e0d82e6737c4fed91e321d0d097dd6a384a9576f
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56         &vdev_disk_ops,
57         &vdev_file_ops,
58         &vdev_missing_ops,
59         &vdev_hole_ops,
60         NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72         vdev_ops_t *ops, **opspp;
73
74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75                 if (strcmp(ops->vdev_op_type, type) == 0)
76                         break;
77
78         return (ops);
79 }
80
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89         uint64_t csize;
90         int c;
91
92         for (c = 0; c < vd->vdev_children; c++) {
93                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94                 asize = MAX(asize, csize);
95         }
96
97         return (asize);
98 }
99
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109         vdev_t *pvd = vd->vdev_parent;
110
111         /*
112          * If our parent is NULL (inactive spare or cache) or is the root,
113          * just return our own asize.
114          */
115         if (pvd == NULL)
116                 return (vd->vdev_asize);
117
118         /*
119          * The top-level vdev just returns the allocatable size rounded
120          * to the nearest metaslab.
121          */
122         if (vd == vd->vdev_top)
123                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125         /*
126          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127          * so each child must provide at least 1/Nth of its asize.
128          */
129         if (pvd->vdev_ops == &vdev_raidz_ops)
130                 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132         return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138         int c;
139         vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141         for (c = 0; c < vd->vdev_children; c++)
142                 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         vdev_t *mvd;
164         int c;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220         int c;
221         uint_t id = cvd->vdev_id;
222
223         ASSERT(cvd->vdev_parent == pvd);
224
225         if (pvd == NULL)
226                 return;
227
228         ASSERT(id < pvd->vdev_children);
229         ASSERT(pvd->vdev_child[id] == cvd);
230
231         pvd->vdev_child[id] = NULL;
232         cvd->vdev_parent = NULL;
233
234         for (c = 0; c < pvd->vdev_children; c++)
235                 if (pvd->vdev_child[c])
236                         break;
237
238         if (c == pvd->vdev_children) {
239                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240                 pvd->vdev_child = NULL;
241                 pvd->vdev_children = 0;
242         }
243
244         /*
245          * Walk up all ancestors to update guid sum.
246          */
247         for (; pvd != NULL; pvd = pvd->vdev_parent)
248                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260         int c;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
269
270         for (c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289         int t;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         list_link_init(&vd->vdev_config_dirty_node);
324         list_link_init(&vd->vdev_state_dirty_node);
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (EINVAL);
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (EINVAL);
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (EINVAL);
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (ENOTSUP);
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (EINVAL);
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (ENOTSUP);
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (ENOTSUP);
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (EINVAL);
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         int c, t;
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         if (tvd->vdev_mg)
676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677         tvd->vdev_mg = svd->vdev_mg;
678         tvd->vdev_ms = svd->vdev_ms;
679
680         svd->vdev_mg = NULL;
681         svd->vdev_ms = NULL;
682
683         if (tvd->vdev_mg != NULL)
684                 tvd->vdev_mg->mg_vd = tvd;
685
686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690         svd->vdev_stat.vs_alloc = 0;
691         svd->vdev_stat.vs_space = 0;
692         svd->vdev_stat.vs_dspace = 0;
693
694         for (t = 0; t < TXG_SIZE; t++) {
695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701         }
702
703         if (list_link_active(&svd->vdev_config_dirty_node)) {
704                 vdev_config_clean(svd);
705                 vdev_config_dirty(tvd);
706         }
707
708         if (list_link_active(&svd->vdev_state_dirty_node)) {
709                 vdev_state_clean(svd);
710                 vdev_state_dirty(tvd);
711         }
712
713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714         svd->vdev_deflate_ratio = 0;
715
716         tvd->vdev_islog = svd->vdev_islog;
717         svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723         int c;
724
725         if (vd == NULL)
726                 return;
727
728         vd->vdev_top = tvd;
729
730         for (c = 0; c < vd->vdev_children; c++)
731                 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735  * Add a mirror/replacing vdev above an existing vdev.
736  */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740         spa_t *spa = cvd->vdev_spa;
741         vdev_t *pvd = cvd->vdev_parent;
742         vdev_t *mvd;
743
744         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748         mvd->vdev_asize = cvd->vdev_asize;
749         mvd->vdev_min_asize = cvd->vdev_min_asize;
750         mvd->vdev_max_asize = cvd->vdev_max_asize;
751         mvd->vdev_ashift = cvd->vdev_ashift;
752         mvd->vdev_state = cvd->vdev_state;
753         mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755         vdev_remove_child(pvd, cvd);
756         vdev_add_child(pvd, mvd);
757         cvd->vdev_id = mvd->vdev_children;
758         vdev_add_child(mvd, cvd);
759         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761         if (mvd == mvd->vdev_top)
762                 vdev_top_transfer(cvd, mvd);
763
764         return (mvd);
765 }
766
767 /*
768  * Remove a 1-way mirror/replacing vdev from the tree.
769  */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773         vdev_t *mvd = cvd->vdev_parent;
774         vdev_t *pvd = mvd->vdev_parent;
775
776         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778         ASSERT(mvd->vdev_children == 1);
779         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780             mvd->vdev_ops == &vdev_replacing_ops ||
781             mvd->vdev_ops == &vdev_spare_ops);
782         cvd->vdev_ashift = mvd->vdev_ashift;
783
784         vdev_remove_child(mvd, cvd);
785         vdev_remove_child(pvd, mvd);
786
787         /*
788          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789          * Otherwise, we could have detached an offline device, and when we
790          * go to import the pool we'll think we have two top-level vdevs,
791          * instead of a different version of the same top-level vdev.
792          */
793         if (mvd->vdev_top == mvd) {
794                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795                 cvd->vdev_orig_guid = cvd->vdev_guid;
796                 cvd->vdev_guid += guid_delta;
797                 cvd->vdev_guid_sum += guid_delta;
798         }
799         cvd->vdev_id = mvd->vdev_id;
800         vdev_add_child(pvd, cvd);
801         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803         if (cvd == cvd->vdev_top)
804                 vdev_top_transfer(mvd, cvd);
805
806         ASSERT(mvd->vdev_children == 0);
807         vdev_free(mvd);
808 }
809
810 int
811 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812 {
813         spa_t *spa = vd->vdev_spa;
814         objset_t *mos = spa->spa_meta_objset;
815         uint64_t m;
816         uint64_t oldc = vd->vdev_ms_count;
817         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818         metaslab_t **mspp;
819         int error;
820
821         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823         /*
824          * This vdev is not being allocated from yet or is a hole.
825          */
826         if (vd->vdev_ms_shift == 0)
827                 return (0);
828
829         ASSERT(!vd->vdev_ishole);
830
831         /*
832          * Compute the raidz-deflation ratio.  Note, we hard-code
833          * in 128k (1 << 17) because it is the current "typical" blocksize.
834          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835          * or we will inconsistently account for existing bp's.
836          */
837         vd->vdev_deflate_ratio = (1 << 17) /
838             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
840         ASSERT(oldc <= newc);
841
842         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
843
844         if (oldc != 0) {
845                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847         }
848
849         vd->vdev_ms = mspp;
850         vd->vdev_ms_count = newc;
851
852         for (m = oldc; m < newc; m++) {
853                 space_map_obj_t smo = { 0, 0, 0 };
854                 if (txg == 0) {
855                         uint64_t object = 0;
856                         error = dmu_read(mos, vd->vdev_ms_array,
857                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
858                             DMU_READ_PREFETCH);
859                         if (error)
860                                 return (error);
861                         if (object != 0) {
862                                 dmu_buf_t *db;
863                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
864                                 if (error)
865                                         return (error);
866                                 ASSERT3U(db->db_size, >=, sizeof (smo));
867                                 bcopy(db->db_data, &smo, sizeof (smo));
868                                 ASSERT3U(smo.smo_object, ==, object);
869                                 dmu_buf_rele(db, FTAG);
870                         }
871                 }
872                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874         }
875
876         if (txg == 0)
877                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879         /*
880          * If the vdev is being removed we don't activate
881          * the metaslabs since we want to ensure that no new
882          * allocations are performed on this device.
883          */
884         if (oldc == 0 && !vd->vdev_removing)
885                 metaslab_group_activate(vd->vdev_mg);
886
887         if (txg == 0)
888                 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890         return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896         uint64_t m;
897         uint64_t count = vd->vdev_ms_count;
898
899         if (vd->vdev_ms != NULL) {
900                 metaslab_group_passivate(vd->vdev_mg);
901                 for (m = 0; m < count; m++)
902                         if (vd->vdev_ms[m] != NULL)
903                                 metaslab_fini(vd->vdev_ms[m]);
904                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905                 vd->vdev_ms = NULL;
906         }
907
908         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
909 }
910
911 typedef struct vdev_probe_stats {
912         boolean_t       vps_readable;
913         boolean_t       vps_writeable;
914         int             vps_flags;
915 } vdev_probe_stats_t;
916
917 static void
918 vdev_probe_done(zio_t *zio)
919 {
920         spa_t *spa = zio->io_spa;
921         vdev_t *vd = zio->io_vd;
922         vdev_probe_stats_t *vps = zio->io_private;
923
924         ASSERT(vd->vdev_probe_zio != NULL);
925
926         if (zio->io_type == ZIO_TYPE_READ) {
927                 if (zio->io_error == 0)
928                         vps->vps_readable = 1;
929                 if (zio->io_error == 0 && spa_writeable(spa)) {
930                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
931                             zio->io_offset, zio->io_size, zio->io_data,
932                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
933                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
934                 } else {
935                         zio_buf_free(zio->io_data, zio->io_size);
936                 }
937         } else if (zio->io_type == ZIO_TYPE_WRITE) {
938                 if (zio->io_error == 0)
939                         vps->vps_writeable = 1;
940                 zio_buf_free(zio->io_data, zio->io_size);
941         } else if (zio->io_type == ZIO_TYPE_NULL) {
942                 zio_t *pio;
943
944                 vd->vdev_cant_read |= !vps->vps_readable;
945                 vd->vdev_cant_write |= !vps->vps_writeable;
946
947                 if (vdev_readable(vd) &&
948                     (vdev_writeable(vd) || !spa_writeable(spa))) {
949                         zio->io_error = 0;
950                 } else {
951                         ASSERT(zio->io_error != 0);
952                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
953                             spa, vd, NULL, 0, 0);
954                         zio->io_error = ENXIO;
955                 }
956
957                 mutex_enter(&vd->vdev_probe_lock);
958                 ASSERT(vd->vdev_probe_zio == zio);
959                 vd->vdev_probe_zio = NULL;
960                 mutex_exit(&vd->vdev_probe_lock);
961
962                 while ((pio = zio_walk_parents(zio)) != NULL)
963                         if (!vdev_accessible(vd, pio))
964                                 pio->io_error = ENXIO;
965
966                 kmem_free(vps, sizeof (*vps));
967         }
968 }
969
970 /*
971  * Determine whether this device is accessible by reading and writing
972  * to several known locations: the pad regions of each vdev label
973  * but the first (which we leave alone in case it contains a VTOC).
974  */
975 zio_t *
976 vdev_probe(vdev_t *vd, zio_t *zio)
977 {
978         spa_t *spa = vd->vdev_spa;
979         vdev_probe_stats_t *vps = NULL;
980         zio_t *pio;
981         int l;
982
983         ASSERT(vd->vdev_ops->vdev_op_leaf);
984
985         /*
986          * Don't probe the probe.
987          */
988         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
989                 return (NULL);
990
991         /*
992          * To prevent 'probe storms' when a device fails, we create
993          * just one probe i/o at a time.  All zios that want to probe
994          * this vdev will become parents of the probe io.
995          */
996         mutex_enter(&vd->vdev_probe_lock);
997
998         if ((pio = vd->vdev_probe_zio) == NULL) {
999                 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1000
1001                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1002                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1003                     ZIO_FLAG_TRYHARD;
1004
1005                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1006                         /*
1007                          * vdev_cant_read and vdev_cant_write can only
1008                          * transition from TRUE to FALSE when we have the
1009                          * SCL_ZIO lock as writer; otherwise they can only
1010                          * transition from FALSE to TRUE.  This ensures that
1011                          * any zio looking at these values can assume that
1012                          * failures persist for the life of the I/O.  That's
1013                          * important because when a device has intermittent
1014                          * connectivity problems, we want to ensure that
1015                          * they're ascribed to the device (ENXIO) and not
1016                          * the zio (EIO).
1017                          *
1018                          * Since we hold SCL_ZIO as writer here, clear both
1019                          * values so the probe can reevaluate from first
1020                          * principles.
1021                          */
1022                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1023                         vd->vdev_cant_read = B_FALSE;
1024                         vd->vdev_cant_write = B_FALSE;
1025                 }
1026
1027                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1028                     vdev_probe_done, vps,
1029                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1030
1031                 /*
1032                  * We can't change the vdev state in this context, so we
1033                  * kick off an async task to do it on our behalf.
1034                  */
1035                 if (zio != NULL) {
1036                         vd->vdev_probe_wanted = B_TRUE;
1037                         spa_async_request(spa, SPA_ASYNC_PROBE);
1038                 }
1039         }
1040
1041         if (zio != NULL)
1042                 zio_add_child(zio, pio);
1043
1044         mutex_exit(&vd->vdev_probe_lock);
1045
1046         if (vps == NULL) {
1047                 ASSERT(zio != NULL);
1048                 return (NULL);
1049         }
1050
1051         for (l = 1; l < VDEV_LABELS; l++) {
1052                 zio_nowait(zio_read_phys(pio, vd,
1053                     vdev_label_offset(vd->vdev_psize, l,
1054                     offsetof(vdev_label_t, vl_pad2)),
1055                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1056                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1058         }
1059
1060         if (zio == NULL)
1061                 return (pio);
1062
1063         zio_nowait(pio);
1064         return (NULL);
1065 }
1066
1067 static void
1068 vdev_open_child(void *arg)
1069 {
1070         vdev_t *vd = arg;
1071
1072         vd->vdev_open_thread = curthread;
1073         vd->vdev_open_error = vdev_open(vd);
1074         vd->vdev_open_thread = NULL;
1075 }
1076
1077 boolean_t
1078 vdev_uses_zvols(vdev_t *vd)
1079 {
1080 /*
1081  * Stacking zpools on top of zvols is unsupported until we implement a method
1082  * for determining if an arbitrary block device is a zvol without using the
1083  * path.  Solaris would check the 'zvol' path component but this does not
1084  * exist in the Linux port, so we really should do something like stat the
1085  * file and check the major number.  This is complicated by the fact that
1086  * we need to do this portably in user or kernel space.
1087  */
1088 #if 0
1089         int c;
1090
1091         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1092             strlen(ZVOL_DIR)) == 0)
1093                 return (B_TRUE);
1094         for (c = 0; c < vd->vdev_children; c++)
1095                 if (vdev_uses_zvols(vd->vdev_child[c]))
1096                         return (B_TRUE);
1097 #endif
1098         return (B_FALSE);
1099 }
1100
1101 void
1102 vdev_open_children(vdev_t *vd)
1103 {
1104         taskq_t *tq;
1105         int children = vd->vdev_children;
1106         int c;
1107
1108         /*
1109          * in order to handle pools on top of zvols, do the opens
1110          * in a single thread so that the same thread holds the
1111          * spa_namespace_lock
1112          */
1113         if (vdev_uses_zvols(vd)) {
1114                 for (c = 0; c < children; c++)
1115                         vd->vdev_child[c]->vdev_open_error =
1116                             vdev_open(vd->vdev_child[c]);
1117                 return;
1118         }
1119         tq = taskq_create("vdev_open", children, minclsyspri,
1120             children, children, TASKQ_PREPOPULATE);
1121
1122         for (c = 0; c < children; c++)
1123                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1124                     TQ_SLEEP) != 0);
1125
1126         taskq_destroy(tq);
1127 }
1128
1129 /*
1130  * Prepare a virtual device for access.
1131  */
1132 int
1133 vdev_open(vdev_t *vd)
1134 {
1135         spa_t *spa = vd->vdev_spa;
1136         int error;
1137         uint64_t osize = 0;
1138         uint64_t max_osize = 0;
1139         uint64_t asize, max_asize, psize;
1140         uint64_t ashift = 0;
1141         int c;
1142
1143         ASSERT(vd->vdev_open_thread == curthread ||
1144             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1145         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1146             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1147             vd->vdev_state == VDEV_STATE_OFFLINE);
1148
1149         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1150         vd->vdev_cant_read = B_FALSE;
1151         vd->vdev_cant_write = B_FALSE;
1152         vd->vdev_min_asize = vdev_get_min_asize(vd);
1153
1154         /*
1155          * If this vdev is not removed, check its fault status.  If it's
1156          * faulted, bail out of the open.
1157          */
1158         if (!vd->vdev_removed && vd->vdev_faulted) {
1159                 ASSERT(vd->vdev_children == 0);
1160                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163                     vd->vdev_label_aux);
1164                 return (ENXIO);
1165         } else if (vd->vdev_offline) {
1166                 ASSERT(vd->vdev_children == 0);
1167                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1168                 return (ENXIO);
1169         }
1170
1171         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1172
1173         /*
1174          * Reset the vdev_reopening flag so that we actually close
1175          * the vdev on error.
1176          */
1177         vd->vdev_reopening = B_FALSE;
1178         if (zio_injection_enabled && error == 0)
1179                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1180
1181         if (error) {
1182                 if (vd->vdev_removed &&
1183                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1184                         vd->vdev_removed = B_FALSE;
1185
1186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1187                     vd->vdev_stat.vs_aux);
1188                 return (error);
1189         }
1190
1191         vd->vdev_removed = B_FALSE;
1192
1193         /*
1194          * Recheck the faulted flag now that we have confirmed that
1195          * the vdev is accessible.  If we're faulted, bail.
1196          */
1197         if (vd->vdev_faulted) {
1198                 ASSERT(vd->vdev_children == 0);
1199                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1200                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1201                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1202                     vd->vdev_label_aux);
1203                 return (ENXIO);
1204         }
1205
1206         if (vd->vdev_degraded) {
1207                 ASSERT(vd->vdev_children == 0);
1208                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1209                     VDEV_AUX_ERR_EXCEEDED);
1210         } else {
1211                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1212         }
1213
1214         /*
1215          * For hole or missing vdevs we just return success.
1216          */
1217         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1218                 return (0);
1219
1220         for (c = 0; c < vd->vdev_children; c++) {
1221                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1222                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1223                             VDEV_AUX_NONE);
1224                         break;
1225                 }
1226         }
1227
1228         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1229         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1230
1231         if (vd->vdev_children == 0) {
1232                 if (osize < SPA_MINDEVSIZE) {
1233                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234                             VDEV_AUX_TOO_SMALL);
1235                         return (EOVERFLOW);
1236                 }
1237                 psize = osize;
1238                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1239                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1240                     VDEV_LABEL_END_SIZE);
1241         } else {
1242                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1243                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1244                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245                             VDEV_AUX_TOO_SMALL);
1246                         return (EOVERFLOW);
1247                 }
1248                 psize = 0;
1249                 asize = osize;
1250                 max_asize = max_osize;
1251         }
1252
1253         vd->vdev_psize = psize;
1254
1255         /*
1256          * Make sure the allocatable size hasn't shrunk.
1257          */
1258         if (asize < vd->vdev_min_asize) {
1259                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260                     VDEV_AUX_BAD_LABEL);
1261                 return (EINVAL);
1262         }
1263
1264         if (vd->vdev_asize == 0) {
1265                 /*
1266                  * This is the first-ever open, so use the computed values.
1267                  * For testing purposes, a higher ashift can be requested.
1268                  */
1269                 vd->vdev_asize = asize;
1270                 vd->vdev_max_asize = max_asize;
1271                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1272         } else {
1273                 /*
1274                  * Detect if the alignment requirement has increased.
1275                  * We don't want to make the pool unavailable, just
1276                  * post an event instead.
1277                  */
1278                 if (ashift > vd->vdev_top->vdev_ashift &&
1279                     vd->vdev_ops->vdev_op_leaf) {
1280                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1281                             spa, vd, NULL, 0, 0);
1282                 }
1283
1284                 vd->vdev_max_asize = max_asize;
1285         }
1286
1287         /*
1288          * If all children are healthy and the asize has increased,
1289          * then we've experienced dynamic LUN growth.  If automatic
1290          * expansion is enabled then use the additional space.
1291          */
1292         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1293             (vd->vdev_expanding || spa->spa_autoexpand))
1294                 vd->vdev_asize = asize;
1295
1296         vdev_set_min_asize(vd);
1297
1298         /*
1299          * Ensure we can issue some IO before declaring the
1300          * vdev open for business.
1301          */
1302         if (vd->vdev_ops->vdev_op_leaf &&
1303             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1304                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1305                     VDEV_AUX_ERR_EXCEEDED);
1306                 return (error);
1307         }
1308
1309         /*
1310          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1311          * resilver.  But don't do this if we are doing a reopen for a scrub,
1312          * since this would just restart the scrub we are already doing.
1313          */
1314         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1315             vdev_resilver_needed(vd, NULL, NULL))
1316                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1317
1318         return (0);
1319 }
1320
1321 /*
1322  * Called once the vdevs are all opened, this routine validates the label
1323  * contents.  This needs to be done before vdev_load() so that we don't
1324  * inadvertently do repair I/Os to the wrong device.
1325  *
1326  * If 'strict' is false ignore the spa guid check. This is necessary because
1327  * if the machine crashed during a re-guid the new guid might have been written
1328  * to all of the vdev labels, but not the cached config. The strict check
1329  * will be performed when the pool is opened again using the mos config.
1330  *
1331  * This function will only return failure if one of the vdevs indicates that it
1332  * has since been destroyed or exported.  This is only possible if
1333  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1334  * will be updated but the function will return 0.
1335  */
1336 int
1337 vdev_validate(vdev_t *vd, boolean_t strict)
1338 {
1339         spa_t *spa = vd->vdev_spa;
1340         nvlist_t *label;
1341         uint64_t guid = 0, top_guid;
1342         uint64_t state;
1343         int c;
1344
1345         for (c = 0; c < vd->vdev_children; c++)
1346                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1347                         return (EBADF);
1348
1349         /*
1350          * If the device has already failed, or was marked offline, don't do
1351          * any further validation.  Otherwise, label I/O will fail and we will
1352          * overwrite the previous state.
1353          */
1354         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1355                 uint64_t aux_guid = 0;
1356                 nvlist_t *nvl;
1357
1358                 if ((label = vdev_label_read_config(vd)) == NULL) {
1359                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360                             VDEV_AUX_BAD_LABEL);
1361                         return (0);
1362                 }
1363
1364                 /*
1365                  * Determine if this vdev has been split off into another
1366                  * pool.  If so, then refuse to open it.
1367                  */
1368                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1369                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1370                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1371                             VDEV_AUX_SPLIT_POOL);
1372                         nvlist_free(label);
1373                         return (0);
1374                 }
1375
1376                 if (strict && (nvlist_lookup_uint64(label,
1377                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1378                     guid != spa_guid(spa))) {
1379                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1380                             VDEV_AUX_CORRUPT_DATA);
1381                         nvlist_free(label);
1382                         return (0);
1383                 }
1384
1385                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1386                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1387                     &aux_guid) != 0)
1388                         aux_guid = 0;
1389
1390                 /*
1391                  * If this vdev just became a top-level vdev because its
1392                  * sibling was detached, it will have adopted the parent's
1393                  * vdev guid -- but the label may or may not be on disk yet.
1394                  * Fortunately, either version of the label will have the
1395                  * same top guid, so if we're a top-level vdev, we can
1396                  * safely compare to that instead.
1397                  *
1398                  * If we split this vdev off instead, then we also check the
1399                  * original pool's guid.  We don't want to consider the vdev
1400                  * corrupt if it is partway through a split operation.
1401                  */
1402                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1403                     &guid) != 0 ||
1404                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1405                     &top_guid) != 0 ||
1406                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1407                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1408                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1409                             VDEV_AUX_CORRUPT_DATA);
1410                         nvlist_free(label);
1411                         return (0);
1412                 }
1413
1414                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1415                     &state) != 0) {
1416                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1417                             VDEV_AUX_CORRUPT_DATA);
1418                         nvlist_free(label);
1419                         return (0);
1420                 }
1421
1422                 nvlist_free(label);
1423
1424                 /*
1425                  * If this is a verbatim import, no need to check the
1426                  * state of the pool.
1427                  */
1428                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1429                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1430                     state != POOL_STATE_ACTIVE)
1431                         return (EBADF);
1432
1433                 /*
1434                  * If we were able to open and validate a vdev that was
1435                  * previously marked permanently unavailable, clear that state
1436                  * now.
1437                  */
1438                 if (vd->vdev_not_present)
1439                         vd->vdev_not_present = 0;
1440         }
1441
1442         return (0);
1443 }
1444
1445 /*
1446  * Close a virtual device.
1447  */
1448 void
1449 vdev_close(vdev_t *vd)
1450 {
1451         vdev_t *pvd = vd->vdev_parent;
1452         ASSERTV(spa_t *spa = vd->vdev_spa);
1453
1454         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1455
1456         /*
1457          * If our parent is reopening, then we are as well, unless we are
1458          * going offline.
1459          */
1460         if (pvd != NULL && pvd->vdev_reopening)
1461                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1462
1463         vd->vdev_ops->vdev_op_close(vd);
1464
1465         vdev_cache_purge(vd);
1466
1467         /*
1468          * We record the previous state before we close it, so that if we are
1469          * doing a reopen(), we don't generate FMA ereports if we notice that
1470          * it's still faulted.
1471          */
1472         vd->vdev_prevstate = vd->vdev_state;
1473
1474         if (vd->vdev_offline)
1475                 vd->vdev_state = VDEV_STATE_OFFLINE;
1476         else
1477                 vd->vdev_state = VDEV_STATE_CLOSED;
1478         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1479 }
1480
1481 void
1482 vdev_hold(vdev_t *vd)
1483 {
1484         spa_t *spa = vd->vdev_spa;
1485         int c;
1486
1487         ASSERT(spa_is_root(spa));
1488         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1489                 return;
1490
1491         for (c = 0; c < vd->vdev_children; c++)
1492                 vdev_hold(vd->vdev_child[c]);
1493
1494         if (vd->vdev_ops->vdev_op_leaf)
1495                 vd->vdev_ops->vdev_op_hold(vd);
1496 }
1497
1498 void
1499 vdev_rele(vdev_t *vd)
1500 {
1501         int c;
1502
1503         ASSERT(spa_is_root(vd->vdev_spa));
1504         for (c = 0; c < vd->vdev_children; c++)
1505                 vdev_rele(vd->vdev_child[c]);
1506
1507         if (vd->vdev_ops->vdev_op_leaf)
1508                 vd->vdev_ops->vdev_op_rele(vd);
1509 }
1510
1511 /*
1512  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1513  * reopen leaf vdevs which had previously been opened as they might deadlock
1514  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1515  * If the leaf has never been opened then open it, as usual.
1516  */
1517 void
1518 vdev_reopen(vdev_t *vd)
1519 {
1520         spa_t *spa = vd->vdev_spa;
1521
1522         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1523
1524         /* set the reopening flag unless we're taking the vdev offline */
1525         vd->vdev_reopening = !vd->vdev_offline;
1526         vdev_close(vd);
1527         (void) vdev_open(vd);
1528
1529         /*
1530          * Call vdev_validate() here to make sure we have the same device.
1531          * Otherwise, a device with an invalid label could be successfully
1532          * opened in response to vdev_reopen().
1533          */
1534         if (vd->vdev_aux) {
1535                 (void) vdev_validate_aux(vd);
1536                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1537                     vd->vdev_aux == &spa->spa_l2cache &&
1538                     !l2arc_vdev_present(vd))
1539                         l2arc_add_vdev(spa, vd);
1540         } else {
1541                 (void) vdev_validate(vd, B_TRUE);
1542         }
1543
1544         /*
1545          * Reassess parent vdev's health.
1546          */
1547         vdev_propagate_state(vd);
1548 }
1549
1550 int
1551 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1552 {
1553         int error;
1554
1555         /*
1556          * Normally, partial opens (e.g. of a mirror) are allowed.
1557          * For a create, however, we want to fail the request if
1558          * there are any components we can't open.
1559          */
1560         error = vdev_open(vd);
1561
1562         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1563                 vdev_close(vd);
1564                 return (error ? error : ENXIO);
1565         }
1566
1567         /*
1568          * Recursively initialize all labels.
1569          */
1570         if ((error = vdev_label_init(vd, txg, isreplacing ?
1571             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1572                 vdev_close(vd);
1573                 return (error);
1574         }
1575
1576         return (0);
1577 }
1578
1579 void
1580 vdev_metaslab_set_size(vdev_t *vd)
1581 {
1582         /*
1583          * Aim for roughly 200 metaslabs per vdev.
1584          */
1585         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1586         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1587 }
1588
1589 void
1590 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1591 {
1592         ASSERT(vd == vd->vdev_top);
1593         ASSERT(!vd->vdev_ishole);
1594         ASSERT(ISP2(flags));
1595         ASSERT(spa_writeable(vd->vdev_spa));
1596
1597         if (flags & VDD_METASLAB)
1598                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1599
1600         if (flags & VDD_DTL)
1601                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1602
1603         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1604 }
1605
1606 /*
1607  * DTLs.
1608  *
1609  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1610  * the vdev has less than perfect replication.  There are four kinds of DTL:
1611  *
1612  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1613  *
1614  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1615  *
1616  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1617  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1618  *      txgs that was scrubbed.
1619  *
1620  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1621  *      persistent errors or just some device being offline.
1622  *      Unlike the other three, the DTL_OUTAGE map is not generally
1623  *      maintained; it's only computed when needed, typically to
1624  *      determine whether a device can be detached.
1625  *
1626  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1627  * either has the data or it doesn't.
1628  *
1629  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1630  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1631  * if any child is less than fully replicated, then so is its parent.
1632  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1633  * comprising only those txgs which appear in 'maxfaults' or more children;
1634  * those are the txgs we don't have enough replication to read.  For example,
1635  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1636  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1637  * two child DTL_MISSING maps.
1638  *
1639  * It should be clear from the above that to compute the DTLs and outage maps
1640  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1641  * Therefore, that is all we keep on disk.  When loading the pool, or after
1642  * a configuration change, we generate all other DTLs from first principles.
1643  */
1644 void
1645 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1646 {
1647         space_map_t *sm = &vd->vdev_dtl[t];
1648
1649         ASSERT(t < DTL_TYPES);
1650         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1651         ASSERT(spa_writeable(vd->vdev_spa));
1652
1653         mutex_enter(sm->sm_lock);
1654         if (!space_map_contains(sm, txg, size))
1655                 space_map_add(sm, txg, size);
1656         mutex_exit(sm->sm_lock);
1657 }
1658
1659 boolean_t
1660 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1661 {
1662         space_map_t *sm = &vd->vdev_dtl[t];
1663         boolean_t dirty = B_FALSE;
1664
1665         ASSERT(t < DTL_TYPES);
1666         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1667
1668         mutex_enter(sm->sm_lock);
1669         if (sm->sm_space != 0)
1670                 dirty = space_map_contains(sm, txg, size);
1671         mutex_exit(sm->sm_lock);
1672
1673         return (dirty);
1674 }
1675
1676 boolean_t
1677 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1678 {
1679         space_map_t *sm = &vd->vdev_dtl[t];
1680         boolean_t empty;
1681
1682         mutex_enter(sm->sm_lock);
1683         empty = (sm->sm_space == 0);
1684         mutex_exit(sm->sm_lock);
1685
1686         return (empty);
1687 }
1688
1689 /*
1690  * Reassess DTLs after a config change or scrub completion.
1691  */
1692 void
1693 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1694 {
1695         spa_t *spa = vd->vdev_spa;
1696         avl_tree_t reftree;
1697         int c, t, minref;
1698
1699         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1700
1701         for (c = 0; c < vd->vdev_children; c++)
1702                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1703                     scrub_txg, scrub_done);
1704
1705         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1706                 return;
1707
1708         if (vd->vdev_ops->vdev_op_leaf) {
1709                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1710
1711                 mutex_enter(&vd->vdev_dtl_lock);
1712                 if (scrub_txg != 0 &&
1713                     (spa->spa_scrub_started ||
1714                     (scn && scn->scn_phys.scn_errors == 0))) {
1715                         /*
1716                          * We completed a scrub up to scrub_txg.  If we
1717                          * did it without rebooting, then the scrub dtl
1718                          * will be valid, so excise the old region and
1719                          * fold in the scrub dtl.  Otherwise, leave the
1720                          * dtl as-is if there was an error.
1721                          *
1722                          * There's little trick here: to excise the beginning
1723                          * of the DTL_MISSING map, we put it into a reference
1724                          * tree and then add a segment with refcnt -1 that
1725                          * covers the range [0, scrub_txg).  This means
1726                          * that each txg in that range has refcnt -1 or 0.
1727                          * We then add DTL_SCRUB with a refcnt of 2, so that
1728                          * entries in the range [0, scrub_txg) will have a
1729                          * positive refcnt -- either 1 or 2.  We then convert
1730                          * the reference tree into the new DTL_MISSING map.
1731                          */
1732                         space_map_ref_create(&reftree);
1733                         space_map_ref_add_map(&reftree,
1734                             &vd->vdev_dtl[DTL_MISSING], 1);
1735                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1736                         space_map_ref_add_map(&reftree,
1737                             &vd->vdev_dtl[DTL_SCRUB], 2);
1738                         space_map_ref_generate_map(&reftree,
1739                             &vd->vdev_dtl[DTL_MISSING], 1);
1740                         space_map_ref_destroy(&reftree);
1741                 }
1742                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1743                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1744                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1745                 if (scrub_done)
1746                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1747                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1748                 if (!vdev_readable(vd))
1749                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1750                 else
1751                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1752                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1753                 mutex_exit(&vd->vdev_dtl_lock);
1754
1755                 if (txg != 0)
1756                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1757                 return;
1758         }
1759
1760         mutex_enter(&vd->vdev_dtl_lock);
1761         for (t = 0; t < DTL_TYPES; t++) {
1762                 /* account for child's outage in parent's missing map */
1763                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1764                 if (t == DTL_SCRUB)
1765                         continue;                       /* leaf vdevs only */
1766                 if (t == DTL_PARTIAL)
1767                         minref = 1;                     /* i.e. non-zero */
1768                 else if (vd->vdev_nparity != 0)
1769                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1770                 else
1771                         minref = vd->vdev_children;     /* any kind of mirror */
1772                 space_map_ref_create(&reftree);
1773                 for (c = 0; c < vd->vdev_children; c++) {
1774                         vdev_t *cvd = vd->vdev_child[c];
1775                         mutex_enter(&cvd->vdev_dtl_lock);
1776                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1777                         mutex_exit(&cvd->vdev_dtl_lock);
1778                 }
1779                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1780                 space_map_ref_destroy(&reftree);
1781         }
1782         mutex_exit(&vd->vdev_dtl_lock);
1783 }
1784
1785 static int
1786 vdev_dtl_load(vdev_t *vd)
1787 {
1788         spa_t *spa = vd->vdev_spa;
1789         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1790         objset_t *mos = spa->spa_meta_objset;
1791         dmu_buf_t *db;
1792         int error;
1793
1794         ASSERT(vd->vdev_children == 0);
1795
1796         if (smo->smo_object == 0)
1797                 return (0);
1798
1799         ASSERT(!vd->vdev_ishole);
1800
1801         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1802                 return (error);
1803
1804         ASSERT3U(db->db_size, >=, sizeof (*smo));
1805         bcopy(db->db_data, smo, sizeof (*smo));
1806         dmu_buf_rele(db, FTAG);
1807
1808         mutex_enter(&vd->vdev_dtl_lock);
1809         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1810             NULL, SM_ALLOC, smo, mos);
1811         mutex_exit(&vd->vdev_dtl_lock);
1812
1813         return (error);
1814 }
1815
1816 void
1817 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1818 {
1819         spa_t *spa = vd->vdev_spa;
1820         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1821         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1822         objset_t *mos = spa->spa_meta_objset;
1823         space_map_t smsync;
1824         kmutex_t smlock;
1825         dmu_buf_t *db;
1826         dmu_tx_t *tx;
1827
1828         ASSERT(!vd->vdev_ishole);
1829
1830         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1831
1832         if (vd->vdev_detached) {
1833                 if (smo->smo_object != 0) {
1834                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1835                         smo->smo_object = 0;
1836                 }
1837                 dmu_tx_commit(tx);
1838                 return;
1839         }
1840
1841         if (smo->smo_object == 0) {
1842                 ASSERT(smo->smo_objsize == 0);
1843                 ASSERT(smo->smo_alloc == 0);
1844                 smo->smo_object = dmu_object_alloc(mos,
1845                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1846                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1847                 ASSERT(smo->smo_object != 0);
1848                 vdev_config_dirty(vd->vdev_top);
1849         }
1850
1851         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1852
1853         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1854             &smlock);
1855
1856         mutex_enter(&smlock);
1857
1858         mutex_enter(&vd->vdev_dtl_lock);
1859         space_map_walk(sm, space_map_add, &smsync);
1860         mutex_exit(&vd->vdev_dtl_lock);
1861
1862         space_map_truncate(smo, mos, tx);
1863         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1864
1865         space_map_destroy(&smsync);
1866
1867         mutex_exit(&smlock);
1868         mutex_destroy(&smlock);
1869
1870         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1871         dmu_buf_will_dirty(db, tx);
1872         ASSERT3U(db->db_size, >=, sizeof (*smo));
1873         bcopy(smo, db->db_data, sizeof (*smo));
1874         dmu_buf_rele(db, FTAG);
1875
1876         dmu_tx_commit(tx);
1877 }
1878
1879 /*
1880  * Determine whether the specified vdev can be offlined/detached/removed
1881  * without losing data.
1882  */
1883 boolean_t
1884 vdev_dtl_required(vdev_t *vd)
1885 {
1886         spa_t *spa = vd->vdev_spa;
1887         vdev_t *tvd = vd->vdev_top;
1888         uint8_t cant_read = vd->vdev_cant_read;
1889         boolean_t required;
1890
1891         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1892
1893         if (vd == spa->spa_root_vdev || vd == tvd)
1894                 return (B_TRUE);
1895
1896         /*
1897          * Temporarily mark the device as unreadable, and then determine
1898          * whether this results in any DTL outages in the top-level vdev.
1899          * If not, we can safely offline/detach/remove the device.
1900          */
1901         vd->vdev_cant_read = B_TRUE;
1902         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1903         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1904         vd->vdev_cant_read = cant_read;
1905         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1906
1907         if (!required && zio_injection_enabled)
1908                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1909
1910         return (required);
1911 }
1912
1913 /*
1914  * Determine if resilver is needed, and if so the txg range.
1915  */
1916 boolean_t
1917 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1918 {
1919         boolean_t needed = B_FALSE;
1920         uint64_t thismin = UINT64_MAX;
1921         uint64_t thismax = 0;
1922         int c;
1923
1924         if (vd->vdev_children == 0) {
1925                 mutex_enter(&vd->vdev_dtl_lock);
1926                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1927                     vdev_writeable(vd)) {
1928                         space_seg_t *ss;
1929
1930                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1931                         thismin = ss->ss_start - 1;
1932                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1933                         thismax = ss->ss_end;
1934                         needed = B_TRUE;
1935                 }
1936                 mutex_exit(&vd->vdev_dtl_lock);
1937         } else {
1938                 for (c = 0; c < vd->vdev_children; c++) {
1939                         vdev_t *cvd = vd->vdev_child[c];
1940                         uint64_t cmin, cmax;
1941
1942                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1943                                 thismin = MIN(thismin, cmin);
1944                                 thismax = MAX(thismax, cmax);
1945                                 needed = B_TRUE;
1946                         }
1947                 }
1948         }
1949
1950         if (needed && minp) {
1951                 *minp = thismin;
1952                 *maxp = thismax;
1953         }
1954         return (needed);
1955 }
1956
1957 void
1958 vdev_load(vdev_t *vd)
1959 {
1960         int c;
1961
1962         /*
1963          * Recursively load all children.
1964          */
1965         for (c = 0; c < vd->vdev_children; c++)
1966                 vdev_load(vd->vdev_child[c]);
1967
1968         /*
1969          * If this is a top-level vdev, initialize its metaslabs.
1970          */
1971         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1972             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1973             vdev_metaslab_init(vd, 0) != 0))
1974                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1975                     VDEV_AUX_CORRUPT_DATA);
1976
1977         /*
1978          * If this is a leaf vdev, load its DTL.
1979          */
1980         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1981                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1982                     VDEV_AUX_CORRUPT_DATA);
1983 }
1984
1985 /*
1986  * The special vdev case is used for hot spares and l2cache devices.  Its
1987  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1988  * we make sure that we can open the underlying device, then try to read the
1989  * label, and make sure that the label is sane and that it hasn't been
1990  * repurposed to another pool.
1991  */
1992 int
1993 vdev_validate_aux(vdev_t *vd)
1994 {
1995         nvlist_t *label;
1996         uint64_t guid, version;
1997         uint64_t state;
1998
1999         if (!vdev_readable(vd))
2000                 return (0);
2001
2002         if ((label = vdev_label_read_config(vd)) == NULL) {
2003                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2004                     VDEV_AUX_CORRUPT_DATA);
2005                 return (-1);
2006         }
2007
2008         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2009             version > SPA_VERSION ||
2010             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2011             guid != vd->vdev_guid ||
2012             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2013                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2014                     VDEV_AUX_CORRUPT_DATA);
2015                 nvlist_free(label);
2016                 return (-1);
2017         }
2018
2019         /*
2020          * We don't actually check the pool state here.  If it's in fact in
2021          * use by another pool, we update this fact on the fly when requested.
2022          */
2023         nvlist_free(label);
2024         return (0);
2025 }
2026
2027 void
2028 vdev_remove(vdev_t *vd, uint64_t txg)
2029 {
2030         spa_t *spa = vd->vdev_spa;
2031         objset_t *mos = spa->spa_meta_objset;
2032         dmu_tx_t *tx;
2033         int m;
2034
2035         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2036
2037         if (vd->vdev_dtl_smo.smo_object) {
2038                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2039                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2040                 vd->vdev_dtl_smo.smo_object = 0;
2041         }
2042
2043         if (vd->vdev_ms != NULL) {
2044                 for (m = 0; m < vd->vdev_ms_count; m++) {
2045                         metaslab_t *msp = vd->vdev_ms[m];
2046
2047                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2048                                 continue;
2049
2050                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2051                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2052                         msp->ms_smo.smo_object = 0;
2053                 }
2054         }
2055
2056         if (vd->vdev_ms_array) {
2057                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2058                 vd->vdev_ms_array = 0;
2059                 vd->vdev_ms_shift = 0;
2060         }
2061         dmu_tx_commit(tx);
2062 }
2063
2064 void
2065 vdev_sync_done(vdev_t *vd, uint64_t txg)
2066 {
2067         metaslab_t *msp;
2068         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2069
2070         ASSERT(!vd->vdev_ishole);
2071
2072         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2073                 metaslab_sync_done(msp, txg);
2074
2075         if (reassess)
2076                 metaslab_sync_reassess(vd->vdev_mg);
2077 }
2078
2079 void
2080 vdev_sync(vdev_t *vd, uint64_t txg)
2081 {
2082         spa_t *spa = vd->vdev_spa;
2083         vdev_t *lvd;
2084         metaslab_t *msp;
2085         dmu_tx_t *tx;
2086
2087         ASSERT(!vd->vdev_ishole);
2088
2089         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2090                 ASSERT(vd == vd->vdev_top);
2091                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2092                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2093                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2094                 ASSERT(vd->vdev_ms_array != 0);
2095                 vdev_config_dirty(vd);
2096                 dmu_tx_commit(tx);
2097         }
2098
2099         /*
2100          * Remove the metadata associated with this vdev once it's empty.
2101          */
2102         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2103                 vdev_remove(vd, txg);
2104
2105         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2106                 metaslab_sync(msp, txg);
2107                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2108         }
2109
2110         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2111                 vdev_dtl_sync(lvd, txg);
2112
2113         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2114 }
2115
2116 uint64_t
2117 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2118 {
2119         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2120 }
2121
2122 /*
2123  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2124  * not be opened, and no I/O is attempted.
2125  */
2126 int
2127 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2128 {
2129         vdev_t *vd, *tvd;
2130
2131         spa_vdev_state_enter(spa, SCL_NONE);
2132
2133         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2134                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2135
2136         if (!vd->vdev_ops->vdev_op_leaf)
2137                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2138
2139         tvd = vd->vdev_top;
2140
2141         /*
2142          * We don't directly use the aux state here, but if we do a
2143          * vdev_reopen(), we need this value to be present to remember why we
2144          * were faulted.
2145          */
2146         vd->vdev_label_aux = aux;
2147
2148         /*
2149          * Faulted state takes precedence over degraded.
2150          */
2151         vd->vdev_delayed_close = B_FALSE;
2152         vd->vdev_faulted = 1ULL;
2153         vd->vdev_degraded = 0ULL;
2154         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2155
2156         /*
2157          * If this device has the only valid copy of the data, then
2158          * back off and simply mark the vdev as degraded instead.
2159          */
2160         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2161                 vd->vdev_degraded = 1ULL;
2162                 vd->vdev_faulted = 0ULL;
2163
2164                 /*
2165                  * If we reopen the device and it's not dead, only then do we
2166                  * mark it degraded.
2167                  */
2168                 vdev_reopen(tvd);
2169
2170                 if (vdev_readable(vd))
2171                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2172         }
2173
2174         return (spa_vdev_state_exit(spa, vd, 0));
2175 }
2176
2177 /*
2178  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2179  * user that something is wrong.  The vdev continues to operate as normal as far
2180  * as I/O is concerned.
2181  */
2182 int
2183 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2184 {
2185         vdev_t *vd;
2186
2187         spa_vdev_state_enter(spa, SCL_NONE);
2188
2189         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2190                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2191
2192         if (!vd->vdev_ops->vdev_op_leaf)
2193                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2194
2195         /*
2196          * If the vdev is already faulted, then don't do anything.
2197          */
2198         if (vd->vdev_faulted || vd->vdev_degraded)
2199                 return (spa_vdev_state_exit(spa, NULL, 0));
2200
2201         vd->vdev_degraded = 1ULL;
2202         if (!vdev_is_dead(vd))
2203                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2204                     aux);
2205
2206         return (spa_vdev_state_exit(spa, vd, 0));
2207 }
2208
2209 /*
2210  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2211  * any attached spare device should be detached when the device finishes
2212  * resilvering.  Second, the online should be treated like a 'test' online case,
2213  * so no FMA events are generated if the device fails to open.
2214  */
2215 int
2216 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2217 {
2218         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2219
2220         spa_vdev_state_enter(spa, SCL_NONE);
2221
2222         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2223                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2224
2225         if (!vd->vdev_ops->vdev_op_leaf)
2226                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2227
2228         tvd = vd->vdev_top;
2229         vd->vdev_offline = B_FALSE;
2230         vd->vdev_tmpoffline = B_FALSE;
2231         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2232         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2233
2234         /* XXX - L2ARC 1.0 does not support expansion */
2235         if (!vd->vdev_aux) {
2236                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2237                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2238         }
2239
2240         vdev_reopen(tvd);
2241         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2242
2243         if (!vd->vdev_aux) {
2244                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2245                         pvd->vdev_expanding = B_FALSE;
2246         }
2247
2248         if (newstate)
2249                 *newstate = vd->vdev_state;
2250         if ((flags & ZFS_ONLINE_UNSPARE) &&
2251             !vdev_is_dead(vd) && vd->vdev_parent &&
2252             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2253             vd->vdev_parent->vdev_child[0] == vd)
2254                 vd->vdev_unspare = B_TRUE;
2255
2256         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2257
2258                 /* XXX - L2ARC 1.0 does not support expansion */
2259                 if (vd->vdev_aux)
2260                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2261                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2262         }
2263         return (spa_vdev_state_exit(spa, vd, 0));
2264 }
2265
2266 static int
2267 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2268 {
2269         vdev_t *vd, *tvd;
2270         int error = 0;
2271         uint64_t generation;
2272         metaslab_group_t *mg;
2273
2274 top:
2275         spa_vdev_state_enter(spa, SCL_ALLOC);
2276
2277         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2278                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2279
2280         if (!vd->vdev_ops->vdev_op_leaf)
2281                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2282
2283         tvd = vd->vdev_top;
2284         mg = tvd->vdev_mg;
2285         generation = spa->spa_config_generation + 1;
2286
2287         /*
2288          * If the device isn't already offline, try to offline it.
2289          */
2290         if (!vd->vdev_offline) {
2291                 /*
2292                  * If this device has the only valid copy of some data,
2293                  * don't allow it to be offlined. Log devices are always
2294                  * expendable.
2295                  */
2296                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2297                     vdev_dtl_required(vd))
2298                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2299
2300                 /*
2301                  * If the top-level is a slog and it has had allocations
2302                  * then proceed.  We check that the vdev's metaslab group
2303                  * is not NULL since it's possible that we may have just
2304                  * added this vdev but not yet initialized its metaslabs.
2305                  */
2306                 if (tvd->vdev_islog && mg != NULL) {
2307                         /*
2308                          * Prevent any future allocations.
2309                          */
2310                         metaslab_group_passivate(mg);
2311                         (void) spa_vdev_state_exit(spa, vd, 0);
2312
2313                         error = spa_offline_log(spa);
2314
2315                         spa_vdev_state_enter(spa, SCL_ALLOC);
2316
2317                         /*
2318                          * Check to see if the config has changed.
2319                          */
2320                         if (error || generation != spa->spa_config_generation) {
2321                                 metaslab_group_activate(mg);
2322                                 if (error)
2323                                         return (spa_vdev_state_exit(spa,
2324                                             vd, error));
2325                                 (void) spa_vdev_state_exit(spa, vd, 0);
2326                                 goto top;
2327                         }
2328                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2329                 }
2330
2331                 /*
2332                  * Offline this device and reopen its top-level vdev.
2333                  * If the top-level vdev is a log device then just offline
2334                  * it. Otherwise, if this action results in the top-level
2335                  * vdev becoming unusable, undo it and fail the request.
2336                  */
2337                 vd->vdev_offline = B_TRUE;
2338                 vdev_reopen(tvd);
2339
2340                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2341                     vdev_is_dead(tvd)) {
2342                         vd->vdev_offline = B_FALSE;
2343                         vdev_reopen(tvd);
2344                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2345                 }
2346
2347                 /*
2348                  * Add the device back into the metaslab rotor so that
2349                  * once we online the device it's open for business.
2350                  */
2351                 if (tvd->vdev_islog && mg != NULL)
2352                         metaslab_group_activate(mg);
2353         }
2354
2355         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2356
2357         return (spa_vdev_state_exit(spa, vd, 0));
2358 }
2359
2360 int
2361 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2362 {
2363         int error;
2364
2365         mutex_enter(&spa->spa_vdev_top_lock);
2366         error = vdev_offline_locked(spa, guid, flags);
2367         mutex_exit(&spa->spa_vdev_top_lock);
2368
2369         return (error);
2370 }
2371
2372 /*
2373  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2374  * vdev_offline(), we assume the spa config is locked.  We also clear all
2375  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2376  */
2377 void
2378 vdev_clear(spa_t *spa, vdev_t *vd)
2379 {
2380         vdev_t *rvd = spa->spa_root_vdev;
2381         int c;
2382
2383         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2384
2385         if (vd == NULL)
2386                 vd = rvd;
2387
2388         vd->vdev_stat.vs_read_errors = 0;
2389         vd->vdev_stat.vs_write_errors = 0;
2390         vd->vdev_stat.vs_checksum_errors = 0;
2391
2392         for (c = 0; c < vd->vdev_children; c++)
2393                 vdev_clear(spa, vd->vdev_child[c]);
2394
2395         /*
2396          * If we're in the FAULTED state or have experienced failed I/O, then
2397          * clear the persistent state and attempt to reopen the device.  We
2398          * also mark the vdev config dirty, so that the new faulted state is
2399          * written out to disk.
2400          */
2401         if (vd->vdev_faulted || vd->vdev_degraded ||
2402             !vdev_readable(vd) || !vdev_writeable(vd)) {
2403
2404                 /*
2405                  * When reopening in reponse to a clear event, it may be due to
2406                  * a fmadm repair request.  In this case, if the device is
2407                  * still broken, we want to still post the ereport again.
2408                  */
2409                 vd->vdev_forcefault = B_TRUE;
2410
2411                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2412                 vd->vdev_cant_read = B_FALSE;
2413                 vd->vdev_cant_write = B_FALSE;
2414
2415                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2416
2417                 vd->vdev_forcefault = B_FALSE;
2418
2419                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2420                         vdev_state_dirty(vd->vdev_top);
2421
2422                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2423                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2424
2425                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2426         }
2427
2428         /*
2429          * When clearing a FMA-diagnosed fault, we always want to
2430          * unspare the device, as we assume that the original spare was
2431          * done in response to the FMA fault.
2432          */
2433         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2434             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2435             vd->vdev_parent->vdev_child[0] == vd)
2436                 vd->vdev_unspare = B_TRUE;
2437 }
2438
2439 boolean_t
2440 vdev_is_dead(vdev_t *vd)
2441 {
2442         /*
2443          * Holes and missing devices are always considered "dead".
2444          * This simplifies the code since we don't have to check for
2445          * these types of devices in the various code paths.
2446          * Instead we rely on the fact that we skip over dead devices
2447          * before issuing I/O to them.
2448          */
2449         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2450             vd->vdev_ops == &vdev_missing_ops);
2451 }
2452
2453 boolean_t
2454 vdev_readable(vdev_t *vd)
2455 {
2456         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2457 }
2458
2459 boolean_t
2460 vdev_writeable(vdev_t *vd)
2461 {
2462         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2463 }
2464
2465 boolean_t
2466 vdev_allocatable(vdev_t *vd)
2467 {
2468         uint64_t state = vd->vdev_state;
2469
2470         /*
2471          * We currently allow allocations from vdevs which may be in the
2472          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2473          * fails to reopen then we'll catch it later when we're holding
2474          * the proper locks.  Note that we have to get the vdev state
2475          * in a local variable because although it changes atomically,
2476          * we're asking two separate questions about it.
2477          */
2478         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2479             !vd->vdev_cant_write && !vd->vdev_ishole);
2480 }
2481
2482 boolean_t
2483 vdev_accessible(vdev_t *vd, zio_t *zio)
2484 {
2485         ASSERT(zio->io_vd == vd);
2486
2487         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2488                 return (B_FALSE);
2489
2490         if (zio->io_type == ZIO_TYPE_READ)
2491                 return (!vd->vdev_cant_read);
2492
2493         if (zio->io_type == ZIO_TYPE_WRITE)
2494                 return (!vd->vdev_cant_write);
2495
2496         return (B_TRUE);
2497 }
2498
2499 /*
2500  * Get statistics for the given vdev.
2501  */
2502 void
2503 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2504 {
2505         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2506         int c, t;
2507
2508         mutex_enter(&vd->vdev_stat_lock);
2509         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2510         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2511         vs->vs_state = vd->vdev_state;
2512         vs->vs_rsize = vdev_get_min_asize(vd);
2513         if (vd->vdev_ops->vdev_op_leaf)
2514                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2515         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2516         mutex_exit(&vd->vdev_stat_lock);
2517
2518         /*
2519          * If we're getting stats on the root vdev, aggregate the I/O counts
2520          * over all top-level vdevs (i.e. the direct children of the root).
2521          */
2522         if (vd == rvd) {
2523                 for (c = 0; c < rvd->vdev_children; c++) {
2524                         vdev_t *cvd = rvd->vdev_child[c];
2525                         vdev_stat_t *cvs = &cvd->vdev_stat;
2526
2527                         mutex_enter(&vd->vdev_stat_lock);
2528                         for (t = 0; t < ZIO_TYPES; t++) {
2529                                 vs->vs_ops[t] += cvs->vs_ops[t];
2530                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2531                         }
2532                         cvs->vs_scan_removing = cvd->vdev_removing;
2533                         mutex_exit(&vd->vdev_stat_lock);
2534                 }
2535         }
2536 }
2537
2538 void
2539 vdev_clear_stats(vdev_t *vd)
2540 {
2541         mutex_enter(&vd->vdev_stat_lock);
2542         vd->vdev_stat.vs_space = 0;
2543         vd->vdev_stat.vs_dspace = 0;
2544         vd->vdev_stat.vs_alloc = 0;
2545         mutex_exit(&vd->vdev_stat_lock);
2546 }
2547
2548 void
2549 vdev_scan_stat_init(vdev_t *vd)
2550 {
2551         vdev_stat_t *vs = &vd->vdev_stat;
2552         int c;
2553
2554         for (c = 0; c < vd->vdev_children; c++)
2555                 vdev_scan_stat_init(vd->vdev_child[c]);
2556
2557         mutex_enter(&vd->vdev_stat_lock);
2558         vs->vs_scan_processed = 0;
2559         mutex_exit(&vd->vdev_stat_lock);
2560 }
2561
2562 void
2563 vdev_stat_update(zio_t *zio, uint64_t psize)
2564 {
2565         spa_t *spa = zio->io_spa;
2566         vdev_t *rvd = spa->spa_root_vdev;
2567         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2568         vdev_t *pvd;
2569         uint64_t txg = zio->io_txg;
2570         vdev_stat_t *vs = &vd->vdev_stat;
2571         zio_type_t type = zio->io_type;
2572         int flags = zio->io_flags;
2573
2574         /*
2575          * If this i/o is a gang leader, it didn't do any actual work.
2576          */
2577         if (zio->io_gang_tree)
2578                 return;
2579
2580         if (zio->io_error == 0) {
2581                 /*
2582                  * If this is a root i/o, don't count it -- we've already
2583                  * counted the top-level vdevs, and vdev_get_stats() will
2584                  * aggregate them when asked.  This reduces contention on
2585                  * the root vdev_stat_lock and implicitly handles blocks
2586                  * that compress away to holes, for which there is no i/o.
2587                  * (Holes never create vdev children, so all the counters
2588                  * remain zero, which is what we want.)
2589                  *
2590                  * Note: this only applies to successful i/o (io_error == 0)
2591                  * because unlike i/o counts, errors are not additive.
2592                  * When reading a ditto block, for example, failure of
2593                  * one top-level vdev does not imply a root-level error.
2594                  */
2595                 if (vd == rvd)
2596                         return;
2597
2598                 ASSERT(vd == zio->io_vd);
2599
2600                 if (flags & ZIO_FLAG_IO_BYPASS)
2601                         return;
2602
2603                 mutex_enter(&vd->vdev_stat_lock);
2604
2605                 if (flags & ZIO_FLAG_IO_REPAIR) {
2606                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2607                                 dsl_scan_phys_t *scn_phys =
2608                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2609                                 uint64_t *processed = &scn_phys->scn_processed;
2610
2611                                 /* XXX cleanup? */
2612                                 if (vd->vdev_ops->vdev_op_leaf)
2613                                         atomic_add_64(processed, psize);
2614                                 vs->vs_scan_processed += psize;
2615                         }
2616
2617                         if (flags & ZIO_FLAG_SELF_HEAL)
2618                                 vs->vs_self_healed += psize;
2619                 }
2620
2621                 vs->vs_ops[type]++;
2622                 vs->vs_bytes[type] += psize;
2623
2624                 mutex_exit(&vd->vdev_stat_lock);
2625                 return;
2626         }
2627
2628         if (flags & ZIO_FLAG_SPECULATIVE)
2629                 return;
2630
2631         /*
2632          * If this is an I/O error that is going to be retried, then ignore the
2633          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2634          * hard errors, when in reality they can happen for any number of
2635          * innocuous reasons (bus resets, MPxIO link failure, etc).
2636          */
2637         if (zio->io_error == EIO &&
2638             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2639                 return;
2640
2641         /*
2642          * Intent logs writes won't propagate their error to the root
2643          * I/O so don't mark these types of failures as pool-level
2644          * errors.
2645          */
2646         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2647                 return;
2648
2649         mutex_enter(&vd->vdev_stat_lock);
2650         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2651                 if (zio->io_error == ECKSUM)
2652                         vs->vs_checksum_errors++;
2653                 else
2654                         vs->vs_read_errors++;
2655         }
2656         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2657                 vs->vs_write_errors++;
2658         mutex_exit(&vd->vdev_stat_lock);
2659
2660         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2661             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2662             (flags & ZIO_FLAG_SCAN_THREAD) ||
2663             spa->spa_claiming)) {
2664                 /*
2665                  * This is either a normal write (not a repair), or it's
2666                  * a repair induced by the scrub thread, or it's a repair
2667                  * made by zil_claim() during spa_load() in the first txg.
2668                  * In the normal case, we commit the DTL change in the same
2669                  * txg as the block was born.  In the scrub-induced repair
2670                  * case, we know that scrubs run in first-pass syncing context,
2671                  * so we commit the DTL change in spa_syncing_txg(spa).
2672                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2673                  *
2674                  * We currently do not make DTL entries for failed spontaneous
2675                  * self-healing writes triggered by normal (non-scrubbing)
2676                  * reads, because we have no transactional context in which to
2677                  * do so -- and it's not clear that it'd be desirable anyway.
2678                  */
2679                 if (vd->vdev_ops->vdev_op_leaf) {
2680                         uint64_t commit_txg = txg;
2681                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2682                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2683                                 ASSERT(spa_sync_pass(spa) == 1);
2684                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2685                                 commit_txg = spa_syncing_txg(spa);
2686                         } else if (spa->spa_claiming) {
2687                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2688                                 commit_txg = spa_first_txg(spa);
2689                         }
2690                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2691                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2692                                 return;
2693                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2694                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2695                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2696                 }
2697                 if (vd != rvd)
2698                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2699         }
2700 }
2701
2702 /*
2703  * Update the in-core space usage stats for this vdev, its metaslab class,
2704  * and the root vdev.
2705  */
2706 void
2707 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2708     int64_t space_delta)
2709 {
2710         int64_t dspace_delta = space_delta;
2711         spa_t *spa = vd->vdev_spa;
2712         vdev_t *rvd = spa->spa_root_vdev;
2713         metaslab_group_t *mg = vd->vdev_mg;
2714         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2715
2716         ASSERT(vd == vd->vdev_top);
2717
2718         /*
2719          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2720          * factor.  We must calculate this here and not at the root vdev
2721          * because the root vdev's psize-to-asize is simply the max of its
2722          * childrens', thus not accurate enough for us.
2723          */
2724         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2725         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2726         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2727             vd->vdev_deflate_ratio;
2728
2729         mutex_enter(&vd->vdev_stat_lock);
2730         vd->vdev_stat.vs_alloc += alloc_delta;
2731         vd->vdev_stat.vs_space += space_delta;
2732         vd->vdev_stat.vs_dspace += dspace_delta;
2733         mutex_exit(&vd->vdev_stat_lock);
2734
2735         if (mc == spa_normal_class(spa)) {
2736                 mutex_enter(&rvd->vdev_stat_lock);
2737                 rvd->vdev_stat.vs_alloc += alloc_delta;
2738                 rvd->vdev_stat.vs_space += space_delta;
2739                 rvd->vdev_stat.vs_dspace += dspace_delta;
2740                 mutex_exit(&rvd->vdev_stat_lock);
2741         }
2742
2743         if (mc != NULL) {
2744                 ASSERT(rvd == vd->vdev_parent);
2745                 ASSERT(vd->vdev_ms_count != 0);
2746
2747                 metaslab_class_space_update(mc,
2748                     alloc_delta, defer_delta, space_delta, dspace_delta);
2749         }
2750 }
2751
2752 /*
2753  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2754  * so that it will be written out next time the vdev configuration is synced.
2755  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2756  */
2757 void
2758 vdev_config_dirty(vdev_t *vd)
2759 {
2760         spa_t *spa = vd->vdev_spa;
2761         vdev_t *rvd = spa->spa_root_vdev;
2762         int c;
2763
2764         ASSERT(spa_writeable(spa));
2765
2766         /*
2767          * If this is an aux vdev (as with l2cache and spare devices), then we
2768          * update the vdev config manually and set the sync flag.
2769          */
2770         if (vd->vdev_aux != NULL) {
2771                 spa_aux_vdev_t *sav = vd->vdev_aux;
2772                 nvlist_t **aux;
2773                 uint_t naux;
2774
2775                 for (c = 0; c < sav->sav_count; c++) {
2776                         if (sav->sav_vdevs[c] == vd)
2777                                 break;
2778                 }
2779
2780                 if (c == sav->sav_count) {
2781                         /*
2782                          * We're being removed.  There's nothing more to do.
2783                          */
2784                         ASSERT(sav->sav_sync == B_TRUE);
2785                         return;
2786                 }
2787
2788                 sav->sav_sync = B_TRUE;
2789
2790                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2791                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2792                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2793                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2794                 }
2795
2796                 ASSERT(c < naux);
2797
2798                 /*
2799                  * Setting the nvlist in the middle if the array is a little
2800                  * sketchy, but it will work.
2801                  */
2802                 nvlist_free(aux[c]);
2803                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2804
2805                 return;
2806         }
2807
2808         /*
2809          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2810          * must either hold SCL_CONFIG as writer, or must be the sync thread
2811          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2812          * so this is sufficient to ensure mutual exclusion.
2813          */
2814         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2815             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2816             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2817
2818         if (vd == rvd) {
2819                 for (c = 0; c < rvd->vdev_children; c++)
2820                         vdev_config_dirty(rvd->vdev_child[c]);
2821         } else {
2822                 ASSERT(vd == vd->vdev_top);
2823
2824                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2825                     !vd->vdev_ishole)
2826                         list_insert_head(&spa->spa_config_dirty_list, vd);
2827         }
2828 }
2829
2830 void
2831 vdev_config_clean(vdev_t *vd)
2832 {
2833         spa_t *spa = vd->vdev_spa;
2834
2835         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2836             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2837             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2838
2839         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2840         list_remove(&spa->spa_config_dirty_list, vd);
2841 }
2842
2843 /*
2844  * Mark a top-level vdev's state as dirty, so that the next pass of
2845  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2846  * the state changes from larger config changes because they require
2847  * much less locking, and are often needed for administrative actions.
2848  */
2849 void
2850 vdev_state_dirty(vdev_t *vd)
2851 {
2852         spa_t *spa = vd->vdev_spa;
2853
2854         ASSERT(spa_writeable(spa));
2855         ASSERT(vd == vd->vdev_top);
2856
2857         /*
2858          * The state list is protected by the SCL_STATE lock.  The caller
2859          * must either hold SCL_STATE as writer, or must be the sync thread
2860          * (which holds SCL_STATE as reader).  There's only one sync thread,
2861          * so this is sufficient to ensure mutual exclusion.
2862          */
2863         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2864             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2865             spa_config_held(spa, SCL_STATE, RW_READER)));
2866
2867         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2868                 list_insert_head(&spa->spa_state_dirty_list, vd);
2869 }
2870
2871 void
2872 vdev_state_clean(vdev_t *vd)
2873 {
2874         spa_t *spa = vd->vdev_spa;
2875
2876         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2877             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2878             spa_config_held(spa, SCL_STATE, RW_READER)));
2879
2880         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2881         list_remove(&spa->spa_state_dirty_list, vd);
2882 }
2883
2884 /*
2885  * Propagate vdev state up from children to parent.
2886  */
2887 void
2888 vdev_propagate_state(vdev_t *vd)
2889 {
2890         spa_t *spa = vd->vdev_spa;
2891         vdev_t *rvd = spa->spa_root_vdev;
2892         int degraded = 0, faulted = 0;
2893         int corrupted = 0;
2894         vdev_t *child;
2895         int c;
2896
2897         if (vd->vdev_children > 0) {
2898                 for (c = 0; c < vd->vdev_children; c++) {
2899                         child = vd->vdev_child[c];
2900
2901                         /*
2902                          * Don't factor holes into the decision.
2903                          */
2904                         if (child->vdev_ishole)
2905                                 continue;
2906
2907                         if (!vdev_readable(child) ||
2908                             (!vdev_writeable(child) && spa_writeable(spa))) {
2909                                 /*
2910                                  * Root special: if there is a top-level log
2911                                  * device, treat the root vdev as if it were
2912                                  * degraded.
2913                                  */
2914                                 if (child->vdev_islog && vd == rvd)
2915                                         degraded++;
2916                                 else
2917                                         faulted++;
2918                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2919                                 degraded++;
2920                         }
2921
2922                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2923                                 corrupted++;
2924                 }
2925
2926                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2927
2928                 /*
2929                  * Root special: if there is a top-level vdev that cannot be
2930                  * opened due to corrupted metadata, then propagate the root
2931                  * vdev's aux state as 'corrupt' rather than 'insufficient
2932                  * replicas'.
2933                  */
2934                 if (corrupted && vd == rvd &&
2935                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2936                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2937                             VDEV_AUX_CORRUPT_DATA);
2938         }
2939
2940         if (vd->vdev_parent)
2941                 vdev_propagate_state(vd->vdev_parent);
2942 }
2943
2944 /*
2945  * Set a vdev's state.  If this is during an open, we don't update the parent
2946  * state, because we're in the process of opening children depth-first.
2947  * Otherwise, we propagate the change to the parent.
2948  *
2949  * If this routine places a device in a faulted state, an appropriate ereport is
2950  * generated.
2951  */
2952 void
2953 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2954 {
2955         uint64_t save_state;
2956         spa_t *spa = vd->vdev_spa;
2957
2958         if (state == vd->vdev_state) {
2959                 vd->vdev_stat.vs_aux = aux;
2960                 return;
2961         }
2962
2963         save_state = vd->vdev_state;
2964
2965         vd->vdev_state = state;
2966         vd->vdev_stat.vs_aux = aux;
2967
2968         /*
2969          * If we are setting the vdev state to anything but an open state, then
2970          * always close the underlying device unless the device has requested
2971          * a delayed close (i.e. we're about to remove or fault the device).
2972          * Otherwise, we keep accessible but invalid devices open forever.
2973          * We don't call vdev_close() itself, because that implies some extra
2974          * checks (offline, etc) that we don't want here.  This is limited to
2975          * leaf devices, because otherwise closing the device will affect other
2976          * children.
2977          */
2978         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2979             vd->vdev_ops->vdev_op_leaf)
2980                 vd->vdev_ops->vdev_op_close(vd);
2981
2982         /*
2983          * If we have brought this vdev back into service, we need
2984          * to notify fmd so that it can gracefully repair any outstanding
2985          * cases due to a missing device.  We do this in all cases, even those
2986          * that probably don't correlate to a repaired fault.  This is sure to
2987          * catch all cases, and we let the zfs-retire agent sort it out.  If
2988          * this is a transient state it's OK, as the retire agent will
2989          * double-check the state of the vdev before repairing it.
2990          */
2991         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2992             vd->vdev_prevstate != state)
2993                 zfs_post_state_change(spa, vd);
2994
2995         if (vd->vdev_removed &&
2996             state == VDEV_STATE_CANT_OPEN &&
2997             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2998                 /*
2999                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3000                  * device was previously marked removed and someone attempted to
3001                  * reopen it.  If this failed due to a nonexistent device, then
3002                  * keep the device in the REMOVED state.  We also let this be if
3003                  * it is one of our special test online cases, which is only
3004                  * attempting to online the device and shouldn't generate an FMA
3005                  * fault.
3006                  */
3007                 vd->vdev_state = VDEV_STATE_REMOVED;
3008                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3009         } else if (state == VDEV_STATE_REMOVED) {
3010                 vd->vdev_removed = B_TRUE;
3011         } else if (state == VDEV_STATE_CANT_OPEN) {
3012                 /*
3013                  * If we fail to open a vdev during an import or recovery, we
3014                  * mark it as "not available", which signifies that it was
3015                  * never there to begin with.  Failure to open such a device
3016                  * is not considered an error.
3017                  */
3018                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3019                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3020                     vd->vdev_ops->vdev_op_leaf)
3021                         vd->vdev_not_present = 1;
3022
3023                 /*
3024                  * Post the appropriate ereport.  If the 'prevstate' field is
3025                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3026                  * that this is part of a vdev_reopen().  In this case, we don't
3027                  * want to post the ereport if the device was already in the
3028                  * CANT_OPEN state beforehand.
3029                  *
3030                  * If the 'checkremove' flag is set, then this is an attempt to
3031                  * online the device in response to an insertion event.  If we
3032                  * hit this case, then we have detected an insertion event for a
3033                  * faulted or offline device that wasn't in the removed state.
3034                  * In this scenario, we don't post an ereport because we are
3035                  * about to replace the device, or attempt an online with
3036                  * vdev_forcefault, which will generate the fault for us.
3037                  */
3038                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3039                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3040                     vd != spa->spa_root_vdev) {
3041                         const char *class;
3042
3043                         switch (aux) {
3044                         case VDEV_AUX_OPEN_FAILED:
3045                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3046                                 break;
3047                         case VDEV_AUX_CORRUPT_DATA:
3048                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3049                                 break;
3050                         case VDEV_AUX_NO_REPLICAS:
3051                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3052                                 break;
3053                         case VDEV_AUX_BAD_GUID_SUM:
3054                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3055                                 break;
3056                         case VDEV_AUX_TOO_SMALL:
3057                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3058                                 break;
3059                         case VDEV_AUX_BAD_LABEL:
3060                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3061                                 break;
3062                         default:
3063                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3064                         }
3065
3066                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3067                 }
3068
3069                 /* Erase any notion of persistent removed state */
3070                 vd->vdev_removed = B_FALSE;
3071         } else {
3072                 vd->vdev_removed = B_FALSE;
3073         }
3074
3075         if (!isopen && vd->vdev_parent)
3076                 vdev_propagate_state(vd->vdev_parent);
3077 }
3078
3079 /*
3080  * Check the vdev configuration to ensure that it's capable of supporting
3081  * a root pool.
3082  */
3083 boolean_t
3084 vdev_is_bootable(vdev_t *vd)
3085 {
3086 #if defined(__sun__) || defined(__sun)
3087         /*
3088          * Currently, we do not support RAID-Z or partial configuration.
3089          * In addition, only a single top-level vdev is allowed and none of the
3090          * leaves can be wholedisks.
3091          */
3092         int c;
3093
3094         if (!vd->vdev_ops->vdev_op_leaf) {
3095                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3096
3097                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3098                     vd->vdev_children > 1) {
3099                         return (B_FALSE);
3100                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3101                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3102                         return (B_FALSE);
3103                 }
3104         } else if (vd->vdev_wholedisk == 1) {
3105                 return (B_FALSE);
3106         }
3107
3108         for (c = 0; c < vd->vdev_children; c++) {
3109                 if (!vdev_is_bootable(vd->vdev_child[c]))
3110                         return (B_FALSE);
3111         }
3112 #endif /* __sun__ || __sun */
3113         return (B_TRUE);
3114 }
3115
3116 /*
3117  * Load the state from the original vdev tree (ovd) which
3118  * we've retrieved from the MOS config object. If the original
3119  * vdev was offline or faulted then we transfer that state to the
3120  * device in the current vdev tree (nvd).
3121  */
3122 void
3123 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3124 {
3125         int c;
3126
3127         ASSERT(nvd->vdev_top->vdev_islog);
3128         ASSERT(spa_config_held(nvd->vdev_spa,
3129             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3130         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3131
3132         for (c = 0; c < nvd->vdev_children; c++)
3133                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3134
3135         if (nvd->vdev_ops->vdev_op_leaf) {
3136                 /*
3137                  * Restore the persistent vdev state
3138                  */
3139                 nvd->vdev_offline = ovd->vdev_offline;
3140                 nvd->vdev_faulted = ovd->vdev_faulted;
3141                 nvd->vdev_degraded = ovd->vdev_degraded;
3142                 nvd->vdev_removed = ovd->vdev_removed;
3143         }
3144 }
3145
3146 /*
3147  * Determine if a log device has valid content.  If the vdev was
3148  * removed or faulted in the MOS config then we know that
3149  * the content on the log device has already been written to the pool.
3150  */
3151 boolean_t
3152 vdev_log_state_valid(vdev_t *vd)
3153 {
3154         int c;
3155
3156         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3157             !vd->vdev_removed)
3158                 return (B_TRUE);
3159
3160         for (c = 0; c < vd->vdev_children; c++)
3161                 if (vdev_log_state_valid(vd->vdev_child[c]))
3162                         return (B_TRUE);
3163
3164         return (B_FALSE);
3165 }
3166
3167 /*
3168  * Expand a vdev if possible.
3169  */
3170 void
3171 vdev_expand(vdev_t *vd, uint64_t txg)
3172 {
3173         ASSERT(vd->vdev_top == vd);
3174         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3175
3176         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3177                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3178                 vdev_config_dirty(vd);
3179         }
3180 }
3181
3182 /*
3183  * Split a vdev.
3184  */
3185 void
3186 vdev_split(vdev_t *vd)
3187 {
3188         vdev_t *cvd, *pvd = vd->vdev_parent;
3189
3190         vdev_remove_child(pvd, vd);
3191         vdev_compact_children(pvd);
3192
3193         cvd = pvd->vdev_child[0];
3194         if (pvd->vdev_children == 1) {
3195                 vdev_remove_parent(cvd);
3196                 cvd->vdev_splitting = B_TRUE;
3197         }
3198         vdev_propagate_state(cvd);
3199 }
3200
3201 #if defined(_KERNEL) && defined(HAVE_SPL)
3202 EXPORT_SYMBOL(vdev_fault);
3203 EXPORT_SYMBOL(vdev_degrade);
3204 EXPORT_SYMBOL(vdev_online);
3205 EXPORT_SYMBOL(vdev_offline);
3206 EXPORT_SYMBOL(vdev_clear);
3207
3208 module_param(zfs_scrub_limit, int, 0644);
3209 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3210 #endif