3050                         }
3051
3052                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3053                 }
3054
3055                 /* Erase any notion of persistent removed state */
3056                 vd->vdev_removed = B_FALSE;
3057         } else {
3058                 vd->vdev_removed = B_FALSE;
3059         }
3060
3061         if (!isopen && vd->vdev_parent)
3062                 vdev_propagate_state(vd->vdev_parent);
3063 }
3064
3065 /*
3066  * Check the vdev configuration to ensure that it's capable of supporting
3067  * a root pool.
3068  */
3069 boolean_t
3070 vdev_is_bootable(vdev_t *vd)
3071 {
3072 #if defined(__sun__) || defined(__sun)
3073         /*
3074          * Currently, we do not support RAID-Z or partial configuration.
3075          * In addition, only a single top-level vdev is allowed and none of the
3076          * leaves can be wholedisks.
3077          */
3078         int c;
3079
3080         if (!vd->vdev_ops->vdev_op_leaf) {
3081                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3082
3083                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3084                     vd->vdev_children > 1) {
3085                         return (B_FALSE);
3086                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3087                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3088                         return (B_FALSE);
3089                 }
3090         } else if (vd->vdev_wholedisk == 1) {
3091                 return (B_FALSE);
3092         }
3093
3094         for (c = 0; c < vd->vdev_children; c++) {
3095                 if (!vdev_is_bootable(vd->vdev_child[c]))
3096                         return (B_FALSE);
3097         }
3098 #endif /* __sun__ || __sun */
3099         return (B_TRUE);
3100 }
3101
3102 /*
3103  * Load the state from the original vdev tree (ovd) which
3104  * we've retrieved from the MOS config object. If the original
3105  * vdev was offline or faulted then we transfer that state to the
3106  * device in the current vdev tree (nvd).
3107  */
3108 void
3109 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3110 {
3111         int c;
3112
3113         ASSERT(nvd->vdev_top->vdev_islog);
3114         ASSERT(spa_config_held(nvd->vdev_spa,
3115             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3116         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3117
3118         for (c = 0; c < nvd->vdev_children; c++)
3119                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3120
3121         if (nvd->vdev_ops->vdev_op_leaf) {
3122                 /*
3123                  * Restore the persistent vdev state
3124                  */
3125                 nvd->vdev_offline = ovd->vdev_offline;
3126                 nvd->vdev_faulted = ovd->vdev_faulted;
3127                 nvd->vdev_degraded = ovd->vdev_degraded;
3128                 nvd->vdev_removed = ovd->vdev_removed;
3129         }
3130 }
3131
3132 /*
3133  * Determine if a log device has valid content.  If the vdev was
3134  * removed or faulted in the MOS config then we know that
3135  * the content on the log device has already been written to the pool.
3136  */
3137 boolean_t
3138 vdev_log_state_valid(vdev_t *vd)
3139 {
3140         int c;
3141
3142         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3143             !vd->vdev_removed)
3144                 return (B_TRUE);
3145
3146         for (c = 0; c < vd->vdev_children; c++)
3147                 if (vdev_log_state_valid(vd->vdev_child[c]))
3148                         return (B_TRUE);
3149
3150         return (B_FALSE);
3151 }
3152
3153 /*
3154  * Expand a vdev if possible.
3155  */
3156 void
3157 vdev_expand(vdev_t *vd, uint64_t txg)
3158 {
3159         ASSERT(vd->vdev_top == vd);
3160         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3161
3162         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3163                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3164                 vdev_config_dirty(vd);
3165         }
3166 }
3167
3168 /*
3169  * Split a vdev.
3170  */
3171 void
3172 vdev_split(vdev_t *vd)
3173 {
3174         vdev_t *cvd, *pvd = vd->vdev_parent;
3175
3176         vdev_remove_child(pvd, vd);
3177         vdev_compact_children(pvd);
3178
3179         cvd = pvd->vdev_child[0];
3180         if (pvd->vdev_children == 1) {
3181                 vdev_remove_parent(cvd);
3182                 cvd->vdev_splitting = B_TRUE;
3183         }
3184         vdev_propagate_state(cvd);
3185 }
3186
3187 #if defined(_KERNEL) && defined(HAVE_SPL)
3188 EXPORT_SYMBOL(vdev_fault);
3189 EXPORT_SYMBOL(vdev_degrade);
3190 EXPORT_SYMBOL(vdev_online);
3191 EXPORT_SYMBOL(vdev_offline);
3192 EXPORT_SYMBOL(vdev_clear);
3193
3194 module_param(zfs_scrub_limit, int, 0644);
3195 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3196 #endif