205a1d1aabbceb7a92088d873ae5211463ccc2f8
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56         &vdev_disk_ops,
57         &vdev_file_ops,
58         &vdev_missing_ops,
59         &vdev_hole_ops,
60         NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72         vdev_ops_t *ops, **opspp;
73
74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75                 if (strcmp(ops->vdev_op_type, type) == 0)
76                         break;
77
78         return (ops);
79 }
80
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89         uint64_t csize;
90         int c;
91
92         for (c = 0; c < vd->vdev_children; c++) {
93                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94                 asize = MAX(asize, csize);
95         }
96
97         return (asize);
98 }
99
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109         vdev_t *pvd = vd->vdev_parent;
110
111         /*
112          * If our parent is NULL (inactive spare or cache) or is the root,
113          * just return our own asize.
114          */
115         if (pvd == NULL)
116                 return (vd->vdev_asize);
117
118         /*
119          * The top-level vdev just returns the allocatable size rounded
120          * to the nearest metaslab.
121          */
122         if (vd == vd->vdev_top)
123                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125         /*
126          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127          * so each child must provide at least 1/Nth of its asize.
128          */
129         if (pvd->vdev_ops == &vdev_raidz_ops)
130                 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132         return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138         int c;
139         vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141         for (c = 0; c < vd->vdev_children; c++)
142                 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         vdev_t *mvd;
164         int c;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220         int c;
221         uint_t id = cvd->vdev_id;
222
223         ASSERT(cvd->vdev_parent == pvd);
224
225         if (pvd == NULL)
226                 return;
227
228         ASSERT(id < pvd->vdev_children);
229         ASSERT(pvd->vdev_child[id] == cvd);
230
231         pvd->vdev_child[id] = NULL;
232         cvd->vdev_parent = NULL;
233
234         for (c = 0; c < pvd->vdev_children; c++)
235                 if (pvd->vdev_child[c])
236                         break;
237
238         if (c == pvd->vdev_children) {
239                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240                 pvd->vdev_child = NULL;
241                 pvd->vdev_children = 0;
242         }
243
244         /*
245          * Walk up all ancestors to update guid sum.
246          */
247         for (; pvd != NULL; pvd = pvd->vdev_parent)
248                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260         int c;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
269
270         for (c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289         int t;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         list_link_init(&vd->vdev_config_dirty_node);
324         list_link_init(&vd->vdev_state_dirty_node);
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (EINVAL);
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (EINVAL);
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (EINVAL);
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (ENOTSUP);
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (EINVAL);
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (ENOTSUP);
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (ENOTSUP);
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (EINVAL);
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         int c, t;
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         if (tvd->vdev_mg)
676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677         tvd->vdev_mg = svd->vdev_mg;
678         tvd->vdev_ms = svd->vdev_ms;
679
680         svd->vdev_mg = NULL;
681         svd->vdev_ms = NULL;
682
683         if (tvd->vdev_mg != NULL)
684                 tvd->vdev_mg->mg_vd = tvd;
685
686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690         svd->vdev_stat.vs_alloc = 0;
691         svd->vdev_stat.vs_space = 0;
692         svd->vdev_stat.vs_dspace = 0;
693
694         for (t = 0; t < TXG_SIZE; t++) {
695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701         }
702
703         if (list_link_active(&svd->vdev_config_dirty_node)) {
704                 vdev_config_clean(svd);
705                 vdev_config_dirty(tvd);
706         }
707
708         if (list_link_active(&svd->vdev_state_dirty_node)) {
709                 vdev_state_clean(svd);
710                 vdev_state_dirty(tvd);
711         }
712
713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714         svd->vdev_deflate_ratio = 0;
715
716         tvd->vdev_islog = svd->vdev_islog;
717         svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723         int c;
724
725         if (vd == NULL)
726                 return;
727
728         vd->vdev_top = tvd;
729
730         for (c = 0; c < vd->vdev_children; c++)
731                 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735  * Add a mirror/replacing vdev above an existing vdev.
736  */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740         spa_t *spa = cvd->vdev_spa;
741         vdev_t *pvd = cvd->vdev_parent;
742         vdev_t *mvd;
743
744         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748         mvd->vdev_asize = cvd->vdev_asize;
749         mvd->vdev_min_asize = cvd->vdev_min_asize;
750         mvd->vdev_max_asize = cvd->vdev_max_asize;
751         mvd->vdev_ashift = cvd->vdev_ashift;
752         mvd->vdev_state = cvd->vdev_state;
753         mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755         vdev_remove_child(pvd, cvd);
756         vdev_add_child(pvd, mvd);
757         cvd->vdev_id = mvd->vdev_children;
758         vdev_add_child(mvd, cvd);
759         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761         if (mvd == mvd->vdev_top)
762                 vdev_top_transfer(cvd, mvd);
763
764         return (mvd);
765 }
766
767 /*
768  * Remove a 1-way mirror/replacing vdev from the tree.
769  */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773         vdev_t *mvd = cvd->vdev_parent;
774         vdev_t *pvd = mvd->vdev_parent;
775
776         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778         ASSERT(mvd->vdev_children == 1);
779         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780             mvd->vdev_ops == &vdev_replacing_ops ||
781             mvd->vdev_ops == &vdev_spare_ops);
782         cvd->vdev_ashift = mvd->vdev_ashift;
783
784         vdev_remove_child(mvd, cvd);
785         vdev_remove_child(pvd, mvd);
786
787         /*
788          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789          * Otherwise, we could have detached an offline device, and when we
790          * go to import the pool we'll think we have two top-level vdevs,
791          * instead of a different version of the same top-level vdev.
792          */
793         if (mvd->vdev_top == mvd) {
794                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795                 cvd->vdev_orig_guid = cvd->vdev_guid;
796                 cvd->vdev_guid += guid_delta;
797                 cvd->vdev_guid_sum += guid_delta;
798         }
799         cvd->vdev_id = mvd->vdev_id;
800         vdev_add_child(pvd, cvd);
801         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803         if (cvd == cvd->vdev_top)
804                 vdev_top_transfer(mvd, cvd);
805
806         ASSERT(mvd->vdev_children == 0);
807         vdev_free(mvd);
808 }
809
810 int
811 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812 {
813         spa_t *spa = vd->vdev_spa;
814         objset_t *mos = spa->spa_meta_objset;
815         uint64_t m;
816         uint64_t oldc = vd->vdev_ms_count;
817         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818         metaslab_t **mspp;
819         int error;
820
821         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823         /*
824          * This vdev is not being allocated from yet or is a hole.
825          */
826         if (vd->vdev_ms_shift == 0)
827                 return (0);
828
829         ASSERT(!vd->vdev_ishole);
830
831         /*
832          * Compute the raidz-deflation ratio.  Note, we hard-code
833          * in 128k (1 << 17) because it is the current "typical" blocksize.
834          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835          * or we will inconsistently account for existing bp's.
836          */
837         vd->vdev_deflate_ratio = (1 << 17) /
838             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
840         ASSERT(oldc <= newc);
841
842         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
843
844         if (oldc != 0) {
845                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847         }
848
849         vd->vdev_ms = mspp;
850         vd->vdev_ms_count = newc;
851
852         for (m = oldc; m < newc; m++) {
853                 space_map_obj_t smo = { 0, 0, 0 };
854                 if (txg == 0) {
855                         uint64_t object = 0;
856                         error = dmu_read(mos, vd->vdev_ms_array,
857                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
858                             DMU_READ_PREFETCH);
859                         if (error)
860                                 return (error);
861                         if (object != 0) {
862                                 dmu_buf_t *db;
863                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
864                                 if (error)
865                                         return (error);
866                                 ASSERT3U(db->db_size, >=, sizeof (smo));
867                                 bcopy(db->db_data, &smo, sizeof (smo));
868                                 ASSERT3U(smo.smo_object, ==, object);
869                                 dmu_buf_rele(db, FTAG);
870                         }
871                 }
872                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874         }
875
876         if (txg == 0)
877                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879         /*
880          * If the vdev is being removed we don't activate
881          * the metaslabs since we want to ensure that no new
882          * allocations are performed on this device.
883          */
884         if (oldc == 0 && !vd->vdev_removing)
885                 metaslab_group_activate(vd->vdev_mg);
886
887         if (txg == 0)
888                 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890         return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896         uint64_t m;
897         uint64_t count = vd->vdev_ms_count;
898
899         if (vd->vdev_ms != NULL) {
900                 metaslab_group_passivate(vd->vdev_mg);
901                 for (m = 0; m < count; m++)
902                         if (vd->vdev_ms[m] != NULL)
903                                 metaslab_fini(vd->vdev_ms[m]);
904                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905                 vd->vdev_ms = NULL;
906         }
907 }
908
909 typedef struct vdev_probe_stats {
910         boolean_t       vps_readable;
911         boolean_t       vps_writeable;
912         int             vps_flags;
913 } vdev_probe_stats_t;
914
915 static void
916 vdev_probe_done(zio_t *zio)
917 {
918         spa_t *spa = zio->io_spa;
919         vdev_t *vd = zio->io_vd;
920         vdev_probe_stats_t *vps = zio->io_private;
921
922         ASSERT(vd->vdev_probe_zio != NULL);
923
924         if (zio->io_type == ZIO_TYPE_READ) {
925                 if (zio->io_error == 0)
926                         vps->vps_readable = 1;
927                 if (zio->io_error == 0 && spa_writeable(spa)) {
928                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
929                             zio->io_offset, zio->io_size, zio->io_data,
930                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932                 } else {
933                         zio_buf_free(zio->io_data, zio->io_size);
934                 }
935         } else if (zio->io_type == ZIO_TYPE_WRITE) {
936                 if (zio->io_error == 0)
937                         vps->vps_writeable = 1;
938                 zio_buf_free(zio->io_data, zio->io_size);
939         } else if (zio->io_type == ZIO_TYPE_NULL) {
940                 zio_t *pio;
941
942                 vd->vdev_cant_read |= !vps->vps_readable;
943                 vd->vdev_cant_write |= !vps->vps_writeable;
944
945                 if (vdev_readable(vd) &&
946                     (vdev_writeable(vd) || !spa_writeable(spa))) {
947                         zio->io_error = 0;
948                 } else {
949                         ASSERT(zio->io_error != 0);
950                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
951                             spa, vd, NULL, 0, 0);
952                         zio->io_error = ENXIO;
953                 }
954
955                 mutex_enter(&vd->vdev_probe_lock);
956                 ASSERT(vd->vdev_probe_zio == zio);
957                 vd->vdev_probe_zio = NULL;
958                 mutex_exit(&vd->vdev_probe_lock);
959
960                 while ((pio = zio_walk_parents(zio)) != NULL)
961                         if (!vdev_accessible(vd, pio))
962                                 pio->io_error = ENXIO;
963
964                 kmem_free(vps, sizeof (*vps));
965         }
966 }
967
968 /*
969  * Determine whether this device is accessible by reading and writing
970  * to several known locations: the pad regions of each vdev label
971  * but the first (which we leave alone in case it contains a VTOC).
972  */
973 zio_t *
974 vdev_probe(vdev_t *vd, zio_t *zio)
975 {
976         spa_t *spa = vd->vdev_spa;
977         vdev_probe_stats_t *vps = NULL;
978         zio_t *pio;
979         int l;
980
981         ASSERT(vd->vdev_ops->vdev_op_leaf);
982
983         /*
984          * Don't probe the probe.
985          */
986         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
987                 return (NULL);
988
989         /*
990          * To prevent 'probe storms' when a device fails, we create
991          * just one probe i/o at a time.  All zios that want to probe
992          * this vdev will become parents of the probe io.
993          */
994         mutex_enter(&vd->vdev_probe_lock);
995
996         if ((pio = vd->vdev_probe_zio) == NULL) {
997                 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
998
999                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1000                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1001                     ZIO_FLAG_TRYHARD;
1002
1003                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1004                         /*
1005                          * vdev_cant_read and vdev_cant_write can only
1006                          * transition from TRUE to FALSE when we have the
1007                          * SCL_ZIO lock as writer; otherwise they can only
1008                          * transition from FALSE to TRUE.  This ensures that
1009                          * any zio looking at these values can assume that
1010                          * failures persist for the life of the I/O.  That's
1011                          * important because when a device has intermittent
1012                          * connectivity problems, we want to ensure that
1013                          * they're ascribed to the device (ENXIO) and not
1014                          * the zio (EIO).
1015                          *
1016                          * Since we hold SCL_ZIO as writer here, clear both
1017                          * values so the probe can reevaluate from first
1018                          * principles.
1019                          */
1020                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1021                         vd->vdev_cant_read = B_FALSE;
1022                         vd->vdev_cant_write = B_FALSE;
1023                 }
1024
1025                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1026                     vdev_probe_done, vps,
1027                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1028
1029                 /*
1030                  * We can't change the vdev state in this context, so we
1031                  * kick off an async task to do it on our behalf.
1032                  */
1033                 if (zio != NULL) {
1034                         vd->vdev_probe_wanted = B_TRUE;
1035                         spa_async_request(spa, SPA_ASYNC_PROBE);
1036                 }
1037         }
1038
1039         if (zio != NULL)
1040                 zio_add_child(zio, pio);
1041
1042         mutex_exit(&vd->vdev_probe_lock);
1043
1044         if (vps == NULL) {
1045                 ASSERT(zio != NULL);
1046                 return (NULL);
1047         }
1048
1049         for (l = 1; l < VDEV_LABELS; l++) {
1050                 zio_nowait(zio_read_phys(pio, vd,
1051                     vdev_label_offset(vd->vdev_psize, l,
1052                     offsetof(vdev_label_t, vl_pad2)),
1053                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1054                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1055                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1056         }
1057
1058         if (zio == NULL)
1059                 return (pio);
1060
1061         zio_nowait(pio);
1062         return (NULL);
1063 }
1064
1065 static void
1066 vdev_open_child(void *arg)
1067 {
1068         vdev_t *vd = arg;
1069
1070         vd->vdev_open_thread = curthread;
1071         vd->vdev_open_error = vdev_open(vd);
1072         vd->vdev_open_thread = NULL;
1073 }
1074
1075 boolean_t
1076 vdev_uses_zvols(vdev_t *vd)
1077 {
1078 /*
1079  * Stacking zpools on top of zvols is unsupported until we implement a method
1080  * for determining if an arbitrary block device is a zvol without using the
1081  * path.  Solaris would check the 'zvol' path component but this does not
1082  * exist in the Linux port, so we really should do something like stat the
1083  * file and check the major number.  This is complicated by the fact that
1084  * we need to do this portably in user or kernel space.
1085  */
1086 #if 0
1087         int c;
1088
1089         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1090             strlen(ZVOL_DIR)) == 0)
1091                 return (B_TRUE);
1092         for (c = 0; c < vd->vdev_children; c++)
1093                 if (vdev_uses_zvols(vd->vdev_child[c]))
1094                         return (B_TRUE);
1095 #endif
1096         return (B_FALSE);
1097 }
1098
1099 void
1100 vdev_open_children(vdev_t *vd)
1101 {
1102         taskq_t *tq;
1103         int children = vd->vdev_children;
1104         int c;
1105
1106         /*
1107          * in order to handle pools on top of zvols, do the opens
1108          * in a single thread so that the same thread holds the
1109          * spa_namespace_lock
1110          */
1111         if (vdev_uses_zvols(vd)) {
1112                 for (c = 0; c < children; c++)
1113                         vd->vdev_child[c]->vdev_open_error =
1114                             vdev_open(vd->vdev_child[c]);
1115                 return;
1116         }
1117         tq = taskq_create("vdev_open", children, minclsyspri,
1118             children, children, TASKQ_PREPOPULATE);
1119
1120         for (c = 0; c < children; c++)
1121                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1122                     TQ_SLEEP) != 0);
1123
1124         taskq_destroy(tq);
1125 }
1126
1127 /*
1128  * Prepare a virtual device for access.
1129  */
1130 int
1131 vdev_open(vdev_t *vd)
1132 {
1133         spa_t *spa = vd->vdev_spa;
1134         int error;
1135         uint64_t osize = 0;
1136         uint64_t max_osize = 0;
1137         uint64_t asize, max_asize, psize;
1138         uint64_t ashift = 0;
1139         int c;
1140
1141         ASSERT(vd->vdev_open_thread == curthread ||
1142             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1143         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1144             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1145             vd->vdev_state == VDEV_STATE_OFFLINE);
1146
1147         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1148         vd->vdev_cant_read = B_FALSE;
1149         vd->vdev_cant_write = B_FALSE;
1150         vd->vdev_min_asize = vdev_get_min_asize(vd);
1151
1152         /*
1153          * If this vdev is not removed, check its fault status.  If it's
1154          * faulted, bail out of the open.
1155          */
1156         if (!vd->vdev_removed && vd->vdev_faulted) {
1157                 ASSERT(vd->vdev_children == 0);
1158                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1159                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1160                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1161                     vd->vdev_label_aux);
1162                 return (ENXIO);
1163         } else if (vd->vdev_offline) {
1164                 ASSERT(vd->vdev_children == 0);
1165                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1166                 return (ENXIO);
1167         }
1168
1169         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1170
1171         /*
1172          * Reset the vdev_reopening flag so that we actually close
1173          * the vdev on error.
1174          */
1175         vd->vdev_reopening = B_FALSE;
1176         if (zio_injection_enabled && error == 0)
1177                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1178
1179         if (error) {
1180                 if (vd->vdev_removed &&
1181                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1182                         vd->vdev_removed = B_FALSE;
1183
1184                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1185                     vd->vdev_stat.vs_aux);
1186                 return (error);
1187         }
1188
1189         vd->vdev_removed = B_FALSE;
1190
1191         /*
1192          * Recheck the faulted flag now that we have confirmed that
1193          * the vdev is accessible.  If we're faulted, bail.
1194          */
1195         if (vd->vdev_faulted) {
1196                 ASSERT(vd->vdev_children == 0);
1197                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1198                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1199                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1200                     vd->vdev_label_aux);
1201                 return (ENXIO);
1202         }
1203
1204         if (vd->vdev_degraded) {
1205                 ASSERT(vd->vdev_children == 0);
1206                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1207                     VDEV_AUX_ERR_EXCEEDED);
1208         } else {
1209                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1210         }
1211
1212         /*
1213          * For hole or missing vdevs we just return success.
1214          */
1215         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1216                 return (0);
1217
1218         for (c = 0; c < vd->vdev_children; c++) {
1219                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1220                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1221                             VDEV_AUX_NONE);
1222                         break;
1223                 }
1224         }
1225
1226         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1227         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1228
1229         if (vd->vdev_children == 0) {
1230                 if (osize < SPA_MINDEVSIZE) {
1231                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232                             VDEV_AUX_TOO_SMALL);
1233                         return (EOVERFLOW);
1234                 }
1235                 psize = osize;
1236                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1237                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1238                     VDEV_LABEL_END_SIZE);
1239         } else {
1240                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1241                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1242                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243                             VDEV_AUX_TOO_SMALL);
1244                         return (EOVERFLOW);
1245                 }
1246                 psize = 0;
1247                 asize = osize;
1248                 max_asize = max_osize;
1249         }
1250
1251         vd->vdev_psize = psize;
1252
1253         /*
1254          * Make sure the allocatable size hasn't shrunk.
1255          */
1256         if (asize < vd->vdev_min_asize) {
1257                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258                     VDEV_AUX_BAD_LABEL);
1259                 return (EINVAL);
1260         }
1261
1262         if (vd->vdev_asize == 0) {
1263                 /*
1264                  * This is the first-ever open, so use the computed values.
1265                  * For testing purposes, a higher ashift can be requested.
1266                  */
1267                 vd->vdev_asize = asize;
1268                 vd->vdev_max_asize = max_asize;
1269                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1270         } else {
1271                 /*
1272                  * Make sure the alignment requirement hasn't increased.
1273                  */
1274                 if (ashift > vd->vdev_top->vdev_ashift) {
1275                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1276                             VDEV_AUX_BAD_LABEL);
1277                         return (EINVAL);
1278                 }
1279                 vd->vdev_max_asize = max_asize;
1280         }
1281
1282         /*
1283          * If all children are healthy and the asize has increased,
1284          * then we've experienced dynamic LUN growth.  If automatic
1285          * expansion is enabled then use the additional space.
1286          */
1287         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1288             (vd->vdev_expanding || spa->spa_autoexpand))
1289                 vd->vdev_asize = asize;
1290
1291         vdev_set_min_asize(vd);
1292
1293         /*
1294          * Ensure we can issue some IO before declaring the
1295          * vdev open for business.
1296          */
1297         if (vd->vdev_ops->vdev_op_leaf &&
1298             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1299                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1300                     VDEV_AUX_ERR_EXCEEDED);
1301                 return (error);
1302         }
1303
1304         /*
1305          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1306          * resilver.  But don't do this if we are doing a reopen for a scrub,
1307          * since this would just restart the scrub we are already doing.
1308          */
1309         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1310             vdev_resilver_needed(vd, NULL, NULL))
1311                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1312
1313         return (0);
1314 }
1315
1316 /*
1317  * Called once the vdevs are all opened, this routine validates the label
1318  * contents.  This needs to be done before vdev_load() so that we don't
1319  * inadvertently do repair I/Os to the wrong device.
1320  *
1321  * If 'strict' is false ignore the spa guid check. This is necessary because
1322  * if the machine crashed during a re-guid the new guid might have been written
1323  * to all of the vdev labels, but not the cached config. The strict check
1324  * will be performed when the pool is opened again using the mos config.
1325  *
1326  * This function will only return failure if one of the vdevs indicates that it
1327  * has since been destroyed or exported.  This is only possible if
1328  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1329  * will be updated but the function will return 0.
1330  */
1331 int
1332 vdev_validate(vdev_t *vd, boolean_t strict)
1333 {
1334         spa_t *spa = vd->vdev_spa;
1335         nvlist_t *label;
1336         uint64_t guid = 0, top_guid;
1337         uint64_t state;
1338         int c;
1339
1340         for (c = 0; c < vd->vdev_children; c++)
1341                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1342                         return (EBADF);
1343
1344         /*
1345          * If the device has already failed, or was marked offline, don't do
1346          * any further validation.  Otherwise, label I/O will fail and we will
1347          * overwrite the previous state.
1348          */
1349         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1350                 uint64_t aux_guid = 0;
1351                 nvlist_t *nvl;
1352
1353                 if ((label = vdev_label_read_config(vd)) == NULL) {
1354                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355                             VDEV_AUX_BAD_LABEL);
1356                         return (0);
1357                 }
1358
1359                 /*
1360                  * Determine if this vdev has been split off into another
1361                  * pool.  If so, then refuse to open it.
1362                  */
1363                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1364                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1365                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1366                             VDEV_AUX_SPLIT_POOL);
1367                         nvlist_free(label);
1368                         return (0);
1369                 }
1370
1371                 if (strict && (nvlist_lookup_uint64(label,
1372                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1373                     guid != spa_guid(spa))) {
1374                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1375                             VDEV_AUX_CORRUPT_DATA);
1376                         nvlist_free(label);
1377                         return (0);
1378                 }
1379
1380                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1381                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1382                     &aux_guid) != 0)
1383                         aux_guid = 0;
1384
1385                 /*
1386                  * If this vdev just became a top-level vdev because its
1387                  * sibling was detached, it will have adopted the parent's
1388                  * vdev guid -- but the label may or may not be on disk yet.
1389                  * Fortunately, either version of the label will have the
1390                  * same top guid, so if we're a top-level vdev, we can
1391                  * safely compare to that instead.
1392                  *
1393                  * If we split this vdev off instead, then we also check the
1394                  * original pool's guid.  We don't want to consider the vdev
1395                  * corrupt if it is partway through a split operation.
1396                  */
1397                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1398                     &guid) != 0 ||
1399                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1400                     &top_guid) != 0 ||
1401                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1402                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1403                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1404                             VDEV_AUX_CORRUPT_DATA);
1405                         nvlist_free(label);
1406                         return (0);
1407                 }
1408
1409                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1410                     &state) != 0) {
1411                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1412                             VDEV_AUX_CORRUPT_DATA);
1413                         nvlist_free(label);
1414                         return (0);
1415                 }
1416
1417                 nvlist_free(label);
1418
1419                 /*
1420                  * If this is a verbatim import, no need to check the
1421                  * state of the pool.
1422                  */
1423                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1424                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1425                     state != POOL_STATE_ACTIVE)
1426                         return (EBADF);
1427
1428                 /*
1429                  * If we were able to open and validate a vdev that was
1430                  * previously marked permanently unavailable, clear that state
1431                  * now.
1432                  */
1433                 if (vd->vdev_not_present)
1434                         vd->vdev_not_present = 0;
1435         }
1436
1437         return (0);
1438 }
1439
1440 /*
1441  * Close a virtual device.
1442  */
1443 void
1444 vdev_close(vdev_t *vd)
1445 {
1446         vdev_t *pvd = vd->vdev_parent;
1447         ASSERTV(spa_t *spa = vd->vdev_spa);
1448
1449         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1450
1451         /*
1452          * If our parent is reopening, then we are as well, unless we are
1453          * going offline.
1454          */
1455         if (pvd != NULL && pvd->vdev_reopening)
1456                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1457
1458         vd->vdev_ops->vdev_op_close(vd);
1459
1460         vdev_cache_purge(vd);
1461
1462         /*
1463          * We record the previous state before we close it, so that if we are
1464          * doing a reopen(), we don't generate FMA ereports if we notice that
1465          * it's still faulted.
1466          */
1467         vd->vdev_prevstate = vd->vdev_state;
1468
1469         if (vd->vdev_offline)
1470                 vd->vdev_state = VDEV_STATE_OFFLINE;
1471         else
1472                 vd->vdev_state = VDEV_STATE_CLOSED;
1473         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1474 }
1475
1476 void
1477 vdev_hold(vdev_t *vd)
1478 {
1479         spa_t *spa = vd->vdev_spa;
1480         int c;
1481
1482         ASSERT(spa_is_root(spa));
1483         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1484                 return;
1485
1486         for (c = 0; c < vd->vdev_children; c++)
1487                 vdev_hold(vd->vdev_child[c]);
1488
1489         if (vd->vdev_ops->vdev_op_leaf)
1490                 vd->vdev_ops->vdev_op_hold(vd);
1491 }
1492
1493 void
1494 vdev_rele(vdev_t *vd)
1495 {
1496         int c;
1497
1498         ASSERT(spa_is_root(vd->vdev_spa));
1499         for (c = 0; c < vd->vdev_children; c++)
1500                 vdev_rele(vd->vdev_child[c]);
1501
1502         if (vd->vdev_ops->vdev_op_leaf)
1503                 vd->vdev_ops->vdev_op_rele(vd);
1504 }
1505
1506 /*
1507  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1508  * reopen leaf vdevs which had previously been opened as they might deadlock
1509  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1510  * If the leaf has never been opened then open it, as usual.
1511  */
1512 void
1513 vdev_reopen(vdev_t *vd)
1514 {
1515         spa_t *spa = vd->vdev_spa;
1516
1517         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1518
1519         /* set the reopening flag unless we're taking the vdev offline */
1520         vd->vdev_reopening = !vd->vdev_offline;
1521         vdev_close(vd);
1522         (void) vdev_open(vd);
1523
1524         /*
1525          * Call vdev_validate() here to make sure we have the same device.
1526          * Otherwise, a device with an invalid label could be successfully
1527          * opened in response to vdev_reopen().
1528          */
1529         if (vd->vdev_aux) {
1530                 (void) vdev_validate_aux(vd);
1531                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1532                     vd->vdev_aux == &spa->spa_l2cache &&
1533                     !l2arc_vdev_present(vd))
1534                         l2arc_add_vdev(spa, vd);
1535         } else {
1536                 (void) vdev_validate(vd, B_TRUE);
1537         }
1538
1539         /*
1540          * Reassess parent vdev's health.
1541          */
1542         vdev_propagate_state(vd);
1543 }
1544
1545 int
1546 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1547 {
1548         int error;
1549
1550         /*
1551          * Normally, partial opens (e.g. of a mirror) are allowed.
1552          * For a create, however, we want to fail the request if
1553          * there are any components we can't open.
1554          */
1555         error = vdev_open(vd);
1556
1557         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1558                 vdev_close(vd);
1559                 return (error ? error : ENXIO);
1560         }
1561
1562         /*
1563          * Recursively initialize all labels.
1564          */
1565         if ((error = vdev_label_init(vd, txg, isreplacing ?
1566             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1567                 vdev_close(vd);
1568                 return (error);
1569         }
1570
1571         return (0);
1572 }
1573
1574 void
1575 vdev_metaslab_set_size(vdev_t *vd)
1576 {
1577         /*
1578          * Aim for roughly 200 metaslabs per vdev.
1579          */
1580         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1581         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1582 }
1583
1584 void
1585 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1586 {
1587         ASSERT(vd == vd->vdev_top);
1588         ASSERT(!vd->vdev_ishole);
1589         ASSERT(ISP2(flags));
1590         ASSERT(spa_writeable(vd->vdev_spa));
1591
1592         if (flags & VDD_METASLAB)
1593                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1594
1595         if (flags & VDD_DTL)
1596                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1597
1598         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1599 }
1600
1601 /*
1602  * DTLs.
1603  *
1604  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1605  * the vdev has less than perfect replication.  There are four kinds of DTL:
1606  *
1607  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1608  *
1609  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1610  *
1611  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1612  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1613  *      txgs that was scrubbed.
1614  *
1615  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1616  *      persistent errors or just some device being offline.
1617  *      Unlike the other three, the DTL_OUTAGE map is not generally
1618  *      maintained; it's only computed when needed, typically to
1619  *      determine whether a device can be detached.
1620  *
1621  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1622  * either has the data or it doesn't.
1623  *
1624  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1625  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1626  * if any child is less than fully replicated, then so is its parent.
1627  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1628  * comprising only those txgs which appear in 'maxfaults' or more children;
1629  * those are the txgs we don't have enough replication to read.  For example,
1630  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1631  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1632  * two child DTL_MISSING maps.
1633  *
1634  * It should be clear from the above that to compute the DTLs and outage maps
1635  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1636  * Therefore, that is all we keep on disk.  When loading the pool, or after
1637  * a configuration change, we generate all other DTLs from first principles.
1638  */
1639 void
1640 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1641 {
1642         space_map_t *sm = &vd->vdev_dtl[t];
1643
1644         ASSERT(t < DTL_TYPES);
1645         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1646         ASSERT(spa_writeable(vd->vdev_spa));
1647
1648         mutex_enter(sm->sm_lock);
1649         if (!space_map_contains(sm, txg, size))
1650                 space_map_add(sm, txg, size);
1651         mutex_exit(sm->sm_lock);
1652 }
1653
1654 boolean_t
1655 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1656 {
1657         space_map_t *sm = &vd->vdev_dtl[t];
1658         boolean_t dirty = B_FALSE;
1659
1660         ASSERT(t < DTL_TYPES);
1661         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1662
1663         mutex_enter(sm->sm_lock);
1664         if (sm->sm_space != 0)
1665                 dirty = space_map_contains(sm, txg, size);
1666         mutex_exit(sm->sm_lock);
1667
1668         return (dirty);
1669 }
1670
1671 boolean_t
1672 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1673 {
1674         space_map_t *sm = &vd->vdev_dtl[t];
1675         boolean_t empty;
1676
1677         mutex_enter(sm->sm_lock);
1678         empty = (sm->sm_space == 0);
1679         mutex_exit(sm->sm_lock);
1680
1681         return (empty);
1682 }
1683
1684 /*
1685  * Reassess DTLs after a config change or scrub completion.
1686  */
1687 void
1688 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1689 {
1690         spa_t *spa = vd->vdev_spa;
1691         avl_tree_t reftree;
1692         int c, t, minref;
1693
1694         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1695
1696         for (c = 0; c < vd->vdev_children; c++)
1697                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1698                     scrub_txg, scrub_done);
1699
1700         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1701                 return;
1702
1703         if (vd->vdev_ops->vdev_op_leaf) {
1704                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1705
1706                 mutex_enter(&vd->vdev_dtl_lock);
1707                 if (scrub_txg != 0 &&
1708                     (spa->spa_scrub_started ||
1709                     (scn && scn->scn_phys.scn_errors == 0))) {
1710                         /*
1711                          * We completed a scrub up to scrub_txg.  If we
1712                          * did it without rebooting, then the scrub dtl
1713                          * will be valid, so excise the old region and
1714                          * fold in the scrub dtl.  Otherwise, leave the
1715                          * dtl as-is if there was an error.
1716                          *
1717                          * There's little trick here: to excise the beginning
1718                          * of the DTL_MISSING map, we put it into a reference
1719                          * tree and then add a segment with refcnt -1 that
1720                          * covers the range [0, scrub_txg).  This means
1721                          * that each txg in that range has refcnt -1 or 0.
1722                          * We then add DTL_SCRUB with a refcnt of 2, so that
1723                          * entries in the range [0, scrub_txg) will have a
1724                          * positive refcnt -- either 1 or 2.  We then convert
1725                          * the reference tree into the new DTL_MISSING map.
1726                          */
1727                         space_map_ref_create(&reftree);
1728                         space_map_ref_add_map(&reftree,
1729                             &vd->vdev_dtl[DTL_MISSING], 1);
1730                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1731                         space_map_ref_add_map(&reftree,
1732                             &vd->vdev_dtl[DTL_SCRUB], 2);
1733                         space_map_ref_generate_map(&reftree,
1734                             &vd->vdev_dtl[DTL_MISSING], 1);
1735                         space_map_ref_destroy(&reftree);
1736                 }
1737                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1738                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1739                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1740                 if (scrub_done)
1741                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1742                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1743                 if (!vdev_readable(vd))
1744                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1745                 else
1746                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1747                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1748                 mutex_exit(&vd->vdev_dtl_lock);
1749
1750                 if (txg != 0)
1751                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1752                 return;
1753         }
1754
1755         mutex_enter(&vd->vdev_dtl_lock);
1756         for (t = 0; t < DTL_TYPES; t++) {
1757                 /* account for child's outage in parent's missing map */
1758                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1759                 if (t == DTL_SCRUB)
1760                         continue;                       /* leaf vdevs only */
1761                 if (t == DTL_PARTIAL)
1762                         minref = 1;                     /* i.e. non-zero */
1763                 else if (vd->vdev_nparity != 0)
1764                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1765                 else
1766                         minref = vd->vdev_children;     /* any kind of mirror */
1767                 space_map_ref_create(&reftree);
1768                 for (c = 0; c < vd->vdev_children; c++) {
1769                         vdev_t *cvd = vd->vdev_child[c];
1770                         mutex_enter(&cvd->vdev_dtl_lock);
1771                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1772                         mutex_exit(&cvd->vdev_dtl_lock);
1773                 }
1774                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1775                 space_map_ref_destroy(&reftree);
1776         }
1777         mutex_exit(&vd->vdev_dtl_lock);
1778 }
1779
1780 static int
1781 vdev_dtl_load(vdev_t *vd)
1782 {
1783         spa_t *spa = vd->vdev_spa;
1784         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1785         objset_t *mos = spa->spa_meta_objset;
1786         dmu_buf_t *db;
1787         int error;
1788
1789         ASSERT(vd->vdev_children == 0);
1790
1791         if (smo->smo_object == 0)
1792                 return (0);
1793
1794         ASSERT(!vd->vdev_ishole);
1795
1796         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1797                 return (error);
1798
1799         ASSERT3U(db->db_size, >=, sizeof (*smo));
1800         bcopy(db->db_data, smo, sizeof (*smo));
1801         dmu_buf_rele(db, FTAG);
1802
1803         mutex_enter(&vd->vdev_dtl_lock);
1804         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1805             NULL, SM_ALLOC, smo, mos);
1806         mutex_exit(&vd->vdev_dtl_lock);
1807
1808         return (error);
1809 }
1810
1811 void
1812 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1813 {
1814         spa_t *spa = vd->vdev_spa;
1815         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1816         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1817         objset_t *mos = spa->spa_meta_objset;
1818         space_map_t smsync;
1819         kmutex_t smlock;
1820         dmu_buf_t *db;
1821         dmu_tx_t *tx;
1822
1823         ASSERT(!vd->vdev_ishole);
1824
1825         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1826
1827         if (vd->vdev_detached) {
1828                 if (smo->smo_object != 0) {
1829                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1830                         smo->smo_object = 0;
1831                 }
1832                 dmu_tx_commit(tx);
1833                 return;
1834         }
1835
1836         if (smo->smo_object == 0) {
1837                 ASSERT(smo->smo_objsize == 0);
1838                 ASSERT(smo->smo_alloc == 0);
1839                 smo->smo_object = dmu_object_alloc(mos,
1840                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1841                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1842                 ASSERT(smo->smo_object != 0);
1843                 vdev_config_dirty(vd->vdev_top);
1844         }
1845
1846         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1847
1848         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1849             &smlock);
1850
1851         mutex_enter(&smlock);
1852
1853         mutex_enter(&vd->vdev_dtl_lock);
1854         space_map_walk(sm, space_map_add, &smsync);
1855         mutex_exit(&vd->vdev_dtl_lock);
1856
1857         space_map_truncate(smo, mos, tx);
1858         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1859
1860         space_map_destroy(&smsync);
1861
1862         mutex_exit(&smlock);
1863         mutex_destroy(&smlock);
1864
1865         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1866         dmu_buf_will_dirty(db, tx);
1867         ASSERT3U(db->db_size, >=, sizeof (*smo));
1868         bcopy(smo, db->db_data, sizeof (*smo));
1869         dmu_buf_rele(db, FTAG);
1870
1871         dmu_tx_commit(tx);
1872 }
1873
1874 /*
1875  * Determine whether the specified vdev can be offlined/detached/removed
1876  * without losing data.
1877  */
1878 boolean_t
1879 vdev_dtl_required(vdev_t *vd)
1880 {
1881         spa_t *spa = vd->vdev_spa;
1882         vdev_t *tvd = vd->vdev_top;
1883         uint8_t cant_read = vd->vdev_cant_read;
1884         boolean_t required;
1885
1886         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1887
1888         if (vd == spa->spa_root_vdev || vd == tvd)
1889                 return (B_TRUE);
1890
1891         /*
1892          * Temporarily mark the device as unreadable, and then determine
1893          * whether this results in any DTL outages in the top-level vdev.
1894          * If not, we can safely offline/detach/remove the device.
1895          */
1896         vd->vdev_cant_read = B_TRUE;
1897         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1898         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1899         vd->vdev_cant_read = cant_read;
1900         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1901
1902         if (!required && zio_injection_enabled)
1903                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1904
1905         return (required);
1906 }
1907
1908 /*
1909  * Determine if resilver is needed, and if so the txg range.
1910  */
1911 boolean_t
1912 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1913 {
1914         boolean_t needed = B_FALSE;
1915         uint64_t thismin = UINT64_MAX;
1916         uint64_t thismax = 0;
1917         int c;
1918
1919         if (vd->vdev_children == 0) {
1920                 mutex_enter(&vd->vdev_dtl_lock);
1921                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1922                     vdev_writeable(vd)) {
1923                         space_seg_t *ss;
1924
1925                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1926                         thismin = ss->ss_start - 1;
1927                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1928                         thismax = ss->ss_end;
1929                         needed = B_TRUE;
1930                 }
1931                 mutex_exit(&vd->vdev_dtl_lock);
1932         } else {
1933                 for (c = 0; c < vd->vdev_children; c++) {
1934                         vdev_t *cvd = vd->vdev_child[c];
1935                         uint64_t cmin, cmax;
1936
1937                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1938                                 thismin = MIN(thismin, cmin);
1939                                 thismax = MAX(thismax, cmax);
1940                                 needed = B_TRUE;
1941                         }
1942                 }
1943         }
1944
1945         if (needed && minp) {
1946                 *minp = thismin;
1947                 *maxp = thismax;
1948         }
1949         return (needed);
1950 }
1951
1952 void
1953 vdev_load(vdev_t *vd)
1954 {
1955         int c;
1956
1957         /*
1958          * Recursively load all children.
1959          */
1960         for (c = 0; c < vd->vdev_children; c++)
1961                 vdev_load(vd->vdev_child[c]);
1962
1963         /*
1964          * If this is a top-level vdev, initialize its metaslabs.
1965          */
1966         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1967             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1968             vdev_metaslab_init(vd, 0) != 0))
1969                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1970                     VDEV_AUX_CORRUPT_DATA);
1971
1972         /*
1973          * If this is a leaf vdev, load its DTL.
1974          */
1975         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1976                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1977                     VDEV_AUX_CORRUPT_DATA);
1978 }
1979
1980 /*
1981  * The special vdev case is used for hot spares and l2cache devices.  Its
1982  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1983  * we make sure that we can open the underlying device, then try to read the
1984  * label, and make sure that the label is sane and that it hasn't been
1985  * repurposed to another pool.
1986  */
1987 int
1988 vdev_validate_aux(vdev_t *vd)
1989 {
1990         nvlist_t *label;
1991         uint64_t guid, version;
1992         uint64_t state;
1993
1994         if (!vdev_readable(vd))
1995                 return (0);
1996
1997         if ((label = vdev_label_read_config(vd)) == NULL) {
1998                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1999                     VDEV_AUX_CORRUPT_DATA);
2000                 return (-1);
2001         }
2002
2003         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2004             version > SPA_VERSION ||
2005             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2006             guid != vd->vdev_guid ||
2007             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2008                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2009                     VDEV_AUX_CORRUPT_DATA);
2010                 nvlist_free(label);
2011                 return (-1);
2012         }
2013
2014         /*
2015          * We don't actually check the pool state here.  If it's in fact in
2016          * use by another pool, we update this fact on the fly when requested.
2017          */
2018         nvlist_free(label);
2019         return (0);
2020 }
2021
2022 void
2023 vdev_remove(vdev_t *vd, uint64_t txg)
2024 {
2025         spa_t *spa = vd->vdev_spa;
2026         objset_t *mos = spa->spa_meta_objset;
2027         dmu_tx_t *tx;
2028         int m;
2029
2030         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2031
2032         if (vd->vdev_dtl_smo.smo_object) {
2033                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2034                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2035                 vd->vdev_dtl_smo.smo_object = 0;
2036         }
2037
2038         if (vd->vdev_ms != NULL) {
2039                 for (m = 0; m < vd->vdev_ms_count; m++) {
2040                         metaslab_t *msp = vd->vdev_ms[m];
2041
2042                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2043                                 continue;
2044
2045                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2046                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2047                         msp->ms_smo.smo_object = 0;
2048                 }
2049         }
2050
2051         if (vd->vdev_ms_array) {
2052                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2053                 vd->vdev_ms_array = 0;
2054                 vd->vdev_ms_shift = 0;
2055         }
2056         dmu_tx_commit(tx);
2057 }
2058
2059 void
2060 vdev_sync_done(vdev_t *vd, uint64_t txg)
2061 {
2062         metaslab_t *msp;
2063         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2064
2065         ASSERT(!vd->vdev_ishole);
2066
2067         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2068                 metaslab_sync_done(msp, txg);
2069
2070         if (reassess)
2071                 metaslab_sync_reassess(vd->vdev_mg);
2072 }
2073
2074 void
2075 vdev_sync(vdev_t *vd, uint64_t txg)
2076 {
2077         spa_t *spa = vd->vdev_spa;
2078         vdev_t *lvd;
2079         metaslab_t *msp;
2080         dmu_tx_t *tx;
2081
2082         ASSERT(!vd->vdev_ishole);
2083
2084         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2085                 ASSERT(vd == vd->vdev_top);
2086                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2087                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2088                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2089                 ASSERT(vd->vdev_ms_array != 0);
2090                 vdev_config_dirty(vd);
2091                 dmu_tx_commit(tx);
2092         }
2093
2094         /*
2095          * Remove the metadata associated with this vdev once it's empty.
2096          */
2097         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2098                 vdev_remove(vd, txg);
2099
2100         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2101                 metaslab_sync(msp, txg);
2102                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2103         }
2104
2105         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2106                 vdev_dtl_sync(lvd, txg);
2107
2108         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2109 }
2110
2111 uint64_t
2112 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2113 {
2114         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2115 }
2116
2117 /*
2118  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2119  * not be opened, and no I/O is attempted.
2120  */
2121 int
2122 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2123 {
2124         vdev_t *vd, *tvd;
2125
2126         spa_vdev_state_enter(spa, SCL_NONE);
2127
2128         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2129                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2130
2131         if (!vd->vdev_ops->vdev_op_leaf)
2132                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2133
2134         tvd = vd->vdev_top;
2135
2136         /*
2137          * We don't directly use the aux state here, but if we do a
2138          * vdev_reopen(), we need this value to be present to remember why we
2139          * were faulted.
2140          */
2141         vd->vdev_label_aux = aux;
2142
2143         /*
2144          * Faulted state takes precedence over degraded.
2145          */
2146         vd->vdev_delayed_close = B_FALSE;
2147         vd->vdev_faulted = 1ULL;
2148         vd->vdev_degraded = 0ULL;
2149         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2150
2151         /*
2152          * If this device has the only valid copy of the data, then
2153          * back off and simply mark the vdev as degraded instead.
2154          */
2155         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2156                 vd->vdev_degraded = 1ULL;
2157                 vd->vdev_faulted = 0ULL;
2158
2159                 /*
2160                  * If we reopen the device and it's not dead, only then do we
2161                  * mark it degraded.
2162                  */
2163                 vdev_reopen(tvd);
2164
2165                 if (vdev_readable(vd))
2166                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2167         }
2168
2169         return (spa_vdev_state_exit(spa, vd, 0));
2170 }
2171
2172 /*
2173  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2174  * user that something is wrong.  The vdev continues to operate as normal as far
2175  * as I/O is concerned.
2176  */
2177 int
2178 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2179 {
2180         vdev_t *vd;
2181
2182         spa_vdev_state_enter(spa, SCL_NONE);
2183
2184         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2185                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2186
2187         if (!vd->vdev_ops->vdev_op_leaf)
2188                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2189
2190         /*
2191          * If the vdev is already faulted, then don't do anything.
2192          */
2193         if (vd->vdev_faulted || vd->vdev_degraded)
2194                 return (spa_vdev_state_exit(spa, NULL, 0));
2195
2196         vd->vdev_degraded = 1ULL;
2197         if (!vdev_is_dead(vd))
2198                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2199                     aux);
2200
2201         return (spa_vdev_state_exit(spa, vd, 0));
2202 }
2203
2204 /*
2205  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2206  * any attached spare device should be detached when the device finishes
2207  * resilvering.  Second, the online should be treated like a 'test' online case,
2208  * so no FMA events are generated if the device fails to open.
2209  */
2210 int
2211 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2212 {
2213         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2214
2215         spa_vdev_state_enter(spa, SCL_NONE);
2216
2217         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2218                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2219
2220         if (!vd->vdev_ops->vdev_op_leaf)
2221                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2222
2223         tvd = vd->vdev_top;
2224         vd->vdev_offline = B_FALSE;
2225         vd->vdev_tmpoffline = B_FALSE;
2226         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2227         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2228
2229         /* XXX - L2ARC 1.0 does not support expansion */
2230         if (!vd->vdev_aux) {
2231                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2232                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2233         }
2234
2235         vdev_reopen(tvd);
2236         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2237
2238         if (!vd->vdev_aux) {
2239                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2240                         pvd->vdev_expanding = B_FALSE;
2241         }
2242
2243         if (newstate)
2244                 *newstate = vd->vdev_state;
2245         if ((flags & ZFS_ONLINE_UNSPARE) &&
2246             !vdev_is_dead(vd) && vd->vdev_parent &&
2247             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2248             vd->vdev_parent->vdev_child[0] == vd)
2249                 vd->vdev_unspare = B_TRUE;
2250
2251         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2252
2253                 /* XXX - L2ARC 1.0 does not support expansion */
2254                 if (vd->vdev_aux)
2255                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2256                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2257         }
2258         return (spa_vdev_state_exit(spa, vd, 0));
2259 }
2260
2261 static int
2262 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2263 {
2264         vdev_t *vd, *tvd;
2265         int error = 0;
2266         uint64_t generation;
2267         metaslab_group_t *mg;
2268
2269 top:
2270         spa_vdev_state_enter(spa, SCL_ALLOC);
2271
2272         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2273                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2274
2275         if (!vd->vdev_ops->vdev_op_leaf)
2276                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2277
2278         tvd = vd->vdev_top;
2279         mg = tvd->vdev_mg;
2280         generation = spa->spa_config_generation + 1;
2281
2282         /*
2283          * If the device isn't already offline, try to offline it.
2284          */
2285         if (!vd->vdev_offline) {
2286                 /*
2287                  * If this device has the only valid copy of some data,
2288                  * don't allow it to be offlined. Log devices are always
2289                  * expendable.
2290                  */
2291                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2292                     vdev_dtl_required(vd))
2293                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2294
2295                 /*
2296                  * If the top-level is a slog and it has had allocations
2297                  * then proceed.  We check that the vdev's metaslab group
2298                  * is not NULL since it's possible that we may have just
2299                  * added this vdev but not yet initialized its metaslabs.
2300                  */
2301                 if (tvd->vdev_islog && mg != NULL) {
2302                         /*
2303                          * Prevent any future allocations.
2304                          */
2305                         metaslab_group_passivate(mg);
2306                         (void) spa_vdev_state_exit(spa, vd, 0);
2307
2308                         error = spa_offline_log(spa);
2309
2310                         spa_vdev_state_enter(spa, SCL_ALLOC);
2311
2312                         /*
2313                          * Check to see if the config has changed.
2314                          */
2315                         if (error || generation != spa->spa_config_generation) {
2316                                 metaslab_group_activate(mg);
2317                                 if (error)
2318                                         return (spa_vdev_state_exit(spa,
2319                                             vd, error));
2320                                 (void) spa_vdev_state_exit(spa, vd, 0);
2321                                 goto top;
2322                         }
2323                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2324                 }
2325
2326                 /*
2327                  * Offline this device and reopen its top-level vdev.
2328                  * If the top-level vdev is a log device then just offline
2329                  * it. Otherwise, if this action results in the top-level
2330                  * vdev becoming unusable, undo it and fail the request.
2331                  */
2332                 vd->vdev_offline = B_TRUE;
2333                 vdev_reopen(tvd);
2334
2335                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2336                     vdev_is_dead(tvd)) {
2337                         vd->vdev_offline = B_FALSE;
2338                         vdev_reopen(tvd);
2339                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2340                 }
2341
2342                 /*
2343                  * Add the device back into the metaslab rotor so that
2344                  * once we online the device it's open for business.
2345                  */
2346                 if (tvd->vdev_islog && mg != NULL)
2347                         metaslab_group_activate(mg);
2348         }
2349
2350         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2351
2352         return (spa_vdev_state_exit(spa, vd, 0));
2353 }
2354
2355 int
2356 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2357 {
2358         int error;
2359
2360         mutex_enter(&spa->spa_vdev_top_lock);
2361         error = vdev_offline_locked(spa, guid, flags);
2362         mutex_exit(&spa->spa_vdev_top_lock);
2363
2364         return (error);
2365 }
2366
2367 /*
2368  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2369  * vdev_offline(), we assume the spa config is locked.  We also clear all
2370  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2371  */
2372 void
2373 vdev_clear(spa_t *spa, vdev_t *vd)
2374 {
2375         vdev_t *rvd = spa->spa_root_vdev;
2376         int c;
2377
2378         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2379
2380         if (vd == NULL)
2381                 vd = rvd;
2382
2383         vd->vdev_stat.vs_read_errors = 0;
2384         vd->vdev_stat.vs_write_errors = 0;
2385         vd->vdev_stat.vs_checksum_errors = 0;
2386
2387         for (c = 0; c < vd->vdev_children; c++)
2388                 vdev_clear(spa, vd->vdev_child[c]);
2389
2390         /*
2391          * If we're in the FAULTED state or have experienced failed I/O, then
2392          * clear the persistent state and attempt to reopen the device.  We
2393          * also mark the vdev config dirty, so that the new faulted state is
2394          * written out to disk.
2395          */
2396         if (vd->vdev_faulted || vd->vdev_degraded ||
2397             !vdev_readable(vd) || !vdev_writeable(vd)) {
2398
2399                 /*
2400                  * When reopening in reponse to a clear event, it may be due to
2401                  * a fmadm repair request.  In this case, if the device is
2402                  * still broken, we want to still post the ereport again.
2403                  */
2404                 vd->vdev_forcefault = B_TRUE;
2405
2406                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2407                 vd->vdev_cant_read = B_FALSE;
2408                 vd->vdev_cant_write = B_FALSE;
2409
2410                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2411
2412                 vd->vdev_forcefault = B_FALSE;
2413
2414                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2415                         vdev_state_dirty(vd->vdev_top);
2416
2417                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2418                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2419
2420                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2421         }
2422
2423         /*
2424          * When clearing a FMA-diagnosed fault, we always want to
2425          * unspare the device, as we assume that the original spare was
2426          * done in response to the FMA fault.
2427          */
2428         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2429             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2430             vd->vdev_parent->vdev_child[0] == vd)
2431                 vd->vdev_unspare = B_TRUE;
2432 }
2433
2434 boolean_t
2435 vdev_is_dead(vdev_t *vd)
2436 {
2437         /*
2438          * Holes and missing devices are always considered "dead".
2439          * This simplifies the code since we don't have to check for
2440          * these types of devices in the various code paths.
2441          * Instead we rely on the fact that we skip over dead devices
2442          * before issuing I/O to them.
2443          */
2444         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2445             vd->vdev_ops == &vdev_missing_ops);
2446 }
2447
2448 boolean_t
2449 vdev_readable(vdev_t *vd)
2450 {
2451         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2452 }
2453
2454 boolean_t
2455 vdev_writeable(vdev_t *vd)
2456 {
2457         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2458 }
2459
2460 boolean_t
2461 vdev_allocatable(vdev_t *vd)
2462 {
2463         uint64_t state = vd->vdev_state;
2464
2465         /*
2466          * We currently allow allocations from vdevs which may be in the
2467          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2468          * fails to reopen then we'll catch it later when we're holding
2469          * the proper locks.  Note that we have to get the vdev state
2470          * in a local variable because although it changes atomically,
2471          * we're asking two separate questions about it.
2472          */
2473         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2474             !vd->vdev_cant_write && !vd->vdev_ishole);
2475 }
2476
2477 boolean_t
2478 vdev_accessible(vdev_t *vd, zio_t *zio)
2479 {
2480         ASSERT(zio->io_vd == vd);
2481
2482         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2483                 return (B_FALSE);
2484
2485         if (zio->io_type == ZIO_TYPE_READ)
2486                 return (!vd->vdev_cant_read);
2487
2488         if (zio->io_type == ZIO_TYPE_WRITE)
2489                 return (!vd->vdev_cant_write);
2490
2491         return (B_TRUE);
2492 }
2493
2494 /*
2495  * Get statistics for the given vdev.
2496  */
2497 void
2498 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2499 {
2500         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2501         int c, t;
2502
2503         mutex_enter(&vd->vdev_stat_lock);
2504         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2505         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2506         vs->vs_state = vd->vdev_state;
2507         vs->vs_rsize = vdev_get_min_asize(vd);
2508         if (vd->vdev_ops->vdev_op_leaf)
2509                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2510         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2511         mutex_exit(&vd->vdev_stat_lock);
2512
2513         /*
2514          * If we're getting stats on the root vdev, aggregate the I/O counts
2515          * over all top-level vdevs (i.e. the direct children of the root).
2516          */
2517         if (vd == rvd) {
2518                 for (c = 0; c < rvd->vdev_children; c++) {
2519                         vdev_t *cvd = rvd->vdev_child[c];
2520                         vdev_stat_t *cvs = &cvd->vdev_stat;
2521
2522                         mutex_enter(&vd->vdev_stat_lock);
2523                         for (t = 0; t < ZIO_TYPES; t++) {
2524                                 vs->vs_ops[t] += cvs->vs_ops[t];
2525                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2526                         }
2527                         cvs->vs_scan_removing = cvd->vdev_removing;
2528                         mutex_exit(&vd->vdev_stat_lock);
2529                 }
2530         }
2531 }
2532
2533 void
2534 vdev_clear_stats(vdev_t *vd)
2535 {
2536         mutex_enter(&vd->vdev_stat_lock);
2537         vd->vdev_stat.vs_space = 0;
2538         vd->vdev_stat.vs_dspace = 0;
2539         vd->vdev_stat.vs_alloc = 0;
2540         mutex_exit(&vd->vdev_stat_lock);
2541 }
2542
2543 void
2544 vdev_scan_stat_init(vdev_t *vd)
2545 {
2546         vdev_stat_t *vs = &vd->vdev_stat;
2547         int c;
2548
2549         for (c = 0; c < vd->vdev_children; c++)
2550                 vdev_scan_stat_init(vd->vdev_child[c]);
2551
2552         mutex_enter(&vd->vdev_stat_lock);
2553         vs->vs_scan_processed = 0;
2554         mutex_exit(&vd->vdev_stat_lock);
2555 }
2556
2557 void
2558 vdev_stat_update(zio_t *zio, uint64_t psize)
2559 {
2560         spa_t *spa = zio->io_spa;
2561         vdev_t *rvd = spa->spa_root_vdev;
2562         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2563         vdev_t *pvd;
2564         uint64_t txg = zio->io_txg;
2565         vdev_stat_t *vs = &vd->vdev_stat;
2566         zio_type_t type = zio->io_type;
2567         int flags = zio->io_flags;
2568
2569         /*
2570          * If this i/o is a gang leader, it didn't do any actual work.
2571          */
2572         if (zio->io_gang_tree)
2573                 return;
2574
2575         if (zio->io_error == 0) {
2576                 /*
2577                  * If this is a root i/o, don't count it -- we've already
2578                  * counted the top-level vdevs, and vdev_get_stats() will
2579                  * aggregate them when asked.  This reduces contention on
2580                  * the root vdev_stat_lock and implicitly handles blocks
2581                  * that compress away to holes, for which there is no i/o.
2582                  * (Holes never create vdev children, so all the counters
2583                  * remain zero, which is what we want.)
2584                  *
2585                  * Note: this only applies to successful i/o (io_error == 0)
2586                  * because unlike i/o counts, errors are not additive.
2587                  * When reading a ditto block, for example, failure of
2588                  * one top-level vdev does not imply a root-level error.
2589                  */
2590                 if (vd == rvd)
2591                         return;
2592
2593                 ASSERT(vd == zio->io_vd);
2594
2595                 if (flags & ZIO_FLAG_IO_BYPASS)
2596                         return;
2597
2598                 mutex_enter(&vd->vdev_stat_lock);
2599
2600                 if (flags & ZIO_FLAG_IO_REPAIR) {
2601                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2602                                 dsl_scan_phys_t *scn_phys =
2603                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2604                                 uint64_t *processed = &scn_phys->scn_processed;
2605
2606                                 /* XXX cleanup? */
2607                                 if (vd->vdev_ops->vdev_op_leaf)
2608                                         atomic_add_64(processed, psize);
2609                                 vs->vs_scan_processed += psize;
2610                         }
2611
2612                         if (flags & ZIO_FLAG_SELF_HEAL)
2613                                 vs->vs_self_healed += psize;
2614                 }
2615
2616                 vs->vs_ops[type]++;
2617                 vs->vs_bytes[type] += psize;
2618
2619                 mutex_exit(&vd->vdev_stat_lock);
2620                 return;
2621         }
2622
2623         if (flags & ZIO_FLAG_SPECULATIVE)
2624                 return;
2625
2626         /*
2627          * If this is an I/O error that is going to be retried, then ignore the
2628          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2629          * hard errors, when in reality they can happen for any number of
2630          * innocuous reasons (bus resets, MPxIO link failure, etc).
2631          */
2632         if (zio->io_error == EIO &&
2633             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2634                 return;
2635
2636         /*
2637          * Intent logs writes won't propagate their error to the root
2638          * I/O so don't mark these types of failures as pool-level
2639          * errors.
2640          */
2641         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2642                 return;
2643
2644         mutex_enter(&vd->vdev_stat_lock);
2645         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2646                 if (zio->io_error == ECKSUM)
2647                         vs->vs_checksum_errors++;
2648                 else
2649                         vs->vs_read_errors++;
2650         }
2651         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2652                 vs->vs_write_errors++;
2653         mutex_exit(&vd->vdev_stat_lock);
2654
2655         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2656             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2657             (flags & ZIO_FLAG_SCAN_THREAD) ||
2658             spa->spa_claiming)) {
2659                 /*
2660                  * This is either a normal write (not a repair), or it's
2661                  * a repair induced by the scrub thread, or it's a repair
2662                  * made by zil_claim() during spa_load() in the first txg.
2663                  * In the normal case, we commit the DTL change in the same
2664                  * txg as the block was born.  In the scrub-induced repair
2665                  * case, we know that scrubs run in first-pass syncing context,
2666                  * so we commit the DTL change in spa_syncing_txg(spa).
2667                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2668                  *
2669                  * We currently do not make DTL entries for failed spontaneous
2670                  * self-healing writes triggered by normal (non-scrubbing)
2671                  * reads, because we have no transactional context in which to
2672                  * do so -- and it's not clear that it'd be desirable anyway.
2673                  */
2674                 if (vd->vdev_ops->vdev_op_leaf) {
2675                         uint64_t commit_txg = txg;
2676                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2677                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2678                                 ASSERT(spa_sync_pass(spa) == 1);
2679                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2680                                 commit_txg = spa_syncing_txg(spa);
2681                         } else if (spa->spa_claiming) {
2682                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2683                                 commit_txg = spa_first_txg(spa);
2684                         }
2685                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2686                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2687                                 return;
2688                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2689                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2690                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2691                 }
2692                 if (vd != rvd)
2693                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2694         }
2695 }
2696
2697 /*
2698  * Update the in-core space usage stats for this vdev, its metaslab class,
2699  * and the root vdev.
2700  */
2701 void
2702 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2703     int64_t space_delta)
2704 {
2705         int64_t dspace_delta = space_delta;
2706         spa_t *spa = vd->vdev_spa;
2707         vdev_t *rvd = spa->spa_root_vdev;
2708         metaslab_group_t *mg = vd->vdev_mg;
2709         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2710
2711         ASSERT(vd == vd->vdev_top);
2712
2713         /*
2714          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2715          * factor.  We must calculate this here and not at the root vdev
2716          * because the root vdev's psize-to-asize is simply the max of its
2717          * childrens', thus not accurate enough for us.
2718          */
2719         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2720         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2721         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2722             vd->vdev_deflate_ratio;
2723
2724         mutex_enter(&vd->vdev_stat_lock);
2725         vd->vdev_stat.vs_alloc += alloc_delta;
2726         vd->vdev_stat.vs_space += space_delta;
2727         vd->vdev_stat.vs_dspace += dspace_delta;
2728         mutex_exit(&vd->vdev_stat_lock);
2729
2730         if (mc == spa_normal_class(spa)) {
2731                 mutex_enter(&rvd->vdev_stat_lock);
2732                 rvd->vdev_stat.vs_alloc += alloc_delta;
2733                 rvd->vdev_stat.vs_space += space_delta;
2734                 rvd->vdev_stat.vs_dspace += dspace_delta;
2735                 mutex_exit(&rvd->vdev_stat_lock);
2736         }
2737
2738         if (mc != NULL) {
2739                 ASSERT(rvd == vd->vdev_parent);
2740                 ASSERT(vd->vdev_ms_count != 0);
2741
2742                 metaslab_class_space_update(mc,
2743                     alloc_delta, defer_delta, space_delta, dspace_delta);
2744         }
2745 }
2746
2747 /*
2748  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2749  * so that it will be written out next time the vdev configuration is synced.
2750  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2751  */
2752 void
2753 vdev_config_dirty(vdev_t *vd)
2754 {
2755         spa_t *spa = vd->vdev_spa;
2756         vdev_t *rvd = spa->spa_root_vdev;
2757         int c;
2758
2759         ASSERT(spa_writeable(spa));
2760
2761         /*
2762          * If this is an aux vdev (as with l2cache and spare devices), then we
2763          * update the vdev config manually and set the sync flag.
2764          */
2765         if (vd->vdev_aux != NULL) {
2766                 spa_aux_vdev_t *sav = vd->vdev_aux;
2767                 nvlist_t **aux;
2768                 uint_t naux;
2769
2770                 for (c = 0; c < sav->sav_count; c++) {
2771                         if (sav->sav_vdevs[c] == vd)
2772                                 break;
2773                 }
2774
2775                 if (c == sav->sav_count) {
2776                         /*
2777                          * We're being removed.  There's nothing more to do.
2778                          */
2779                         ASSERT(sav->sav_sync == B_TRUE);
2780                         return;
2781                 }
2782
2783                 sav->sav_sync = B_TRUE;
2784
2785                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2786                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2787                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2788                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2789                 }
2790
2791                 ASSERT(c < naux);
2792
2793                 /*
2794                  * Setting the nvlist in the middle if the array is a little
2795                  * sketchy, but it will work.
2796                  */
2797                 nvlist_free(aux[c]);
2798                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2799
2800                 return;
2801         }
2802
2803         /*
2804          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2805          * must either hold SCL_CONFIG as writer, or must be the sync thread
2806          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2807          * so this is sufficient to ensure mutual exclusion.
2808          */
2809         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2810             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2811             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2812
2813         if (vd == rvd) {
2814                 for (c = 0; c < rvd->vdev_children; c++)
2815                         vdev_config_dirty(rvd->vdev_child[c]);
2816         } else {
2817                 ASSERT(vd == vd->vdev_top);
2818
2819                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2820                     !vd->vdev_ishole)
2821                         list_insert_head(&spa->spa_config_dirty_list, vd);
2822         }
2823 }
2824
2825 void
2826 vdev_config_clean(vdev_t *vd)
2827 {
2828         spa_t *spa = vd->vdev_spa;
2829
2830         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2831             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2833
2834         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2835         list_remove(&spa->spa_config_dirty_list, vd);
2836 }
2837
2838 /*
2839  * Mark a top-level vdev's state as dirty, so that the next pass of
2840  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2841  * the state changes from larger config changes because they require
2842  * much less locking, and are often needed for administrative actions.
2843  */
2844 void
2845 vdev_state_dirty(vdev_t *vd)
2846 {
2847         spa_t *spa = vd->vdev_spa;
2848
2849         ASSERT(spa_writeable(spa));
2850         ASSERT(vd == vd->vdev_top);
2851
2852         /*
2853          * The state list is protected by the SCL_STATE lock.  The caller
2854          * must either hold SCL_STATE as writer, or must be the sync thread
2855          * (which holds SCL_STATE as reader).  There's only one sync thread,
2856          * so this is sufficient to ensure mutual exclusion.
2857          */
2858         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2859             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2860             spa_config_held(spa, SCL_STATE, RW_READER)));
2861
2862         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2863                 list_insert_head(&spa->spa_state_dirty_list, vd);
2864 }
2865
2866 void
2867 vdev_state_clean(vdev_t *vd)
2868 {
2869         spa_t *spa = vd->vdev_spa;
2870
2871         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2872             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2873             spa_config_held(spa, SCL_STATE, RW_READER)));
2874
2875         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2876         list_remove(&spa->spa_state_dirty_list, vd);
2877 }
2878
2879 /*
2880  * Propagate vdev state up from children to parent.
2881  */
2882 void
2883 vdev_propagate_state(vdev_t *vd)
2884 {
2885         spa_t *spa = vd->vdev_spa;
2886         vdev_t *rvd = spa->spa_root_vdev;
2887         int degraded = 0, faulted = 0;
2888         int corrupted = 0;
2889         vdev_t *child;
2890         int c;
2891
2892         if (vd->vdev_children > 0) {
2893                 for (c = 0; c < vd->vdev_children; c++) {
2894                         child = vd->vdev_child[c];
2895
2896                         /*
2897                          * Don't factor holes into the decision.
2898                          */
2899                         if (child->vdev_ishole)
2900                                 continue;
2901
2902                         if (!vdev_readable(child) ||
2903                             (!vdev_writeable(child) && spa_writeable(spa))) {
2904                                 /*
2905                                  * Root special: if there is a top-level log
2906                                  * device, treat the root vdev as if it were
2907                                  * degraded.
2908                                  */
2909                                 if (child->vdev_islog && vd == rvd)
2910                                         degraded++;
2911                                 else
2912                                         faulted++;
2913                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2914                                 degraded++;
2915                         }
2916
2917                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2918                                 corrupted++;
2919                 }
2920
2921                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2922
2923                 /*
2924                  * Root special: if there is a top-level vdev that cannot be
2925                  * opened due to corrupted metadata, then propagate the root
2926                  * vdev's aux state as 'corrupt' rather than 'insufficient
2927                  * replicas'.
2928                  */
2929                 if (corrupted && vd == rvd &&
2930                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2931                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2932                             VDEV_AUX_CORRUPT_DATA);
2933         }
2934
2935         if (vd->vdev_parent)
2936                 vdev_propagate_state(vd->vdev_parent);
2937 }
2938
2939 /*
2940  * Set a vdev's state.  If this is during an open, we don't update the parent
2941  * state, because we're in the process of opening children depth-first.
2942  * Otherwise, we propagate the change to the parent.
2943  *
2944  * If this routine places a device in a faulted state, an appropriate ereport is
2945  * generated.
2946  */
2947 void
2948 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2949 {
2950         uint64_t save_state;
2951         spa_t *spa = vd->vdev_spa;
2952
2953         if (state == vd->vdev_state) {
2954                 vd->vdev_stat.vs_aux = aux;
2955                 return;
2956         }
2957
2958         save_state = vd->vdev_state;
2959
2960         vd->vdev_state = state;
2961         vd->vdev_stat.vs_aux = aux;
2962
2963         /*
2964          * If we are setting the vdev state to anything but an open state, then
2965          * always close the underlying device unless the device has requested
2966          * a delayed close (i.e. we're about to remove or fault the device).
2967          * Otherwise, we keep accessible but invalid devices open forever.
2968          * We don't call vdev_close() itself, because that implies some extra
2969          * checks (offline, etc) that we don't want here.  This is limited to
2970          * leaf devices, because otherwise closing the device will affect other
2971          * children.
2972          */
2973         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2974             vd->vdev_ops->vdev_op_leaf)
2975                 vd->vdev_ops->vdev_op_close(vd);
2976
2977         /*
2978          * If we have brought this vdev back into service, we need
2979          * to notify fmd so that it can gracefully repair any outstanding
2980          * cases due to a missing device.  We do this in all cases, even those
2981          * that probably don't correlate to a repaired fault.  This is sure to
2982          * catch all cases, and we let the zfs-retire agent sort it out.  If
2983          * this is a transient state it's OK, as the retire agent will
2984          * double-check the state of the vdev before repairing it.
2985          */
2986         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2987             vd->vdev_prevstate != state)
2988                 zfs_post_state_change(spa, vd);
2989
2990         if (vd->vdev_removed &&
2991             state == VDEV_STATE_CANT_OPEN &&
2992             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2993                 /*
2994                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2995                  * device was previously marked removed and someone attempted to
2996                  * reopen it.  If this failed due to a nonexistent device, then
2997                  * keep the device in the REMOVED state.  We also let this be if
2998                  * it is one of our special test online cases, which is only
2999                  * attempting to online the device and shouldn't generate an FMA
3000                  * fault.
3001                  */
3002                 vd->vdev_state = VDEV_STATE_REMOVED;
3003                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3004         } else if (state == VDEV_STATE_REMOVED) {
3005                 vd->vdev_removed = B_TRUE;
3006         } else if (state == VDEV_STATE_CANT_OPEN) {
3007                 /*
3008                  * If we fail to open a vdev during an import or recovery, we
3009                  * mark it as "not available", which signifies that it was
3010                  * never there to begin with.  Failure to open such a device
3011                  * is not considered an error.
3012                  */
3013                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3014                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3015                     vd->vdev_ops->vdev_op_leaf)
3016                         vd->vdev_not_present = 1;
3017
3018                 /*
3019                  * Post the appropriate ereport.  If the 'prevstate' field is
3020                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3021                  * that this is part of a vdev_reopen().  In this case, we don't
3022                  * want to post the ereport if the device was already in the
3023                  * CANT_OPEN state beforehand.
3024                  *
3025                  * If the 'checkremove' flag is set, then this is an attempt to
3026                  * online the device in response to an insertion event.  If we
3027                  * hit this case, then we have detected an insertion event for a
3028                  * faulted or offline device that wasn't in the removed state.
3029                  * In this scenario, we don't post an ereport because we are
3030                  * about to replace the device, or attempt an online with
3031                  * vdev_forcefault, which will generate the fault for us.
3032                  */
3033                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3034                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3035                     vd != spa->spa_root_vdev) {
3036                         const char *class;
3037
3038                         switch (aux) {
3039                         case VDEV_AUX_OPEN_FAILED:
3040                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3041                                 break;
3042                         case VDEV_AUX_CORRUPT_DATA:
3043                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3044                                 break;
3045                         case VDEV_AUX_NO_REPLICAS:
3046                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3047                                 break;
3048                         case VDEV_AUX_BAD_GUID_SUM:
3049                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3050                                 break;
3051                         case VDEV_AUX_TOO_SMALL:
3052                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3053                                 break;
3054                         case VDEV_AUX_BAD_LABEL:
3055                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3056                                 break;
3057                         default:
3058                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3059                         }
3060
3061                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3062                 }
3063
3064                 /* Erase any notion of persistent removed state */
3065                 vd->vdev_removed = B_FALSE;
3066         } else {
3067                 vd->vdev_removed = B_FALSE;
3068         }
3069
3070         if (!isopen && vd->vdev_parent)
3071                 vdev_propagate_state(vd->vdev_parent);
3072 }
3073
3074 /*
3075  * Check the vdev configuration to ensure that it's capable of supporting
3076  * a root pool.
3077  */
3078 boolean_t
3079 vdev_is_bootable(vdev_t *vd)
3080 {
3081 #if defined(__sun__) || defined(__sun)
3082         /*
3083          * Currently, we do not support RAID-Z or partial configuration.
3084          * In addition, only a single top-level vdev is allowed and none of the
3085          * leaves can be wholedisks.
3086          */
3087         int c;
3088
3089         if (!vd->vdev_ops->vdev_op_leaf) {
3090                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3091
3092                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3093                     vd->vdev_children > 1) {
3094                         return (B_FALSE);
3095                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3096                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3097                         return (B_FALSE);
3098                 }
3099         } else if (vd->vdev_wholedisk == 1) {
3100                 return (B_FALSE);
3101         }
3102
3103         for (c = 0; c < vd->vdev_children; c++) {
3104                 if (!vdev_is_bootable(vd->vdev_child[c]))
3105                         return (B_FALSE);
3106         }
3107 #endif /* __sun__ || __sun */
3108         return (B_TRUE);
3109 }
3110
3111 /*
3112  * Load the state from the original vdev tree (ovd) which
3113  * we've retrieved from the MOS config object. If the original
3114  * vdev was offline or faulted then we transfer that state to the
3115  * device in the current vdev tree (nvd).
3116  */
3117 void
3118 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3119 {
3120         int c;
3121
3122         ASSERT(nvd->vdev_top->vdev_islog);
3123         ASSERT(spa_config_held(nvd->vdev_spa,
3124             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3125         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3126
3127         for (c = 0; c < nvd->vdev_children; c++)
3128                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3129
3130         if (nvd->vdev_ops->vdev_op_leaf) {
3131                 /*
3132                  * Restore the persistent vdev state
3133                  */
3134                 nvd->vdev_offline = ovd->vdev_offline;
3135                 nvd->vdev_faulted = ovd->vdev_faulted;
3136                 nvd->vdev_degraded = ovd->vdev_degraded;
3137                 nvd->vdev_removed = ovd->vdev_removed;
3138         }
3139 }
3140
3141 /*
3142  * Determine if a log device has valid content.  If the vdev was
3143  * removed or faulted in the MOS config then we know that
3144  * the content on the log device has already been written to the pool.
3145  */
3146 boolean_t
3147 vdev_log_state_valid(vdev_t *vd)
3148 {
3149         int c;
3150
3151         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3152             !vd->vdev_removed)
3153                 return (B_TRUE);
3154
3155         for (c = 0; c < vd->vdev_children; c++)
3156                 if (vdev_log_state_valid(vd->vdev_child[c]))
3157                         return (B_TRUE);
3158
3159         return (B_FALSE);
3160 }
3161
3162 /*
3163  * Expand a vdev if possible.
3164  */
3165 void
3166 vdev_expand(vdev_t *vd, uint64_t txg)
3167 {
3168         ASSERT(vd->vdev_top == vd);
3169         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3170
3171         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3172                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3173                 vdev_config_dirty(vd);
3174         }
3175 }
3176
3177 /*
3178  * Split a vdev.
3179  */
3180 void
3181 vdev_split(vdev_t *vd)
3182 {
3183         vdev_t *cvd, *pvd = vd->vdev_parent;
3184
3185         vdev_remove_child(pvd, vd);
3186         vdev_compact_children(pvd);
3187
3188         cvd = pvd->vdev_child[0];
3189         if (pvd->vdev_children == 1) {
3190                 vdev_remove_parent(cvd);
3191                 cvd->vdev_splitting = B_TRUE;
3192         }
3193         vdev_propagate_state(cvd);
3194 }
3195
3196 #if defined(_KERNEL) && defined(HAVE_SPL)
3197 EXPORT_SYMBOL(vdev_fault);
3198 EXPORT_SYMBOL(vdev_degrade);
3199 EXPORT_SYMBOL(vdev_online);
3200 EXPORT_SYMBOL(vdev_offline);
3201 EXPORT_SYMBOL(vdev_clear);
3202
3203 module_param(zfs_scrub_limit, int, 0644);
3204 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3205 #endif