bb5024f985f566e7ab12f1dba70ab1655bc16d26
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         NULL
58 };
59
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69         vdev_ops_t *ops, **opspp;
70
71         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72                 if (strcmp(ops->vdev_op_type, type) == 0)
73                         break;
74
75         return (ops);
76 }
77
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86         uint64_t csize;
87
88         for (int c = 0; c < vd->vdev_children; c++) {
89                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90                 asize = MAX(asize, csize);
91         }
92
93         return (asize);
94 }
95
96 /*
97  * Get the minimum allocatable size. We define the allocatable size as
98  * the vdev's asize rounded to the nearest metaslab. This allows us to
99  * replace or attach devices which don't have the same physical size but
100  * can still satisfy the same number of allocations.
101  */
102 uint64_t
103 vdev_get_min_asize(vdev_t *vd)
104 {
105         vdev_t *pvd = vd->vdev_parent;
106
107         /*
108          * The our parent is NULL (inactive spare or cache) or is the root,
109          * just return our own asize.
110          */
111         if (pvd == NULL)
112                 return (vd->vdev_asize);
113
114         /*
115          * The top-level vdev just returns the allocatable size rounded
116          * to the nearest metaslab.
117          */
118         if (vd == vd->vdev_top)
119                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120
121         /*
122          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123          * so each child must provide at least 1/Nth of its asize.
124          */
125         if (pvd->vdev_ops == &vdev_raidz_ops)
126                 return (pvd->vdev_min_asize / pvd->vdev_children);
127
128         return (pvd->vdev_min_asize);
129 }
130
131 void
132 vdev_set_min_asize(vdev_t *vd)
133 {
134         vd->vdev_min_asize = vdev_get_min_asize(vd);
135
136         for (int c = 0; c < vd->vdev_children; c++)
137                 vdev_set_min_asize(vd->vdev_child[c]);
138 }
139
140 vdev_t *
141 vdev_lookup_top(spa_t *spa, uint64_t vdev)
142 {
143         vdev_t *rvd = spa->spa_root_vdev;
144
145         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146
147         if (vdev < rvd->vdev_children) {
148                 ASSERT(rvd->vdev_child[vdev] != NULL);
149                 return (rvd->vdev_child[vdev]);
150         }
151
152         return (NULL);
153 }
154
155 vdev_t *
156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157 {
158         vdev_t *mvd;
159
160         if (vd->vdev_guid == guid)
161                 return (vd);
162
163         for (int c = 0; c < vd->vdev_children; c++)
164                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165                     NULL)
166                         return (mvd);
167
168         return (NULL);
169 }
170
171 void
172 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173 {
174         size_t oldsize, newsize;
175         uint64_t id = cvd->vdev_id;
176         vdev_t **newchild;
177
178         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179         ASSERT(cvd->vdev_parent == NULL);
180
181         cvd->vdev_parent = pvd;
182
183         if (pvd == NULL)
184                 return;
185
186         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187
188         oldsize = pvd->vdev_children * sizeof (vdev_t *);
189         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190         newsize = pvd->vdev_children * sizeof (vdev_t *);
191
192         newchild = kmem_zalloc(newsize, KM_SLEEP);
193         if (pvd->vdev_child != NULL) {
194                 bcopy(pvd->vdev_child, newchild, oldsize);
195                 kmem_free(pvd->vdev_child, oldsize);
196         }
197
198         pvd->vdev_child = newchild;
199         pvd->vdev_child[id] = cvd;
200
201         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203
204         /*
205          * Walk up all ancestors to update guid sum.
206          */
207         for (; pvd != NULL; pvd = pvd->vdev_parent)
208                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209
210         if (cvd->vdev_ops->vdev_op_leaf)
211                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212 }
213
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217         int c;
218         uint_t id = cvd->vdev_id;
219
220         ASSERT(cvd->vdev_parent == pvd);
221
222         if (pvd == NULL)
223                 return;
224
225         ASSERT(id < pvd->vdev_children);
226         ASSERT(pvd->vdev_child[id] == cvd);
227
228         pvd->vdev_child[id] = NULL;
229         cvd->vdev_parent = NULL;
230
231         for (c = 0; c < pvd->vdev_children; c++)
232                 if (pvd->vdev_child[c])
233                         break;
234
235         if (c == pvd->vdev_children) {
236                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237                 pvd->vdev_child = NULL;
238                 pvd->vdev_children = 0;
239         }
240
241         /*
242          * Walk up all ancestors to update guid sum.
243          */
244         for (; pvd != NULL; pvd = pvd->vdev_parent)
245                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246
247         if (cvd->vdev_ops->vdev_op_leaf)
248                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260
261         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262
263         for (int c = newc = 0; c < oldc; c++)
264                 if (pvd->vdev_child[c])
265                         newc++;
266
267         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268
269         for (int c = newc = 0; c < oldc; c++) {
270                 if ((cvd = pvd->vdev_child[c]) != NULL) {
271                         newchild[newc] = cvd;
272                         cvd->vdev_id = newc++;
273                 }
274         }
275
276         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277         pvd->vdev_child = newchild;
278         pvd->vdev_children = newc;
279 }
280
281 /*
282  * Allocate and minimally initialize a vdev_t.
283  */
284 static vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287         vdev_t *vd;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         while (guid == 0 || spa_guid_exists(guid, 0))
303                                 guid = spa_get_random(-1ULL);
304                 } else {
305                         /*
306                          * Any other vdev's guid must be unique within the pool.
307                          */
308                         while (guid == 0 ||
309                             spa_guid_exists(spa_guid(spa), guid))
310                                 guid = spa_get_random(-1ULL);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321
322         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325         for (int t = 0; t < DTL_TYPES; t++) {
326                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327                     &vd->vdev_dtl_lock);
328         }
329         txg_list_create(&vd->vdev_ms_list,
330             offsetof(struct metaslab, ms_txg_node));
331         txg_list_create(&vd->vdev_dtl_list,
332             offsetof(struct vdev, vdev_dtl_node));
333         vd->vdev_stat.vs_timestamp = gethrtime();
334         vdev_queue_init(vd);
335         vdev_cache_init(vd);
336
337         return (vd);
338 }
339
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349         vdev_ops_t *ops;
350         char *type;
351         uint64_t guid = 0, islog, nparity;
352         vdev_t *vd;
353
354         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357                 return (EINVAL);
358
359         if ((ops = vdev_getops(type)) == NULL)
360                 return (EINVAL);
361
362         /*
363          * If this is a load, get the vdev guid from the nvlist.
364          * Otherwise, vdev_alloc_common() will generate one for us.
365          */
366         if (alloctype == VDEV_ALLOC_LOAD) {
367                 uint64_t label_id;
368
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370                     label_id != id)
371                         return (EINVAL);
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         } else if (alloctype == VDEV_ALLOC_SPARE) {
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         }
385
386         /*
387          * The first allocated vdev must be of type 'root'.
388          */
389         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390                 return (EINVAL);
391
392         /*
393          * Determine whether we're a log vdev.
394          */
395         islog = 0;
396         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398                 return (ENOTSUP);
399
400         /*
401          * Set the nparity property for RAID-Z vdevs.
402          */
403         nparity = -1ULL;
404         if (ops == &vdev_raidz_ops) {
405                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406                     &nparity) == 0) {
407                         /*
408                          * Currently, we can only support 3 parity devices.
409                          */
410                         if (nparity == 0 || nparity > 3)
411                                 return (EINVAL);
412                         /*
413                          * Previous versions could only support 1 or 2 parity
414                          * device.
415                          */
416                         if (nparity > 1 &&
417                             spa_version(spa) < SPA_VERSION_RAIDZ2)
418                                 return (ENOTSUP);
419                         if (nparity > 2 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ3)
421                                 return (ENOTSUP);
422                 } else {
423                         /*
424                          * We require the parity to be specified for SPAs that
425                          * support multiple parity levels.
426                          */
427                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428                                 return (EINVAL);
429                         /*
430                          * Otherwise, we default to 1 parity device for RAID-Z.
431                          */
432                         nparity = 1;
433                 }
434         } else {
435                 nparity = 0;
436         }
437         ASSERT(nparity != -1ULL);
438
439         vd = vdev_alloc_common(spa, id, guid, ops);
440
441         vd->vdev_islog = islog;
442         vd->vdev_nparity = nparity;
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445                 vd->vdev_path = spa_strdup(vd->vdev_path);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449             &vd->vdev_physpath) == 0)
450                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
453
454         /*
455          * Set the whole_disk property.  If it's not specified, leave the value
456          * as -1.
457          */
458         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459             &vd->vdev_wholedisk) != 0)
460                 vd->vdev_wholedisk = -1ULL;
461
462         /*
463          * Look for the 'not present' flag.  This will only be set if the device
464          * was not present at the time of import.
465          */
466         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467             &vd->vdev_not_present);
468
469         /*
470          * Get the alignment requirement.
471          */
472         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474         /*
475          * If we're a top-level vdev, try to load the allocation parameters.
476          */
477         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
478                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479                     &vd->vdev_ms_array);
480                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481                     &vd->vdev_ms_shift);
482                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483                     &vd->vdev_asize);
484         }
485
486         /*
487          * If we're a leaf vdev, try to load the DTL object and other state.
488          */
489         if (vd->vdev_ops->vdev_op_leaf &&
490             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
491             alloctype == VDEV_ALLOC_ROOTPOOL)) {
492                 if (alloctype == VDEV_ALLOC_LOAD) {
493                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
494                             &vd->vdev_dtl_smo.smo_object);
495                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
496                             &vd->vdev_unspare);
497                 }
498
499                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500                         uint64_t spare = 0;
501
502                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
503                             &spare) == 0 && spare)
504                                 spa_spare_add(vd);
505                 }
506
507                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
508                     &vd->vdev_offline);
509
510                 /*
511                  * When importing a pool, we want to ignore the persistent fault
512                  * state, as the diagnosis made on another system may not be
513                  * valid in the current context.
514                  */
515                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
517                             &vd->vdev_faulted);
518                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
519                             &vd->vdev_degraded);
520                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
521                             &vd->vdev_removed);
522                 }
523         }
524
525         /*
526          * Add ourselves to the parent's list of children.
527          */
528         vdev_add_child(parent, vd);
529
530         *vdp = vd;
531
532         return (0);
533 }
534
535 void
536 vdev_free(vdev_t *vd)
537 {
538         spa_t *spa = vd->vdev_spa;
539
540         /*
541          * vdev_free() implies closing the vdev first.  This is simpler than
542          * trying to ensure complicated semantics for all callers.
543          */
544         vdev_close(vd);
545
546         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
547
548         /*
549          * Free all children.
550          */
551         for (int c = 0; c < vd->vdev_children; c++)
552                 vdev_free(vd->vdev_child[c]);
553
554         ASSERT(vd->vdev_child == NULL);
555         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
556
557         /*
558          * Discard allocation state.
559          */
560         if (vd == vd->vdev_top)
561                 vdev_metaslab_fini(vd);
562
563         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
564         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
565         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
566
567         /*
568          * Remove this vdev from its parent's child list.
569          */
570         vdev_remove_child(vd->vdev_parent, vd);
571
572         ASSERT(vd->vdev_parent == NULL);
573
574         /*
575          * Clean up vdev structure.
576          */
577         vdev_queue_fini(vd);
578         vdev_cache_fini(vd);
579
580         if (vd->vdev_path)
581                 spa_strfree(vd->vdev_path);
582         if (vd->vdev_devid)
583                 spa_strfree(vd->vdev_devid);
584         if (vd->vdev_physpath)
585                 spa_strfree(vd->vdev_physpath);
586         if (vd->vdev_fru)
587                 spa_strfree(vd->vdev_fru);
588
589         if (vd->vdev_isspare)
590                 spa_spare_remove(vd);
591         if (vd->vdev_isl2cache)
592                 spa_l2cache_remove(vd);
593
594         txg_list_destroy(&vd->vdev_ms_list);
595         txg_list_destroy(&vd->vdev_dtl_list);
596
597         mutex_enter(&vd->vdev_dtl_lock);
598         for (int t = 0; t < DTL_TYPES; t++) {
599                 space_map_unload(&vd->vdev_dtl[t]);
600                 space_map_destroy(&vd->vdev_dtl[t]);
601         }
602         mutex_exit(&vd->vdev_dtl_lock);
603
604         mutex_destroy(&vd->vdev_dtl_lock);
605         mutex_destroy(&vd->vdev_stat_lock);
606         mutex_destroy(&vd->vdev_probe_lock);
607
608         if (vd == spa->spa_root_vdev)
609                 spa->spa_root_vdev = NULL;
610
611         kmem_free(vd, sizeof (vdev_t));
612 }
613
614 /*
615  * Transfer top-level vdev state from svd to tvd.
616  */
617 static void
618 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
619 {
620         spa_t *spa = svd->vdev_spa;
621         metaslab_t *msp;
622         vdev_t *vd;
623         int t;
624
625         ASSERT(tvd == tvd->vdev_top);
626
627         tvd->vdev_ms_array = svd->vdev_ms_array;
628         tvd->vdev_ms_shift = svd->vdev_ms_shift;
629         tvd->vdev_ms_count = svd->vdev_ms_count;
630
631         svd->vdev_ms_array = 0;
632         svd->vdev_ms_shift = 0;
633         svd->vdev_ms_count = 0;
634
635         tvd->vdev_mg = svd->vdev_mg;
636         tvd->vdev_ms = svd->vdev_ms;
637
638         svd->vdev_mg = NULL;
639         svd->vdev_ms = NULL;
640
641         if (tvd->vdev_mg != NULL)
642                 tvd->vdev_mg->mg_vd = tvd;
643
644         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
645         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
646         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
647
648         svd->vdev_stat.vs_alloc = 0;
649         svd->vdev_stat.vs_space = 0;
650         svd->vdev_stat.vs_dspace = 0;
651
652         for (t = 0; t < TXG_SIZE; t++) {
653                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
654                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
655                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
656                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
657                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
658                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
659         }
660
661         if (list_link_active(&svd->vdev_config_dirty_node)) {
662                 vdev_config_clean(svd);
663                 vdev_config_dirty(tvd);
664         }
665
666         if (list_link_active(&svd->vdev_state_dirty_node)) {
667                 vdev_state_clean(svd);
668                 vdev_state_dirty(tvd);
669         }
670
671         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
672         svd->vdev_deflate_ratio = 0;
673
674         tvd->vdev_islog = svd->vdev_islog;
675         svd->vdev_islog = 0;
676 }
677
678 static void
679 vdev_top_update(vdev_t *tvd, vdev_t *vd)
680 {
681         if (vd == NULL)
682                 return;
683
684         vd->vdev_top = tvd;
685
686         for (int c = 0; c < vd->vdev_children; c++)
687                 vdev_top_update(tvd, vd->vdev_child[c]);
688 }
689
690 /*
691  * Add a mirror/replacing vdev above an existing vdev.
692  */
693 vdev_t *
694 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
695 {
696         spa_t *spa = cvd->vdev_spa;
697         vdev_t *pvd = cvd->vdev_parent;
698         vdev_t *mvd;
699
700         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
701
702         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
703
704         mvd->vdev_asize = cvd->vdev_asize;
705         mvd->vdev_min_asize = cvd->vdev_min_asize;
706         mvd->vdev_ashift = cvd->vdev_ashift;
707         mvd->vdev_state = cvd->vdev_state;
708
709         vdev_remove_child(pvd, cvd);
710         vdev_add_child(pvd, mvd);
711         cvd->vdev_id = mvd->vdev_children;
712         vdev_add_child(mvd, cvd);
713         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
714
715         if (mvd == mvd->vdev_top)
716                 vdev_top_transfer(cvd, mvd);
717
718         return (mvd);
719 }
720
721 /*
722  * Remove a 1-way mirror/replacing vdev from the tree.
723  */
724 void
725 vdev_remove_parent(vdev_t *cvd)
726 {
727         vdev_t *mvd = cvd->vdev_parent;
728         vdev_t *pvd = mvd->vdev_parent;
729
730         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
731
732         ASSERT(mvd->vdev_children == 1);
733         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
734             mvd->vdev_ops == &vdev_replacing_ops ||
735             mvd->vdev_ops == &vdev_spare_ops);
736         cvd->vdev_ashift = mvd->vdev_ashift;
737
738         vdev_remove_child(mvd, cvd);
739         vdev_remove_child(pvd, mvd);
740
741         /*
742          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
743          * Otherwise, we could have detached an offline device, and when we
744          * go to import the pool we'll think we have two top-level vdevs,
745          * instead of a different version of the same top-level vdev.
746          */
747         if (mvd->vdev_top == mvd) {
748                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
749                 cvd->vdev_guid += guid_delta;
750                 cvd->vdev_guid_sum += guid_delta;
751         }
752         cvd->vdev_id = mvd->vdev_id;
753         vdev_add_child(pvd, cvd);
754         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756         if (cvd == cvd->vdev_top)
757                 vdev_top_transfer(mvd, cvd);
758
759         ASSERT(mvd->vdev_children == 0);
760         vdev_free(mvd);
761 }
762
763 int
764 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
765 {
766         spa_t *spa = vd->vdev_spa;
767         objset_t *mos = spa->spa_meta_objset;
768         metaslab_class_t *mc;
769         uint64_t m;
770         uint64_t oldc = vd->vdev_ms_count;
771         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
772         metaslab_t **mspp;
773         int error;
774
775         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
776                 return (0);
777
778         /*
779          * Compute the raidz-deflation ratio.  Note, we hard-code
780          * in 128k (1 << 17) because it is the current "typical" blocksize.
781          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
782          * or we will inconsistently account for existing bp's.
783          */
784         vd->vdev_deflate_ratio = (1 << 17) /
785             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
786
787         ASSERT(oldc <= newc);
788
789         if (vd->vdev_islog)
790                 mc = spa->spa_log_class;
791         else
792                 mc = spa->spa_normal_class;
793
794         if (vd->vdev_mg == NULL)
795                 vd->vdev_mg = metaslab_group_create(mc, vd);
796
797         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
798
799         if (oldc != 0) {
800                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
801                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
802         }
803
804         vd->vdev_ms = mspp;
805         vd->vdev_ms_count = newc;
806
807         for (m = oldc; m < newc; m++) {
808                 space_map_obj_t smo = { 0, 0, 0 };
809                 if (txg == 0) {
810                         uint64_t object = 0;
811                         error = dmu_read(mos, vd->vdev_ms_array,
812                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
813                             DMU_READ_PREFETCH);
814                         if (error)
815                                 return (error);
816                         if (object != 0) {
817                                 dmu_buf_t *db;
818                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
819                                 if (error)
820                                         return (error);
821                                 ASSERT3U(db->db_size, >=, sizeof (smo));
822                                 bcopy(db->db_data, &smo, sizeof (smo));
823                                 ASSERT3U(smo.smo_object, ==, object);
824                                 dmu_buf_rele(db, FTAG);
825                         }
826                 }
827                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
828                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
829         }
830
831         return (0);
832 }
833
834 void
835 vdev_metaslab_fini(vdev_t *vd)
836 {
837         uint64_t m;
838         uint64_t count = vd->vdev_ms_count;
839
840         if (vd->vdev_ms != NULL) {
841                 for (m = 0; m < count; m++)
842                         if (vd->vdev_ms[m] != NULL)
843                                 metaslab_fini(vd->vdev_ms[m]);
844                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
845                 vd->vdev_ms = NULL;
846         }
847 }
848
849 typedef struct vdev_probe_stats {
850         boolean_t       vps_readable;
851         boolean_t       vps_writeable;
852         int             vps_flags;
853 } vdev_probe_stats_t;
854
855 static void
856 vdev_probe_done(zio_t *zio)
857 {
858         spa_t *spa = zio->io_spa;
859         vdev_t *vd = zio->io_vd;
860         vdev_probe_stats_t *vps = zio->io_private;
861
862         ASSERT(vd->vdev_probe_zio != NULL);
863
864         if (zio->io_type == ZIO_TYPE_READ) {
865                 if (zio->io_error == 0)
866                         vps->vps_readable = 1;
867                 if (zio->io_error == 0 && spa_writeable(spa)) {
868                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
869                             zio->io_offset, zio->io_size, zio->io_data,
870                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
871                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
872                 } else {
873                         zio_buf_free(zio->io_data, zio->io_size);
874                 }
875         } else if (zio->io_type == ZIO_TYPE_WRITE) {
876                 if (zio->io_error == 0)
877                         vps->vps_writeable = 1;
878                 zio_buf_free(zio->io_data, zio->io_size);
879         } else if (zio->io_type == ZIO_TYPE_NULL) {
880                 zio_t *pio;
881
882                 vd->vdev_cant_read |= !vps->vps_readable;
883                 vd->vdev_cant_write |= !vps->vps_writeable;
884
885                 if (vdev_readable(vd) &&
886                     (vdev_writeable(vd) || !spa_writeable(spa))) {
887                         zio->io_error = 0;
888                 } else {
889                         ASSERT(zio->io_error != 0);
890                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
891                             spa, vd, NULL, 0, 0);
892                         zio->io_error = ENXIO;
893                 }
894
895                 mutex_enter(&vd->vdev_probe_lock);
896                 ASSERT(vd->vdev_probe_zio == zio);
897                 vd->vdev_probe_zio = NULL;
898                 mutex_exit(&vd->vdev_probe_lock);
899
900                 while ((pio = zio_walk_parents(zio)) != NULL)
901                         if (!vdev_accessible(vd, pio))
902                                 pio->io_error = ENXIO;
903
904                 kmem_free(vps, sizeof (*vps));
905         }
906 }
907
908 /*
909  * Determine whether this device is accessible by reading and writing
910  * to several known locations: the pad regions of each vdev label
911  * but the first (which we leave alone in case it contains a VTOC).
912  */
913 zio_t *
914 vdev_probe(vdev_t *vd, zio_t *zio)
915 {
916         spa_t *spa = vd->vdev_spa;
917         vdev_probe_stats_t *vps = NULL;
918         zio_t *pio;
919
920         ASSERT(vd->vdev_ops->vdev_op_leaf);
921
922         /*
923          * Don't probe the probe.
924          */
925         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
926                 return (NULL);
927
928         /*
929          * To prevent 'probe storms' when a device fails, we create
930          * just one probe i/o at a time.  All zios that want to probe
931          * this vdev will become parents of the probe io.
932          */
933         mutex_enter(&vd->vdev_probe_lock);
934
935         if ((pio = vd->vdev_probe_zio) == NULL) {
936                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
937
938                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
939                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
940                     ZIO_FLAG_TRYHARD;
941
942                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
943                         /*
944                          * vdev_cant_read and vdev_cant_write can only
945                          * transition from TRUE to FALSE when we have the
946                          * SCL_ZIO lock as writer; otherwise they can only
947                          * transition from FALSE to TRUE.  This ensures that
948                          * any zio looking at these values can assume that
949                          * failures persist for the life of the I/O.  That's
950                          * important because when a device has intermittent
951                          * connectivity problems, we want to ensure that
952                          * they're ascribed to the device (ENXIO) and not
953                          * the zio (EIO).
954                          *
955                          * Since we hold SCL_ZIO as writer here, clear both
956                          * values so the probe can reevaluate from first
957                          * principles.
958                          */
959                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
960                         vd->vdev_cant_read = B_FALSE;
961                         vd->vdev_cant_write = B_FALSE;
962                 }
963
964                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
965                     vdev_probe_done, vps,
966                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
967
968                 if (zio != NULL) {
969                         vd->vdev_probe_wanted = B_TRUE;
970                         spa_async_request(spa, SPA_ASYNC_PROBE);
971                 }
972         }
973
974         if (zio != NULL)
975                 zio_add_child(zio, pio);
976
977         mutex_exit(&vd->vdev_probe_lock);
978
979         if (vps == NULL) {
980                 ASSERT(zio != NULL);
981                 return (NULL);
982         }
983
984         for (int l = 1; l < VDEV_LABELS; l++) {
985                 zio_nowait(zio_read_phys(pio, vd,
986                     vdev_label_offset(vd->vdev_psize, l,
987                     offsetof(vdev_label_t, vl_pad2)),
988                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
989                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
990                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
991         }
992
993         if (zio == NULL)
994                 return (pio);
995
996         zio_nowait(pio);
997         return (NULL);
998 }
999
1000 static void
1001 vdev_open_child(void *arg)
1002 {
1003         vdev_t *vd = arg;
1004
1005         vd->vdev_open_thread = curthread;
1006         vd->vdev_open_error = vdev_open(vd);
1007         vd->vdev_open_thread = NULL;
1008 }
1009
1010 void
1011 vdev_open_children(vdev_t *vd)
1012 {
1013         taskq_t *tq;
1014         int children = vd->vdev_children;
1015
1016         tq = taskq_create("vdev_open", children, minclsyspri,
1017             children, children, TASKQ_PREPOPULATE);
1018
1019         for (int c = 0; c < children; c++)
1020                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1021                     TQ_SLEEP) != NULL);
1022
1023         taskq_destroy(tq);
1024 }
1025
1026 /*
1027  * Prepare a virtual device for access.
1028  */
1029 int
1030 vdev_open(vdev_t *vd)
1031 {
1032         spa_t *spa = vd->vdev_spa;
1033         int error;
1034         uint64_t osize = 0;
1035         uint64_t asize, psize;
1036         uint64_t ashift = 0;
1037
1038         ASSERT(vd->vdev_open_thread == curthread ||
1039             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1040         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1041             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1042             vd->vdev_state == VDEV_STATE_OFFLINE);
1043
1044         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1045         vd->vdev_cant_read = B_FALSE;
1046         vd->vdev_cant_write = B_FALSE;
1047         vd->vdev_min_asize = vdev_get_min_asize(vd);
1048
1049         if (!vd->vdev_removed && vd->vdev_faulted) {
1050                 ASSERT(vd->vdev_children == 0);
1051                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1052                     VDEV_AUX_ERR_EXCEEDED);
1053                 return (ENXIO);
1054         } else if (vd->vdev_offline) {
1055                 ASSERT(vd->vdev_children == 0);
1056                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1057                 return (ENXIO);
1058         }
1059
1060         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1061
1062         if (zio_injection_enabled && error == 0)
1063                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1064
1065         if (error) {
1066                 if (vd->vdev_removed &&
1067                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1068                         vd->vdev_removed = B_FALSE;
1069
1070                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1071                     vd->vdev_stat.vs_aux);
1072                 return (error);
1073         }
1074
1075         vd->vdev_removed = B_FALSE;
1076
1077         if (vd->vdev_degraded) {
1078                 ASSERT(vd->vdev_children == 0);
1079                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1080                     VDEV_AUX_ERR_EXCEEDED);
1081         } else {
1082                 vd->vdev_state = VDEV_STATE_HEALTHY;
1083         }
1084
1085         for (int c = 0; c < vd->vdev_children; c++) {
1086                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1087                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1088                             VDEV_AUX_NONE);
1089                         break;
1090                 }
1091         }
1092
1093         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1094
1095         if (vd->vdev_children == 0) {
1096                 if (osize < SPA_MINDEVSIZE) {
1097                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1098                             VDEV_AUX_TOO_SMALL);
1099                         return (EOVERFLOW);
1100                 }
1101                 psize = osize;
1102                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1103         } else {
1104                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1105                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1106                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1107                             VDEV_AUX_TOO_SMALL);
1108                         return (EOVERFLOW);
1109                 }
1110                 psize = 0;
1111                 asize = osize;
1112         }
1113
1114         vd->vdev_psize = psize;
1115
1116         /*
1117          * Make sure the allocatable size hasn't shrunk.
1118          */
1119         if (asize < vd->vdev_min_asize) {
1120                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1121                     VDEV_AUX_BAD_LABEL);
1122                 return (EINVAL);
1123         }
1124
1125         if (vd->vdev_asize == 0) {
1126                 /*
1127                  * This is the first-ever open, so use the computed values.
1128                  * For testing purposes, a higher ashift can be requested.
1129                  */
1130                 vd->vdev_asize = asize;
1131                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1132         } else {
1133                 /*
1134                  * Make sure the alignment requirement hasn't increased.
1135                  */
1136                 if (ashift > vd->vdev_top->vdev_ashift) {
1137                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1138                             VDEV_AUX_BAD_LABEL);
1139                         return (EINVAL);
1140                 }
1141         }
1142
1143         /*
1144          * If all children are healthy and the asize has increased,
1145          * then we've experienced dynamic LUN growth.  If automatic
1146          * expansion is enabled then use the additional space.
1147          */
1148         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1149             (vd->vdev_expanding || spa->spa_autoexpand))
1150                 vd->vdev_asize = asize;
1151
1152         vdev_set_min_asize(vd);
1153
1154         /*
1155          * Ensure we can issue some IO before declaring the
1156          * vdev open for business.
1157          */
1158         if (vd->vdev_ops->vdev_op_leaf &&
1159             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1160                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1161                     VDEV_AUX_IO_FAILURE);
1162                 return (error);
1163         }
1164
1165         /*
1166          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1167          * resilver.  But don't do this if we are doing a reopen for a scrub,
1168          * since this would just restart the scrub we are already doing.
1169          */
1170         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1171             vdev_resilver_needed(vd, NULL, NULL))
1172                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1173
1174         return (0);
1175 }
1176
1177 /*
1178  * Called once the vdevs are all opened, this routine validates the label
1179  * contents.  This needs to be done before vdev_load() so that we don't
1180  * inadvertently do repair I/Os to the wrong device.
1181  *
1182  * This function will only return failure if one of the vdevs indicates that it
1183  * has since been destroyed or exported.  This is only possible if
1184  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1185  * will be updated but the function will return 0.
1186  */
1187 int
1188 vdev_validate(vdev_t *vd)
1189 {
1190         spa_t *spa = vd->vdev_spa;
1191         nvlist_t *label;
1192         uint64_t guid, top_guid;
1193         uint64_t state;
1194
1195         for (int c = 0; c < vd->vdev_children; c++)
1196                 if (vdev_validate(vd->vdev_child[c]) != 0)
1197                         return (EBADF);
1198
1199         /*
1200          * If the device has already failed, or was marked offline, don't do
1201          * any further validation.  Otherwise, label I/O will fail and we will
1202          * overwrite the previous state.
1203          */
1204         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1205
1206                 if ((label = vdev_label_read_config(vd)) == NULL) {
1207                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208                             VDEV_AUX_BAD_LABEL);
1209                         return (0);
1210                 }
1211
1212                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1213                     &guid) != 0 || guid != spa_guid(spa)) {
1214                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1215                             VDEV_AUX_CORRUPT_DATA);
1216                         nvlist_free(label);
1217                         return (0);
1218                 }
1219
1220                 /*
1221                  * If this vdev just became a top-level vdev because its
1222                  * sibling was detached, it will have adopted the parent's
1223                  * vdev guid -- but the label may or may not be on disk yet.
1224                  * Fortunately, either version of the label will have the
1225                  * same top guid, so if we're a top-level vdev, we can
1226                  * safely compare to that instead.
1227                  */
1228                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1229                     &guid) != 0 ||
1230                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1231                     &top_guid) != 0 ||
1232                     (vd->vdev_guid != guid &&
1233                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1234                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1235                             VDEV_AUX_CORRUPT_DATA);
1236                         nvlist_free(label);
1237                         return (0);
1238                 }
1239
1240                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1241                     &state) != 0) {
1242                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1243                             VDEV_AUX_CORRUPT_DATA);
1244                         nvlist_free(label);
1245                         return (0);
1246                 }
1247
1248                 nvlist_free(label);
1249
1250                 /*
1251                  * If spa->spa_load_verbatim is true, no need to check the
1252                  * state of the pool.
1253                  */
1254                 if (!spa->spa_load_verbatim &&
1255                     spa->spa_load_state == SPA_LOAD_OPEN &&
1256                     state != POOL_STATE_ACTIVE)
1257                         return (EBADF);
1258
1259                 /*
1260                  * If we were able to open and validate a vdev that was
1261                  * previously marked permanently unavailable, clear that state
1262                  * now.
1263                  */
1264                 if (vd->vdev_not_present)
1265                         vd->vdev_not_present = 0;
1266         }
1267
1268         return (0);
1269 }
1270
1271 /*
1272  * Close a virtual device.
1273  */
1274 void
1275 vdev_close(vdev_t *vd)
1276 {
1277         spa_t *spa = vd->vdev_spa;
1278
1279         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1280
1281         vd->vdev_ops->vdev_op_close(vd);
1282
1283         vdev_cache_purge(vd);
1284
1285         /*
1286          * We record the previous state before we close it, so that if we are
1287          * doing a reopen(), we don't generate FMA ereports if we notice that
1288          * it's still faulted.
1289          */
1290         vd->vdev_prevstate = vd->vdev_state;
1291
1292         if (vd->vdev_offline)
1293                 vd->vdev_state = VDEV_STATE_OFFLINE;
1294         else
1295                 vd->vdev_state = VDEV_STATE_CLOSED;
1296         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1297 }
1298
1299 void
1300 vdev_reopen(vdev_t *vd)
1301 {
1302         spa_t *spa = vd->vdev_spa;
1303
1304         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1305
1306         vdev_close(vd);
1307         (void) vdev_open(vd);
1308
1309         /*
1310          * Call vdev_validate() here to make sure we have the same device.
1311          * Otherwise, a device with an invalid label could be successfully
1312          * opened in response to vdev_reopen().
1313          */
1314         if (vd->vdev_aux) {
1315                 (void) vdev_validate_aux(vd);
1316                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1317                     vd->vdev_aux == &spa->spa_l2cache &&
1318                     !l2arc_vdev_present(vd))
1319                         l2arc_add_vdev(spa, vd);
1320         } else {
1321                 (void) vdev_validate(vd);
1322         }
1323
1324         /*
1325          * Reassess parent vdev's health.
1326          */
1327         vdev_propagate_state(vd);
1328 }
1329
1330 int
1331 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1332 {
1333         int error;
1334
1335         /*
1336          * Normally, partial opens (e.g. of a mirror) are allowed.
1337          * For a create, however, we want to fail the request if
1338          * there are any components we can't open.
1339          */
1340         error = vdev_open(vd);
1341
1342         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1343                 vdev_close(vd);
1344                 return (error ? error : ENXIO);
1345         }
1346
1347         /*
1348          * Recursively initialize all labels.
1349          */
1350         if ((error = vdev_label_init(vd, txg, isreplacing ?
1351             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1352                 vdev_close(vd);
1353                 return (error);
1354         }
1355
1356         return (0);
1357 }
1358
1359 void
1360 vdev_metaslab_set_size(vdev_t *vd)
1361 {
1362         /*
1363          * Aim for roughly 200 metaslabs per vdev.
1364          */
1365         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1366         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1367 }
1368
1369 void
1370 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1371 {
1372         ASSERT(vd == vd->vdev_top);
1373         ASSERT(ISP2(flags));
1374
1375         if (flags & VDD_METASLAB)
1376                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1377
1378         if (flags & VDD_DTL)
1379                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1380
1381         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1382 }
1383
1384 /*
1385  * DTLs.
1386  *
1387  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1388  * the vdev has less than perfect replication.  There are three kinds of DTL:
1389  *
1390  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1391  *
1392  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1393  *
1394  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1395  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1396  *      txgs that was scrubbed.
1397  *
1398  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1399  *      persistent errors or just some device being offline.
1400  *      Unlike the other three, the DTL_OUTAGE map is not generally
1401  *      maintained; it's only computed when needed, typically to
1402  *      determine whether a device can be detached.
1403  *
1404  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1405  * either has the data or it doesn't.
1406  *
1407  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1408  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1409  * if any child is less than fully replicated, then so is its parent.
1410  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1411  * comprising only those txgs which appear in 'maxfaults' or more children;
1412  * those are the txgs we don't have enough replication to read.  For example,
1413  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1414  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1415  * two child DTL_MISSING maps.
1416  *
1417  * It should be clear from the above that to compute the DTLs and outage maps
1418  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1419  * Therefore, that is all we keep on disk.  When loading the pool, or after
1420  * a configuration change, we generate all other DTLs from first principles.
1421  */
1422 void
1423 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1424 {
1425         space_map_t *sm = &vd->vdev_dtl[t];
1426
1427         ASSERT(t < DTL_TYPES);
1428         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1429
1430         mutex_enter(sm->sm_lock);
1431         if (!space_map_contains(sm, txg, size))
1432                 space_map_add(sm, txg, size);
1433         mutex_exit(sm->sm_lock);
1434 }
1435
1436 boolean_t
1437 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1438 {
1439         space_map_t *sm = &vd->vdev_dtl[t];
1440         boolean_t dirty = B_FALSE;
1441
1442         ASSERT(t < DTL_TYPES);
1443         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1444
1445         mutex_enter(sm->sm_lock);
1446         if (sm->sm_space != 0)
1447                 dirty = space_map_contains(sm, txg, size);
1448         mutex_exit(sm->sm_lock);
1449
1450         return (dirty);
1451 }
1452
1453 boolean_t
1454 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1455 {
1456         space_map_t *sm = &vd->vdev_dtl[t];
1457         boolean_t empty;
1458
1459         mutex_enter(sm->sm_lock);
1460         empty = (sm->sm_space == 0);
1461         mutex_exit(sm->sm_lock);
1462
1463         return (empty);
1464 }
1465
1466 /*
1467  * Reassess DTLs after a config change or scrub completion.
1468  */
1469 void
1470 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1471 {
1472         spa_t *spa = vd->vdev_spa;
1473         avl_tree_t reftree;
1474         int minref;
1475
1476         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1477
1478         for (int c = 0; c < vd->vdev_children; c++)
1479                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1480                     scrub_txg, scrub_done);
1481
1482         if (vd == spa->spa_root_vdev)
1483                 return;
1484
1485         if (vd->vdev_ops->vdev_op_leaf) {
1486                 mutex_enter(&vd->vdev_dtl_lock);
1487                 if (scrub_txg != 0 &&
1488                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1489                         /* XXX should check scrub_done? */
1490                         /*
1491                          * We completed a scrub up to scrub_txg.  If we
1492                          * did it without rebooting, then the scrub dtl
1493                          * will be valid, so excise the old region and
1494                          * fold in the scrub dtl.  Otherwise, leave the
1495                          * dtl as-is if there was an error.
1496                          *
1497                          * There's little trick here: to excise the beginning
1498                          * of the DTL_MISSING map, we put it into a reference
1499                          * tree and then add a segment with refcnt -1 that
1500                          * covers the range [0, scrub_txg).  This means
1501                          * that each txg in that range has refcnt -1 or 0.
1502                          * We then add DTL_SCRUB with a refcnt of 2, so that
1503                          * entries in the range [0, scrub_txg) will have a
1504                          * positive refcnt -- either 1 or 2.  We then convert
1505                          * the reference tree into the new DTL_MISSING map.
1506                          */
1507                         space_map_ref_create(&reftree);
1508                         space_map_ref_add_map(&reftree,
1509                             &vd->vdev_dtl[DTL_MISSING], 1);
1510                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1511                         space_map_ref_add_map(&reftree,
1512                             &vd->vdev_dtl[DTL_SCRUB], 2);
1513                         space_map_ref_generate_map(&reftree,
1514                             &vd->vdev_dtl[DTL_MISSING], 1);
1515                         space_map_ref_destroy(&reftree);
1516                 }
1517                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1518                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1519                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1520                 if (scrub_done)
1521                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1522                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1523                 if (!vdev_readable(vd))
1524                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1525                 else
1526                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1527                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1528                 mutex_exit(&vd->vdev_dtl_lock);
1529
1530                 if (txg != 0)
1531                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1532                 return;
1533         }
1534
1535         mutex_enter(&vd->vdev_dtl_lock);
1536         for (int t = 0; t < DTL_TYPES; t++) {
1537                 if (t == DTL_SCRUB)
1538                         continue;                       /* leaf vdevs only */
1539                 if (t == DTL_PARTIAL)
1540                         minref = 1;                     /* i.e. non-zero */
1541                 else if (vd->vdev_nparity != 0)
1542                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1543                 else
1544                         minref = vd->vdev_children;     /* any kind of mirror */
1545                 space_map_ref_create(&reftree);
1546                 for (int c = 0; c < vd->vdev_children; c++) {
1547                         vdev_t *cvd = vd->vdev_child[c];
1548                         mutex_enter(&cvd->vdev_dtl_lock);
1549                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1550                         mutex_exit(&cvd->vdev_dtl_lock);
1551                 }
1552                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1553                 space_map_ref_destroy(&reftree);
1554         }
1555         mutex_exit(&vd->vdev_dtl_lock);
1556 }
1557
1558 static int
1559 vdev_dtl_load(vdev_t *vd)
1560 {
1561         spa_t *spa = vd->vdev_spa;
1562         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1563         objset_t *mos = spa->spa_meta_objset;
1564         dmu_buf_t *db;
1565         int error;
1566
1567         ASSERT(vd->vdev_children == 0);
1568
1569         if (smo->smo_object == 0)
1570                 return (0);
1571
1572         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1573                 return (error);
1574
1575         ASSERT3U(db->db_size, >=, sizeof (*smo));
1576         bcopy(db->db_data, smo, sizeof (*smo));
1577         dmu_buf_rele(db, FTAG);
1578
1579         mutex_enter(&vd->vdev_dtl_lock);
1580         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1581             NULL, SM_ALLOC, smo, mos);
1582         mutex_exit(&vd->vdev_dtl_lock);
1583
1584         return (error);
1585 }
1586
1587 void
1588 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1589 {
1590         spa_t *spa = vd->vdev_spa;
1591         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1592         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1593         objset_t *mos = spa->spa_meta_objset;
1594         space_map_t smsync;
1595         kmutex_t smlock;
1596         dmu_buf_t *db;
1597         dmu_tx_t *tx;
1598
1599         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1600
1601         if (vd->vdev_detached) {
1602                 if (smo->smo_object != 0) {
1603                         int err = dmu_object_free(mos, smo->smo_object, tx);
1604                         ASSERT3U(err, ==, 0);
1605                         smo->smo_object = 0;
1606                 }
1607                 dmu_tx_commit(tx);
1608                 return;
1609         }
1610
1611         if (smo->smo_object == 0) {
1612                 ASSERT(smo->smo_objsize == 0);
1613                 ASSERT(smo->smo_alloc == 0);
1614                 smo->smo_object = dmu_object_alloc(mos,
1615                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1616                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1617                 ASSERT(smo->smo_object != 0);
1618                 vdev_config_dirty(vd->vdev_top);
1619         }
1620
1621         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1622
1623         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1624             &smlock);
1625
1626         mutex_enter(&smlock);
1627
1628         mutex_enter(&vd->vdev_dtl_lock);
1629         space_map_walk(sm, space_map_add, &smsync);
1630         mutex_exit(&vd->vdev_dtl_lock);
1631
1632         space_map_truncate(smo, mos, tx);
1633         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1634
1635         space_map_destroy(&smsync);
1636
1637         mutex_exit(&smlock);
1638         mutex_destroy(&smlock);
1639
1640         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1641         dmu_buf_will_dirty(db, tx);
1642         ASSERT3U(db->db_size, >=, sizeof (*smo));
1643         bcopy(smo, db->db_data, sizeof (*smo));
1644         dmu_buf_rele(db, FTAG);
1645
1646         dmu_tx_commit(tx);
1647 }
1648
1649 /*
1650  * Determine whether the specified vdev can be offlined/detached/removed
1651  * without losing data.
1652  */
1653 boolean_t
1654 vdev_dtl_required(vdev_t *vd)
1655 {
1656         spa_t *spa = vd->vdev_spa;
1657         vdev_t *tvd = vd->vdev_top;
1658         uint8_t cant_read = vd->vdev_cant_read;
1659         boolean_t required;
1660
1661         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1662
1663         if (vd == spa->spa_root_vdev || vd == tvd)
1664                 return (B_TRUE);
1665
1666         /*
1667          * Temporarily mark the device as unreadable, and then determine
1668          * whether this results in any DTL outages in the top-level vdev.
1669          * If not, we can safely offline/detach/remove the device.
1670          */
1671         vd->vdev_cant_read = B_TRUE;
1672         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1673         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1674         vd->vdev_cant_read = cant_read;
1675         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1676
1677         return (required);
1678 }
1679
1680 /*
1681  * Determine if resilver is needed, and if so the txg range.
1682  */
1683 boolean_t
1684 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1685 {
1686         boolean_t needed = B_FALSE;
1687         uint64_t thismin = UINT64_MAX;
1688         uint64_t thismax = 0;
1689
1690         if (vd->vdev_children == 0) {
1691                 mutex_enter(&vd->vdev_dtl_lock);
1692                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1693                     vdev_writeable(vd)) {
1694                         space_seg_t *ss;
1695
1696                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1697                         thismin = ss->ss_start - 1;
1698                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1699                         thismax = ss->ss_end;
1700                         needed = B_TRUE;
1701                 }
1702                 mutex_exit(&vd->vdev_dtl_lock);
1703         } else {
1704                 for (int c = 0; c < vd->vdev_children; c++) {
1705                         vdev_t *cvd = vd->vdev_child[c];
1706                         uint64_t cmin, cmax;
1707
1708                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1709                                 thismin = MIN(thismin, cmin);
1710                                 thismax = MAX(thismax, cmax);
1711                                 needed = B_TRUE;
1712                         }
1713                 }
1714         }
1715
1716         if (needed && minp) {
1717                 *minp = thismin;
1718                 *maxp = thismax;
1719         }
1720         return (needed);
1721 }
1722
1723 void
1724 vdev_load(vdev_t *vd)
1725 {
1726         /*
1727          * Recursively load all children.
1728          */
1729         for (int c = 0; c < vd->vdev_children; c++)
1730                 vdev_load(vd->vdev_child[c]);
1731
1732         /*
1733          * If this is a top-level vdev, initialize its metaslabs.
1734          */
1735         if (vd == vd->vdev_top &&
1736             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1737             vdev_metaslab_init(vd, 0) != 0))
1738                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1739                     VDEV_AUX_CORRUPT_DATA);
1740
1741         /*
1742          * If this is a leaf vdev, load its DTL.
1743          */
1744         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1745                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1746                     VDEV_AUX_CORRUPT_DATA);
1747 }
1748
1749 /*
1750  * The special vdev case is used for hot spares and l2cache devices.  Its
1751  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1752  * we make sure that we can open the underlying device, then try to read the
1753  * label, and make sure that the label is sane and that it hasn't been
1754  * repurposed to another pool.
1755  */
1756 int
1757 vdev_validate_aux(vdev_t *vd)
1758 {
1759         nvlist_t *label;
1760         uint64_t guid, version;
1761         uint64_t state;
1762
1763         if (!vdev_readable(vd))
1764                 return (0);
1765
1766         if ((label = vdev_label_read_config(vd)) == NULL) {
1767                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1768                     VDEV_AUX_CORRUPT_DATA);
1769                 return (-1);
1770         }
1771
1772         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1773             version > SPA_VERSION ||
1774             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1775             guid != vd->vdev_guid ||
1776             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1777                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1778                     VDEV_AUX_CORRUPT_DATA);
1779                 nvlist_free(label);
1780                 return (-1);
1781         }
1782
1783         /*
1784          * We don't actually check the pool state here.  If it's in fact in
1785          * use by another pool, we update this fact on the fly when requested.
1786          */
1787         nvlist_free(label);
1788         return (0);
1789 }
1790
1791 void
1792 vdev_sync_done(vdev_t *vd, uint64_t txg)
1793 {
1794         metaslab_t *msp;
1795
1796         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1797                 metaslab_sync_done(msp, txg);
1798 }
1799
1800 void
1801 vdev_sync(vdev_t *vd, uint64_t txg)
1802 {
1803         spa_t *spa = vd->vdev_spa;
1804         vdev_t *lvd;
1805         metaslab_t *msp;
1806         dmu_tx_t *tx;
1807
1808         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1809                 ASSERT(vd == vd->vdev_top);
1810                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1811                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1812                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1813                 ASSERT(vd->vdev_ms_array != 0);
1814                 vdev_config_dirty(vd);
1815                 dmu_tx_commit(tx);
1816         }
1817
1818         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1819                 metaslab_sync(msp, txg);
1820                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1821         }
1822
1823         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1824                 vdev_dtl_sync(lvd, txg);
1825
1826         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1827 }
1828
1829 uint64_t
1830 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1831 {
1832         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1833 }
1834
1835 /*
1836  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1837  * not be opened, and no I/O is attempted.
1838  */
1839 int
1840 vdev_fault(spa_t *spa, uint64_t guid)
1841 {
1842         vdev_t *vd;
1843
1844         spa_vdev_state_enter(spa);
1845
1846         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1847                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1848
1849         if (!vd->vdev_ops->vdev_op_leaf)
1850                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1851
1852         /*
1853          * Faulted state takes precedence over degraded.
1854          */
1855         vd->vdev_faulted = 1ULL;
1856         vd->vdev_degraded = 0ULL;
1857         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1858
1859         /*
1860          * If marking the vdev as faulted cause the top-level vdev to become
1861          * unavailable, then back off and simply mark the vdev as degraded
1862          * instead.
1863          */
1864         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1865                 vd->vdev_degraded = 1ULL;
1866                 vd->vdev_faulted = 0ULL;
1867
1868                 /*
1869                  * If we reopen the device and it's not dead, only then do we
1870                  * mark it degraded.
1871                  */
1872                 vdev_reopen(vd);
1873
1874                 if (vdev_readable(vd)) {
1875                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1876                             VDEV_AUX_ERR_EXCEEDED);
1877                 }
1878         }
1879
1880         return (spa_vdev_state_exit(spa, vd, 0));
1881 }
1882
1883 /*
1884  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1885  * user that something is wrong.  The vdev continues to operate as normal as far
1886  * as I/O is concerned.
1887  */
1888 int
1889 vdev_degrade(spa_t *spa, uint64_t guid)
1890 {
1891         vdev_t *vd;
1892
1893         spa_vdev_state_enter(spa);
1894
1895         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1896                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1897
1898         if (!vd->vdev_ops->vdev_op_leaf)
1899                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1900
1901         /*
1902          * If the vdev is already faulted, then don't do anything.
1903          */
1904         if (vd->vdev_faulted || vd->vdev_degraded)
1905                 return (spa_vdev_state_exit(spa, NULL, 0));
1906
1907         vd->vdev_degraded = 1ULL;
1908         if (!vdev_is_dead(vd))
1909                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1910                     VDEV_AUX_ERR_EXCEEDED);
1911
1912         return (spa_vdev_state_exit(spa, vd, 0));
1913 }
1914
1915 /*
1916  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1917  * any attached spare device should be detached when the device finishes
1918  * resilvering.  Second, the online should be treated like a 'test' online case,
1919  * so no FMA events are generated if the device fails to open.
1920  */
1921 int
1922 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1923 {
1924         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
1925
1926         spa_vdev_state_enter(spa);
1927
1928         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1929                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1930
1931         if (!vd->vdev_ops->vdev_op_leaf)
1932                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1933
1934         tvd = vd->vdev_top;
1935         vd->vdev_offline = B_FALSE;
1936         vd->vdev_tmpoffline = B_FALSE;
1937         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1938         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1939
1940         /* XXX - L2ARC 1.0 does not support expansion */
1941         if (!vd->vdev_aux) {
1942                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1943                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
1944         }
1945
1946         vdev_reopen(tvd);
1947         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1948
1949         if (!vd->vdev_aux) {
1950                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1951                         pvd->vdev_expanding = B_FALSE;
1952         }
1953
1954         if (newstate)
1955                 *newstate = vd->vdev_state;
1956         if ((flags & ZFS_ONLINE_UNSPARE) &&
1957             !vdev_is_dead(vd) && vd->vdev_parent &&
1958             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1959             vd->vdev_parent->vdev_child[0] == vd)
1960                 vd->vdev_unspare = B_TRUE;
1961
1962         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
1963
1964                 /* XXX - L2ARC 1.0 does not support expansion */
1965                 if (vd->vdev_aux)
1966                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
1967                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1968         }
1969         return (spa_vdev_state_exit(spa, vd, 0));
1970 }
1971
1972 int
1973 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1974 {
1975         vdev_t *vd, *tvd;
1976         int error;
1977
1978         spa_vdev_state_enter(spa);
1979
1980         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1981                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1982
1983         if (!vd->vdev_ops->vdev_op_leaf)
1984                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1985
1986         tvd = vd->vdev_top;
1987
1988         /*
1989          * If the device isn't already offline, try to offline it.
1990          */
1991         if (!vd->vdev_offline) {
1992                 /*
1993                  * If this device has the only valid copy of some data,
1994                  * don't allow it to be offlined. Log devices are always
1995                  * expendable.
1996                  */
1997                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1998                     vdev_dtl_required(vd))
1999                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2000
2001                 /*
2002                  * Offline this device and reopen its top-level vdev.
2003                  * If the top-level vdev is a log device then just offline
2004                  * it. Otherwise, if this action results in the top-level
2005                  * vdev becoming unusable, undo it and fail the request.
2006                  */
2007                 vd->vdev_offline = B_TRUE;
2008                 vdev_reopen(tvd);
2009
2010                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2011                     vdev_is_dead(tvd)) {
2012                         vd->vdev_offline = B_FALSE;
2013                         vdev_reopen(tvd);
2014                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2015                 }
2016         }
2017
2018         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2019
2020         if (!tvd->vdev_islog || !vdev_is_dead(tvd))
2021                 return (spa_vdev_state_exit(spa, vd, 0));
2022
2023         (void) spa_vdev_state_exit(spa, vd, 0);
2024
2025         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2026             NULL, DS_FIND_CHILDREN);
2027         if (error) {
2028                 (void) vdev_online(spa, guid, 0, NULL);
2029                 return (error);
2030         }
2031         /*
2032          * If we successfully offlined the log device then we need to
2033          * sync out the current txg so that the "stubby" block can be
2034          * removed by zil_sync().
2035          */
2036         txg_wait_synced(spa->spa_dsl_pool, 0);
2037         return (0);
2038 }
2039
2040 /*
2041  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2042  * vdev_offline(), we assume the spa config is locked.  We also clear all
2043  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2044  */
2045 void
2046 vdev_clear(spa_t *spa, vdev_t *vd)
2047 {
2048         vdev_t *rvd = spa->spa_root_vdev;
2049
2050         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2051
2052         if (vd == NULL)
2053                 vd = rvd;
2054
2055         vd->vdev_stat.vs_read_errors = 0;
2056         vd->vdev_stat.vs_write_errors = 0;
2057         vd->vdev_stat.vs_checksum_errors = 0;
2058
2059         for (int c = 0; c < vd->vdev_children; c++)
2060                 vdev_clear(spa, vd->vdev_child[c]);
2061
2062         /*
2063          * If we're in the FAULTED state or have experienced failed I/O, then
2064          * clear the persistent state and attempt to reopen the device.  We
2065          * also mark the vdev config dirty, so that the new faulted state is
2066          * written out to disk.
2067          */
2068         if (vd->vdev_faulted || vd->vdev_degraded ||
2069             !vdev_readable(vd) || !vdev_writeable(vd)) {
2070
2071                 vd->vdev_faulted = vd->vdev_degraded = 0;
2072                 vd->vdev_cant_read = B_FALSE;
2073                 vd->vdev_cant_write = B_FALSE;
2074
2075                 vdev_reopen(vd);
2076
2077                 if (vd != rvd)
2078                         vdev_state_dirty(vd->vdev_top);
2079
2080                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2081                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2082
2083                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2084         }
2085 }
2086
2087 boolean_t
2088 vdev_is_dead(vdev_t *vd)
2089 {
2090         return (vd->vdev_state < VDEV_STATE_DEGRADED);
2091 }
2092
2093 boolean_t
2094 vdev_readable(vdev_t *vd)
2095 {
2096         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2097 }
2098
2099 boolean_t
2100 vdev_writeable(vdev_t *vd)
2101 {
2102         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2103 }
2104
2105 boolean_t
2106 vdev_allocatable(vdev_t *vd)
2107 {
2108         uint64_t state = vd->vdev_state;
2109
2110         /*
2111          * We currently allow allocations from vdevs which may be in the
2112          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2113          * fails to reopen then we'll catch it later when we're holding
2114          * the proper locks.  Note that we have to get the vdev state
2115          * in a local variable because although it changes atomically,
2116          * we're asking two separate questions about it.
2117          */
2118         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2119             !vd->vdev_cant_write);
2120 }
2121
2122 boolean_t
2123 vdev_accessible(vdev_t *vd, zio_t *zio)
2124 {
2125         ASSERT(zio->io_vd == vd);
2126
2127         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2128                 return (B_FALSE);
2129
2130         if (zio->io_type == ZIO_TYPE_READ)
2131                 return (!vd->vdev_cant_read);
2132
2133         if (zio->io_type == ZIO_TYPE_WRITE)
2134                 return (!vd->vdev_cant_write);
2135
2136         return (B_TRUE);
2137 }
2138
2139 /*
2140  * Get statistics for the given vdev.
2141  */
2142 void
2143 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2144 {
2145         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2146
2147         mutex_enter(&vd->vdev_stat_lock);
2148         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2149         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2150         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2151         vs->vs_state = vd->vdev_state;
2152         vs->vs_rsize = vdev_get_min_asize(vd);
2153         if (vd->vdev_ops->vdev_op_leaf)
2154                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2155         mutex_exit(&vd->vdev_stat_lock);
2156
2157         /*
2158          * If we're getting stats on the root vdev, aggregate the I/O counts
2159          * over all top-level vdevs (i.e. the direct children of the root).
2160          */
2161         if (vd == rvd) {
2162                 for (int c = 0; c < rvd->vdev_children; c++) {
2163                         vdev_t *cvd = rvd->vdev_child[c];
2164                         vdev_stat_t *cvs = &cvd->vdev_stat;
2165
2166                         mutex_enter(&vd->vdev_stat_lock);
2167                         for (int t = 0; t < ZIO_TYPES; t++) {
2168                                 vs->vs_ops[t] += cvs->vs_ops[t];
2169                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2170                         }
2171                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2172                         mutex_exit(&vd->vdev_stat_lock);
2173                 }
2174         }
2175 }
2176
2177 void
2178 vdev_clear_stats(vdev_t *vd)
2179 {
2180         mutex_enter(&vd->vdev_stat_lock);
2181         vd->vdev_stat.vs_space = 0;
2182         vd->vdev_stat.vs_dspace = 0;
2183         vd->vdev_stat.vs_alloc = 0;
2184         mutex_exit(&vd->vdev_stat_lock);
2185 }
2186
2187 void
2188 vdev_stat_update(zio_t *zio, uint64_t psize)
2189 {
2190         spa_t *spa = zio->io_spa;
2191         vdev_t *rvd = spa->spa_root_vdev;
2192         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2193         vdev_t *pvd;
2194         uint64_t txg = zio->io_txg;
2195         vdev_stat_t *vs = &vd->vdev_stat;
2196         zio_type_t type = zio->io_type;
2197         int flags = zio->io_flags;
2198
2199         /*
2200          * If this i/o is a gang leader, it didn't do any actual work.
2201          */
2202         if (zio->io_gang_tree)
2203                 return;
2204
2205         if (zio->io_error == 0) {
2206                 /*
2207                  * If this is a root i/o, don't count it -- we've already
2208                  * counted the top-level vdevs, and vdev_get_stats() will
2209                  * aggregate them when asked.  This reduces contention on
2210                  * the root vdev_stat_lock and implicitly handles blocks
2211                  * that compress away to holes, for which there is no i/o.
2212                  * (Holes never create vdev children, so all the counters
2213                  * remain zero, which is what we want.)
2214                  *
2215                  * Note: this only applies to successful i/o (io_error == 0)
2216                  * because unlike i/o counts, errors are not additive.
2217                  * When reading a ditto block, for example, failure of
2218                  * one top-level vdev does not imply a root-level error.
2219                  */
2220                 if (vd == rvd)
2221                         return;
2222
2223                 ASSERT(vd == zio->io_vd);
2224
2225                 if (flags & ZIO_FLAG_IO_BYPASS)
2226                         return;
2227
2228                 mutex_enter(&vd->vdev_stat_lock);
2229
2230                 if (flags & ZIO_FLAG_IO_REPAIR) {
2231                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2232                                 vs->vs_scrub_repaired += psize;
2233                         if (flags & ZIO_FLAG_SELF_HEAL)
2234                                 vs->vs_self_healed += psize;
2235                 }
2236
2237                 vs->vs_ops[type]++;
2238                 vs->vs_bytes[type] += psize;
2239
2240                 mutex_exit(&vd->vdev_stat_lock);
2241                 return;
2242         }
2243
2244         if (flags & ZIO_FLAG_SPECULATIVE)
2245                 return;
2246
2247         /*
2248          * If this is an I/O error that is going to be retried, then ignore the
2249          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2250          * hard errors, when in reality they can happen for any number of
2251          * innocuous reasons (bus resets, MPxIO link failure, etc).
2252          */
2253         if (zio->io_error == EIO &&
2254             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2255                 return;
2256
2257         mutex_enter(&vd->vdev_stat_lock);
2258         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2259                 if (zio->io_error == ECKSUM)
2260                         vs->vs_checksum_errors++;
2261                 else
2262                         vs->vs_read_errors++;
2263         }
2264         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2265                 vs->vs_write_errors++;
2266         mutex_exit(&vd->vdev_stat_lock);
2267
2268         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2269             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2270             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2271                 /*
2272                  * This is either a normal write (not a repair), or it's a
2273                  * repair induced by the scrub thread.  In the normal case,
2274                  * we commit the DTL change in the same txg as the block
2275                  * was born.  In the scrub-induced repair case, we know that
2276                  * scrubs run in first-pass syncing context, so we commit
2277                  * the DTL change in spa->spa_syncing_txg.
2278                  *
2279                  * We currently do not make DTL entries for failed spontaneous
2280                  * self-healing writes triggered by normal (non-scrubbing)
2281                  * reads, because we have no transactional context in which to
2282                  * do so -- and it's not clear that it'd be desirable anyway.
2283                  */
2284                 if (vd->vdev_ops->vdev_op_leaf) {
2285                         uint64_t commit_txg = txg;
2286                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2287                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2288                                 ASSERT(spa_sync_pass(spa) == 1);
2289                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2290                                 commit_txg = spa->spa_syncing_txg;
2291                         }
2292                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2293                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2294                                 return;
2295                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2296                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2297                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2298                 }
2299                 if (vd != rvd)
2300                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2301         }
2302 }
2303
2304 void
2305 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2306 {
2307         vdev_stat_t *vs = &vd->vdev_stat;
2308
2309         for (int c = 0; c < vd->vdev_children; c++)
2310                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2311
2312         mutex_enter(&vd->vdev_stat_lock);
2313
2314         if (type == POOL_SCRUB_NONE) {
2315                 /*
2316                  * Update completion and end time.  Leave everything else alone
2317                  * so we can report what happened during the previous scrub.
2318                  */
2319                 vs->vs_scrub_complete = complete;
2320                 vs->vs_scrub_end = gethrestime_sec();
2321         } else {
2322                 vs->vs_scrub_type = type;
2323                 vs->vs_scrub_complete = 0;
2324                 vs->vs_scrub_examined = 0;
2325                 vs->vs_scrub_repaired = 0;
2326                 vs->vs_scrub_start = gethrestime_sec();
2327                 vs->vs_scrub_end = 0;
2328         }
2329
2330         mutex_exit(&vd->vdev_stat_lock);
2331 }
2332
2333 /*
2334  * Update the in-core space usage stats for this vdev and the root vdev.
2335  */
2336 void
2337 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2338     boolean_t update_root)
2339 {
2340         int64_t dspace_delta = space_delta;
2341         spa_t *spa = vd->vdev_spa;
2342         vdev_t *rvd = spa->spa_root_vdev;
2343
2344         ASSERT(vd == vd->vdev_top);
2345
2346         /*
2347          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2348          * factor.  We must calculate this here and not at the root vdev
2349          * because the root vdev's psize-to-asize is simply the max of its
2350          * childrens', thus not accurate enough for us.
2351          */
2352         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2353         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2354         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2355             vd->vdev_deflate_ratio;
2356
2357         mutex_enter(&vd->vdev_stat_lock);
2358         vd->vdev_stat.vs_space += space_delta;
2359         vd->vdev_stat.vs_alloc += alloc_delta;
2360         vd->vdev_stat.vs_dspace += dspace_delta;
2361         mutex_exit(&vd->vdev_stat_lock);
2362
2363         if (update_root) {
2364                 ASSERT(rvd == vd->vdev_parent);
2365                 ASSERT(vd->vdev_ms_count != 0);
2366
2367                 /*
2368                  * Don't count non-normal (e.g. intent log) space as part of
2369                  * the pool's capacity.
2370                  */
2371                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2372                         return;
2373
2374                 mutex_enter(&rvd->vdev_stat_lock);
2375                 rvd->vdev_stat.vs_space += space_delta;
2376                 rvd->vdev_stat.vs_alloc += alloc_delta;
2377                 rvd->vdev_stat.vs_dspace += dspace_delta;
2378                 mutex_exit(&rvd->vdev_stat_lock);
2379         }
2380 }
2381
2382 /*
2383  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2384  * so that it will be written out next time the vdev configuration is synced.
2385  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2386  */
2387 void
2388 vdev_config_dirty(vdev_t *vd)
2389 {
2390         spa_t *spa = vd->vdev_spa;
2391         vdev_t *rvd = spa->spa_root_vdev;
2392         int c;
2393
2394         /*
2395          * If this is an aux vdev (as with l2cache and spare devices), then we
2396          * update the vdev config manually and set the sync flag.
2397          */
2398         if (vd->vdev_aux != NULL) {
2399                 spa_aux_vdev_t *sav = vd->vdev_aux;
2400                 nvlist_t **aux;
2401                 uint_t naux;
2402
2403                 for (c = 0; c < sav->sav_count; c++) {
2404                         if (sav->sav_vdevs[c] == vd)
2405                                 break;
2406                 }
2407
2408                 if (c == sav->sav_count) {
2409                         /*
2410                          * We're being removed.  There's nothing more to do.
2411                          */
2412                         ASSERT(sav->sav_sync == B_TRUE);
2413                         return;
2414                 }
2415
2416                 sav->sav_sync = B_TRUE;
2417
2418                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2419                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2420                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2421                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2422                 }
2423
2424                 ASSERT(c < naux);
2425
2426                 /*
2427                  * Setting the nvlist in the middle if the array is a little
2428                  * sketchy, but it will work.
2429                  */
2430                 nvlist_free(aux[c]);
2431                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2432
2433                 return;
2434         }
2435
2436         /*
2437          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2438          * must either hold SCL_CONFIG as writer, or must be the sync thread
2439          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2440          * so this is sufficient to ensure mutual exclusion.
2441          */
2442         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2443             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2444             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2445
2446         if (vd == rvd) {
2447                 for (c = 0; c < rvd->vdev_children; c++)
2448                         vdev_config_dirty(rvd->vdev_child[c]);
2449         } else {
2450                 ASSERT(vd == vd->vdev_top);
2451
2452                 if (!list_link_active(&vd->vdev_config_dirty_node))
2453                         list_insert_head(&spa->spa_config_dirty_list, vd);
2454         }
2455 }
2456
2457 void
2458 vdev_config_clean(vdev_t *vd)
2459 {
2460         spa_t *spa = vd->vdev_spa;
2461
2462         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2463             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2464             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2465
2466         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2467         list_remove(&spa->spa_config_dirty_list, vd);
2468 }
2469
2470 /*
2471  * Mark a top-level vdev's state as dirty, so that the next pass of
2472  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2473  * the state changes from larger config changes because they require
2474  * much less locking, and are often needed for administrative actions.
2475  */
2476 void
2477 vdev_state_dirty(vdev_t *vd)
2478 {
2479         spa_t *spa = vd->vdev_spa;
2480
2481         ASSERT(vd == vd->vdev_top);
2482
2483         /*
2484          * The state list is protected by the SCL_STATE lock.  The caller
2485          * must either hold SCL_STATE as writer, or must be the sync thread
2486          * (which holds SCL_STATE as reader).  There's only one sync thread,
2487          * so this is sufficient to ensure mutual exclusion.
2488          */
2489         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2490             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2491             spa_config_held(spa, SCL_STATE, RW_READER)));
2492
2493         if (!list_link_active(&vd->vdev_state_dirty_node))
2494                 list_insert_head(&spa->spa_state_dirty_list, vd);
2495 }
2496
2497 void
2498 vdev_state_clean(vdev_t *vd)
2499 {
2500         spa_t *spa = vd->vdev_spa;
2501
2502         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2503             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2504             spa_config_held(spa, SCL_STATE, RW_READER)));
2505
2506         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2507         list_remove(&spa->spa_state_dirty_list, vd);
2508 }
2509
2510 /*
2511  * Propagate vdev state up from children to parent.
2512  */
2513 void
2514 vdev_propagate_state(vdev_t *vd)
2515 {
2516         spa_t *spa = vd->vdev_spa;
2517         vdev_t *rvd = spa->spa_root_vdev;
2518         int degraded = 0, faulted = 0;
2519         int corrupted = 0;
2520         vdev_t *child;
2521
2522         if (vd->vdev_children > 0) {
2523                 for (int c = 0; c < vd->vdev_children; c++) {
2524                         child = vd->vdev_child[c];
2525
2526                         if (!vdev_readable(child) ||
2527                             (!vdev_writeable(child) && spa_writeable(spa))) {
2528                                 /*
2529                                  * Root special: if there is a top-level log
2530                                  * device, treat the root vdev as if it were
2531                                  * degraded.
2532                                  */
2533                                 if (child->vdev_islog && vd == rvd)
2534                                         degraded++;
2535                                 else
2536                                         faulted++;
2537                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2538                                 degraded++;
2539                         }
2540
2541                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2542                                 corrupted++;
2543                 }
2544
2545                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2546
2547                 /*
2548                  * Root special: if there is a top-level vdev that cannot be
2549                  * opened due to corrupted metadata, then propagate the root
2550                  * vdev's aux state as 'corrupt' rather than 'insufficient
2551                  * replicas'.
2552                  */
2553                 if (corrupted && vd == rvd &&
2554                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2555                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2556                             VDEV_AUX_CORRUPT_DATA);
2557         }
2558
2559         if (vd->vdev_parent)
2560                 vdev_propagate_state(vd->vdev_parent);
2561 }
2562
2563 /*
2564  * Set a vdev's state.  If this is during an open, we don't update the parent
2565  * state, because we're in the process of opening children depth-first.
2566  * Otherwise, we propagate the change to the parent.
2567  *
2568  * If this routine places a device in a faulted state, an appropriate ereport is
2569  * generated.
2570  */
2571 void
2572 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2573 {
2574         uint64_t save_state;
2575         spa_t *spa = vd->vdev_spa;
2576
2577         if (state == vd->vdev_state) {
2578                 vd->vdev_stat.vs_aux = aux;
2579                 return;
2580         }
2581
2582         save_state = vd->vdev_state;
2583
2584         vd->vdev_state = state;
2585         vd->vdev_stat.vs_aux = aux;
2586
2587         /*
2588          * If we are setting the vdev state to anything but an open state, then
2589          * always close the underlying device.  Otherwise, we keep accessible
2590          * but invalid devices open forever.  We don't call vdev_close() itself,
2591          * because that implies some extra checks (offline, etc) that we don't
2592          * want here.  This is limited to leaf devices, because otherwise
2593          * closing the device will affect other children.
2594          */
2595         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2596                 vd->vdev_ops->vdev_op_close(vd);
2597
2598         if (vd->vdev_removed &&
2599             state == VDEV_STATE_CANT_OPEN &&
2600             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2601                 /*
2602                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2603                  * device was previously marked removed and someone attempted to
2604                  * reopen it.  If this failed due to a nonexistent device, then
2605                  * keep the device in the REMOVED state.  We also let this be if
2606                  * it is one of our special test online cases, which is only
2607                  * attempting to online the device and shouldn't generate an FMA
2608                  * fault.
2609                  */
2610                 vd->vdev_state = VDEV_STATE_REMOVED;
2611                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2612         } else if (state == VDEV_STATE_REMOVED) {
2613                 /*
2614                  * Indicate to the ZFS DE that this device has been removed, and
2615                  * any recent errors should be ignored.
2616                  */
2617                 zfs_post_remove(spa, vd);
2618                 vd->vdev_removed = B_TRUE;
2619         } else if (state == VDEV_STATE_CANT_OPEN) {
2620                 /*
2621                  * If we fail to open a vdev during an import, we mark it as
2622                  * "not available", which signifies that it was never there to
2623                  * begin with.  Failure to open such a device is not considered
2624                  * an error.
2625                  */
2626                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2627                     vd->vdev_ops->vdev_op_leaf)
2628                         vd->vdev_not_present = 1;
2629
2630                 /*
2631                  * Post the appropriate ereport.  If the 'prevstate' field is
2632                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2633                  * that this is part of a vdev_reopen().  In this case, we don't
2634                  * want to post the ereport if the device was already in the
2635                  * CANT_OPEN state beforehand.
2636                  *
2637                  * If the 'checkremove' flag is set, then this is an attempt to
2638                  * online the device in response to an insertion event.  If we
2639                  * hit this case, then we have detected an insertion event for a
2640                  * faulted or offline device that wasn't in the removed state.
2641                  * In this scenario, we don't post an ereport because we are
2642                  * about to replace the device, or attempt an online with
2643                  * vdev_forcefault, which will generate the fault for us.
2644                  */
2645                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2646                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2647                     vd != spa->spa_root_vdev) {
2648                         const char *class;
2649
2650                         switch (aux) {
2651                         case VDEV_AUX_OPEN_FAILED:
2652                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2653                                 break;
2654                         case VDEV_AUX_CORRUPT_DATA:
2655                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2656                                 break;
2657                         case VDEV_AUX_NO_REPLICAS:
2658                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2659                                 break;
2660                         case VDEV_AUX_BAD_GUID_SUM:
2661                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2662                                 break;
2663                         case VDEV_AUX_TOO_SMALL:
2664                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2665                                 break;
2666                         case VDEV_AUX_BAD_LABEL:
2667                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2668                                 break;
2669                         case VDEV_AUX_IO_FAILURE:
2670                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2671                                 break;
2672                         default:
2673                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2674                         }
2675
2676                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2677                 }
2678
2679                 /* Erase any notion of persistent removed state */
2680                 vd->vdev_removed = B_FALSE;
2681         } else {
2682                 vd->vdev_removed = B_FALSE;
2683         }
2684
2685         if (!isopen && vd->vdev_parent)
2686                 vdev_propagate_state(vd->vdev_parent);
2687 }
2688
2689 /*
2690  * Check the vdev configuration to ensure that it's capable of supporting
2691  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2692  * In addition, only a single top-level vdev is allowed and none of the leaves
2693  * can be wholedisks.
2694  */
2695 boolean_t
2696 vdev_is_bootable(vdev_t *vd)
2697 {
2698         if (!vd->vdev_ops->vdev_op_leaf) {
2699                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2700
2701                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2702                     vd->vdev_children > 1) {
2703                         return (B_FALSE);
2704                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2705                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2706                         return (B_FALSE);
2707                 }
2708         } else if (vd->vdev_wholedisk == 1) {
2709                 return (B_FALSE);
2710         }
2711
2712         for (int c = 0; c < vd->vdev_children; c++) {
2713                 if (!vdev_is_bootable(vd->vdev_child[c]))
2714                         return (B_FALSE);
2715         }
2716         return (B_TRUE);
2717 }
2718
2719 void
2720 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2721 {
2722         uint_t children;
2723         nvlist_t **child;
2724         uint64_t val;
2725         spa_t *spa = vd->vdev_spa;
2726
2727         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2728             &child, &children) == 0) {
2729                 for (int c = 0; c < children; c++)
2730                         vdev_load_log_state(vd->vdev_child[c], child[c]);
2731         }
2732
2733         if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2734             ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2735
2736                 /*
2737                  * It would be nice to call vdev_offline()
2738                  * directly but the pool isn't fully loaded and
2739                  * the txg threads have not been started yet.
2740                  */
2741                 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2742                 vd->vdev_offline = val;
2743                 vdev_reopen(vd->vdev_top);
2744                 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2745         }
2746 }
2747
2748 /*
2749  * Expand a vdev if possible.
2750  */
2751 void
2752 vdev_expand(vdev_t *vd, uint64_t txg)
2753 {
2754         ASSERT(vd->vdev_top == vd);
2755         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2756
2757         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2758                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
2759                 vdev_config_dirty(vd);
2760         }
2761 }