Move the world out of /zfs/ and seperate out module build tree
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42
43 /*
44  * Virtual device management.
45  */
46
47 static vdev_ops_t *vdev_ops_table[] = {
48         &vdev_root_ops,
49         &vdev_raidz_ops,
50         &vdev_mirror_ops,
51         &vdev_replacing_ops,
52         &vdev_spare_ops,
53         &vdev_disk_ops,
54         &vdev_file_ops,
55         &vdev_missing_ops,
56         NULL
57 };
58
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
61
62 /*
63  * Given a vdev type, return the appropriate ops vector.
64  */
65 static vdev_ops_t *
66 vdev_getops(const char *type)
67 {
68         vdev_ops_t *ops, **opspp;
69
70         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71                 if (strcmp(ops->vdev_op_type, type) == 0)
72                         break;
73
74         return (ops);
75 }
76
77 /*
78  * Default asize function: return the MAX of psize with the asize of
79  * all children.  This is what's used by anything other than RAID-Z.
80  */
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
83 {
84         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85         uint64_t csize;
86         uint64_t c;
87
88         for (c = 0; c < vd->vdev_children; c++) {
89                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90                 asize = MAX(asize, csize);
91         }
92
93         return (asize);
94 }
95
96 /*
97  * Get the replaceable or attachable device size.
98  * If the parent is a mirror or raidz, the replaceable size is the minimum
99  * psize of all its children. For the rest, just return our own psize.
100  *
101  * e.g.
102  *                      psize   rsize
103  * root                 -       -
104  *      mirror/raidz    -       -
105  *          disk1       20g     20g
106  *          disk2       40g     20g
107  *      disk3           80g     80g
108  */
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
111 {
112         vdev_t *pvd, *cvd;
113         uint64_t c, rsize;
114
115         pvd = vd->vdev_parent;
116
117         /*
118          * If our parent is NULL or the root, just return our own psize.
119          */
120         if (pvd == NULL || pvd->vdev_parent == NULL)
121                 return (vd->vdev_psize);
122
123         rsize = 0;
124
125         for (c = 0; c < pvd->vdev_children; c++) {
126                 cvd = pvd->vdev_child[c];
127                 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
128         }
129
130         return (rsize);
131 }
132
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
135 {
136         vdev_t *rvd = spa->spa_root_vdev;
137
138         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
139
140         if (vdev < rvd->vdev_children) {
141                 ASSERT(rvd->vdev_child[vdev] != NULL);
142                 return (rvd->vdev_child[vdev]);
143         }
144
145         return (NULL);
146 }
147
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151         int c;
152         vdev_t *mvd;
153
154         if (vd->vdev_guid == guid)
155                 return (vd);
156
157         for (c = 0; c < vd->vdev_children; c++)
158                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159                     NULL)
160                         return (mvd);
161
162         return (NULL);
163 }
164
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168         size_t oldsize, newsize;
169         uint64_t id = cvd->vdev_id;
170         vdev_t **newchild;
171
172         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173         ASSERT(cvd->vdev_parent == NULL);
174
175         cvd->vdev_parent = pvd;
176
177         if (pvd == NULL)
178                 return;
179
180         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181
182         oldsize = pvd->vdev_children * sizeof (vdev_t *);
183         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184         newsize = pvd->vdev_children * sizeof (vdev_t *);
185
186         newchild = kmem_zalloc(newsize, KM_SLEEP);
187         if (pvd->vdev_child != NULL) {
188                 bcopy(pvd->vdev_child, newchild, oldsize);
189                 kmem_free(pvd->vdev_child, oldsize);
190         }
191
192         pvd->vdev_child = newchild;
193         pvd->vdev_child[id] = cvd;
194
195         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197
198         /*
199          * Walk up all ancestors to update guid sum.
200          */
201         for (; pvd != NULL; pvd = pvd->vdev_parent)
202                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203
204         if (cvd->vdev_ops->vdev_op_leaf)
205                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211         int c;
212         uint_t id = cvd->vdev_id;
213
214         ASSERT(cvd->vdev_parent == pvd);
215
216         if (pvd == NULL)
217                 return;
218
219         ASSERT(id < pvd->vdev_children);
220         ASSERT(pvd->vdev_child[id] == cvd);
221
222         pvd->vdev_child[id] = NULL;
223         cvd->vdev_parent = NULL;
224
225         for (c = 0; c < pvd->vdev_children; c++)
226                 if (pvd->vdev_child[c])
227                         break;
228
229         if (c == pvd->vdev_children) {
230                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231                 pvd->vdev_child = NULL;
232                 pvd->vdev_children = 0;
233         }
234
235         /*
236          * Walk up all ancestors to update guid sum.
237          */
238         for (; pvd != NULL; pvd = pvd->vdev_parent)
239                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240
241         if (cvd->vdev_ops->vdev_op_leaf)
242                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251         vdev_t **newchild, *cvd;
252         int oldc = pvd->vdev_children;
253         int newc, c;
254
255         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
256
257         for (c = newc = 0; c < oldc; c++)
258                 if (pvd->vdev_child[c])
259                         newc++;
260
261         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262
263         for (c = newc = 0; c < oldc; c++) {
264                 if ((cvd = pvd->vdev_child[c]) != NULL) {
265                         newchild[newc] = cvd;
266                         cvd->vdev_id = newc++;
267                 }
268         }
269
270         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271         pvd->vdev_child = newchild;
272         pvd->vdev_children = newc;
273 }
274
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281         vdev_t *vd;
282
283         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284
285         if (spa->spa_root_vdev == NULL) {
286                 ASSERT(ops == &vdev_root_ops);
287                 spa->spa_root_vdev = vd;
288         }
289
290         if (guid == 0) {
291                 if (spa->spa_root_vdev == vd) {
292                         /*
293                          * The root vdev's guid will also be the pool guid,
294                          * which must be unique among all pools.
295                          */
296                         while (guid == 0 || spa_guid_exists(guid, 0))
297                                 guid = spa_get_random(-1ULL);
298                 } else {
299                         /*
300                          * Any other vdev's guid must be unique within the pool.
301                          */
302                         while (guid == 0 ||
303                             spa_guid_exists(spa_guid(spa), guid))
304                                 guid = spa_get_random(-1ULL);
305                 }
306                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307         }
308
309         vd->vdev_spa = spa;
310         vd->vdev_id = id;
311         vd->vdev_guid = guid;
312         vd->vdev_guid_sum = guid;
313         vd->vdev_ops = ops;
314         vd->vdev_state = VDEV_STATE_CLOSED;
315
316         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319         space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
320         space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
321         txg_list_create(&vd->vdev_ms_list,
322             offsetof(struct metaslab, ms_txg_node));
323         txg_list_create(&vd->vdev_dtl_list,
324             offsetof(struct vdev, vdev_dtl_node));
325         vd->vdev_stat.vs_timestamp = gethrtime();
326         vdev_queue_init(vd);
327         vdev_cache_init(vd);
328
329         return (vd);
330 }
331
332 /*
333  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
334  * creating a new vdev or loading an existing one - the behavior is slightly
335  * different for each case.
336  */
337 int
338 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
339     int alloctype)
340 {
341         vdev_ops_t *ops;
342         char *type;
343         uint64_t guid = 0, islog, nparity;
344         vdev_t *vd;
345
346         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
347
348         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
349                 return (EINVAL);
350
351         if ((ops = vdev_getops(type)) == NULL)
352                 return (EINVAL);
353
354         /*
355          * If this is a load, get the vdev guid from the nvlist.
356          * Otherwise, vdev_alloc_common() will generate one for us.
357          */
358         if (alloctype == VDEV_ALLOC_LOAD) {
359                 uint64_t label_id;
360
361                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
362                     label_id != id)
363                         return (EINVAL);
364
365                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
366                         return (EINVAL);
367         } else if (alloctype == VDEV_ALLOC_SPARE) {
368                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
369                         return (EINVAL);
370         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
371                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372                         return (EINVAL);
373         }
374
375         /*
376          * The first allocated vdev must be of type 'root'.
377          */
378         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
379                 return (EINVAL);
380
381         /*
382          * Determine whether we're a log vdev.
383          */
384         islog = 0;
385         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
386         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
387                 return (ENOTSUP);
388
389         /*
390          * Set the nparity property for RAID-Z vdevs.
391          */
392         nparity = -1ULL;
393         if (ops == &vdev_raidz_ops) {
394                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
395                     &nparity) == 0) {
396                         /*
397                          * Currently, we can only support 2 parity devices.
398                          */
399                         if (nparity == 0 || nparity > 2)
400                                 return (EINVAL);
401                         /*
402                          * Older versions can only support 1 parity device.
403                          */
404                         if (nparity == 2 &&
405                             spa_version(spa) < SPA_VERSION_RAID6)
406                                 return (ENOTSUP);
407                 } else {
408                         /*
409                          * We require the parity to be specified for SPAs that
410                          * support multiple parity levels.
411                          */
412                         if (spa_version(spa) >= SPA_VERSION_RAID6)
413                                 return (EINVAL);
414                         /*
415                          * Otherwise, we default to 1 parity device for RAID-Z.
416                          */
417                         nparity = 1;
418                 }
419         } else {
420                 nparity = 0;
421         }
422         ASSERT(nparity != -1ULL);
423
424         vd = vdev_alloc_common(spa, id, guid, ops);
425
426         vd->vdev_islog = islog;
427         vd->vdev_nparity = nparity;
428
429         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
430                 vd->vdev_path = spa_strdup(vd->vdev_path);
431         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
432                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
433         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
434             &vd->vdev_physpath) == 0)
435                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
436
437         /*
438          * Set the whole_disk property.  If it's not specified, leave the value
439          * as -1.
440          */
441         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
442             &vd->vdev_wholedisk) != 0)
443                 vd->vdev_wholedisk = -1ULL;
444
445         /*
446          * Look for the 'not present' flag.  This will only be set if the device
447          * was not present at the time of import.
448          */
449         if (!spa->spa_import_faulted)
450                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
451                     &vd->vdev_not_present);
452
453         /*
454          * Get the alignment requirement.
455          */
456         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
457
458         /*
459          * If we're a top-level vdev, try to load the allocation parameters.
460          */
461         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
462                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
463                     &vd->vdev_ms_array);
464                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
465                     &vd->vdev_ms_shift);
466                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
467                     &vd->vdev_asize);
468         }
469
470         /*
471          * If we're a leaf vdev, try to load the DTL object and other state.
472          */
473         if (vd->vdev_ops->vdev_op_leaf &&
474             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
475                 if (alloctype == VDEV_ALLOC_LOAD) {
476                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
477                             &vd->vdev_dtl.smo_object);
478                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
479                             &vd->vdev_unspare);
480                 }
481                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
482                     &vd->vdev_offline);
483
484                 /*
485                  * When importing a pool, we want to ignore the persistent fault
486                  * state, as the diagnosis made on another system may not be
487                  * valid in the current context.
488                  */
489                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
490                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
491                             &vd->vdev_faulted);
492                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
493                             &vd->vdev_degraded);
494                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
495                             &vd->vdev_removed);
496                 }
497         }
498
499         /*
500          * Add ourselves to the parent's list of children.
501          */
502         vdev_add_child(parent, vd);
503
504         *vdp = vd;
505
506         return (0);
507 }
508
509 void
510 vdev_free(vdev_t *vd)
511 {
512         int c;
513         spa_t *spa = vd->vdev_spa;
514
515         /*
516          * vdev_free() implies closing the vdev first.  This is simpler than
517          * trying to ensure complicated semantics for all callers.
518          */
519         vdev_close(vd);
520
521         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
522
523         /*
524          * Free all children.
525          */
526         for (c = 0; c < vd->vdev_children; c++)
527                 vdev_free(vd->vdev_child[c]);
528
529         ASSERT(vd->vdev_child == NULL);
530         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
531
532         /*
533          * Discard allocation state.
534          */
535         if (vd == vd->vdev_top)
536                 vdev_metaslab_fini(vd);
537
538         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
539         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
540         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
541
542         /*
543          * Remove this vdev from its parent's child list.
544          */
545         vdev_remove_child(vd->vdev_parent, vd);
546
547         ASSERT(vd->vdev_parent == NULL);
548
549         /*
550          * Clean up vdev structure.
551          */
552         vdev_queue_fini(vd);
553         vdev_cache_fini(vd);
554
555         if (vd->vdev_path)
556                 spa_strfree(vd->vdev_path);
557         if (vd->vdev_devid)
558                 spa_strfree(vd->vdev_devid);
559         if (vd->vdev_physpath)
560                 spa_strfree(vd->vdev_physpath);
561
562         if (vd->vdev_isspare)
563                 spa_spare_remove(vd);
564         if (vd->vdev_isl2cache)
565                 spa_l2cache_remove(vd);
566
567         txg_list_destroy(&vd->vdev_ms_list);
568         txg_list_destroy(&vd->vdev_dtl_list);
569         mutex_enter(&vd->vdev_dtl_lock);
570         space_map_unload(&vd->vdev_dtl_map);
571         space_map_destroy(&vd->vdev_dtl_map);
572         space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
573         space_map_destroy(&vd->vdev_dtl_scrub);
574         mutex_exit(&vd->vdev_dtl_lock);
575         mutex_destroy(&vd->vdev_dtl_lock);
576         mutex_destroy(&vd->vdev_stat_lock);
577         mutex_destroy(&vd->vdev_probe_lock);
578
579         if (vd == spa->spa_root_vdev)
580                 spa->spa_root_vdev = NULL;
581
582         kmem_free(vd, sizeof (vdev_t));
583 }
584
585 /*
586  * Transfer top-level vdev state from svd to tvd.
587  */
588 static void
589 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
590 {
591         spa_t *spa = svd->vdev_spa;
592         metaslab_t *msp;
593         vdev_t *vd;
594         int t;
595
596         ASSERT(tvd == tvd->vdev_top);
597
598         tvd->vdev_ms_array = svd->vdev_ms_array;
599         tvd->vdev_ms_shift = svd->vdev_ms_shift;
600         tvd->vdev_ms_count = svd->vdev_ms_count;
601
602         svd->vdev_ms_array = 0;
603         svd->vdev_ms_shift = 0;
604         svd->vdev_ms_count = 0;
605
606         tvd->vdev_mg = svd->vdev_mg;
607         tvd->vdev_ms = svd->vdev_ms;
608
609         svd->vdev_mg = NULL;
610         svd->vdev_ms = NULL;
611
612         if (tvd->vdev_mg != NULL)
613                 tvd->vdev_mg->mg_vd = tvd;
614
615         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
616         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
617         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
618
619         svd->vdev_stat.vs_alloc = 0;
620         svd->vdev_stat.vs_space = 0;
621         svd->vdev_stat.vs_dspace = 0;
622
623         for (t = 0; t < TXG_SIZE; t++) {
624                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
625                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
626                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
627                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
628                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
629                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
630         }
631
632         if (list_link_active(&svd->vdev_config_dirty_node)) {
633                 vdev_config_clean(svd);
634                 vdev_config_dirty(tvd);
635         }
636
637         if (list_link_active(&svd->vdev_state_dirty_node)) {
638                 vdev_state_clean(svd);
639                 vdev_state_dirty(tvd);
640         }
641
642         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
643         svd->vdev_deflate_ratio = 0;
644
645         tvd->vdev_islog = svd->vdev_islog;
646         svd->vdev_islog = 0;
647 }
648
649 static void
650 vdev_top_update(vdev_t *tvd, vdev_t *vd)
651 {
652         int c;
653
654         if (vd == NULL)
655                 return;
656
657         vd->vdev_top = tvd;
658
659         for (c = 0; c < vd->vdev_children; c++)
660                 vdev_top_update(tvd, vd->vdev_child[c]);
661 }
662
663 /*
664  * Add a mirror/replacing vdev above an existing vdev.
665  */
666 vdev_t *
667 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
668 {
669         spa_t *spa = cvd->vdev_spa;
670         vdev_t *pvd = cvd->vdev_parent;
671         vdev_t *mvd;
672
673         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
674
675         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
676
677         mvd->vdev_asize = cvd->vdev_asize;
678         mvd->vdev_ashift = cvd->vdev_ashift;
679         mvd->vdev_state = cvd->vdev_state;
680
681         vdev_remove_child(pvd, cvd);
682         vdev_add_child(pvd, mvd);
683         cvd->vdev_id = mvd->vdev_children;
684         vdev_add_child(mvd, cvd);
685         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
686
687         if (mvd == mvd->vdev_top)
688                 vdev_top_transfer(cvd, mvd);
689
690         return (mvd);
691 }
692
693 /*
694  * Remove a 1-way mirror/replacing vdev from the tree.
695  */
696 void
697 vdev_remove_parent(vdev_t *cvd)
698 {
699         vdev_t *mvd = cvd->vdev_parent;
700         vdev_t *pvd = mvd->vdev_parent;
701
702         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
703
704         ASSERT(mvd->vdev_children == 1);
705         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
706             mvd->vdev_ops == &vdev_replacing_ops ||
707             mvd->vdev_ops == &vdev_spare_ops);
708         cvd->vdev_ashift = mvd->vdev_ashift;
709
710         vdev_remove_child(mvd, cvd);
711         vdev_remove_child(pvd, mvd);
712         /*
713          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
714          * Otherwise, we could have detached an offline device, and when we
715          * go to import the pool we'll think we have two top-level vdevs,
716          * instead of a different version of the same top-level vdev.
717          */
718         if (mvd->vdev_top == mvd)
719                 cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
720         cvd->vdev_id = mvd->vdev_id;
721         vdev_add_child(pvd, cvd);
722         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
723
724         if (cvd == cvd->vdev_top)
725                 vdev_top_transfer(mvd, cvd);
726
727         ASSERT(mvd->vdev_children == 0);
728         vdev_free(mvd);
729 }
730
731 int
732 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
733 {
734         spa_t *spa = vd->vdev_spa;
735         objset_t *mos = spa->spa_meta_objset;
736         metaslab_class_t *mc;
737         uint64_t m;
738         uint64_t oldc = vd->vdev_ms_count;
739         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
740         metaslab_t **mspp;
741         int error;
742
743         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
744                 return (0);
745
746         ASSERT(oldc <= newc);
747
748         if (vd->vdev_islog)
749                 mc = spa->spa_log_class;
750         else
751                 mc = spa->spa_normal_class;
752
753         if (vd->vdev_mg == NULL)
754                 vd->vdev_mg = metaslab_group_create(mc, vd);
755
756         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
757
758         if (oldc != 0) {
759                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
760                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
761         }
762
763         vd->vdev_ms = mspp;
764         vd->vdev_ms_count = newc;
765
766         for (m = oldc; m < newc; m++) {
767                 space_map_obj_t smo = { 0, 0, 0 };
768                 if (txg == 0) {
769                         uint64_t object = 0;
770                         error = dmu_read(mos, vd->vdev_ms_array,
771                             m * sizeof (uint64_t), sizeof (uint64_t), &object);
772                         if (error)
773                                 return (error);
774                         if (object != 0) {
775                                 dmu_buf_t *db;
776                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
777                                 if (error)
778                                         return (error);
779                                 ASSERT3U(db->db_size, >=, sizeof (smo));
780                                 bcopy(db->db_data, &smo, sizeof (smo));
781                                 ASSERT3U(smo.smo_object, ==, object);
782                                 dmu_buf_rele(db, FTAG);
783                         }
784                 }
785                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
786                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
787         }
788
789         return (0);
790 }
791
792 void
793 vdev_metaslab_fini(vdev_t *vd)
794 {
795         uint64_t m;
796         uint64_t count = vd->vdev_ms_count;
797
798         if (vd->vdev_ms != NULL) {
799                 for (m = 0; m < count; m++)
800                         if (vd->vdev_ms[m] != NULL)
801                                 metaslab_fini(vd->vdev_ms[m]);
802                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
803                 vd->vdev_ms = NULL;
804         }
805 }
806
807 typedef struct vdev_probe_stats {
808         boolean_t       vps_readable;
809         boolean_t       vps_writeable;
810         int             vps_flags;
811         zio_t           *vps_root;
812         vdev_t          *vps_vd;
813 } vdev_probe_stats_t;
814
815 static void
816 vdev_probe_done(zio_t *zio)
817 {
818         vdev_probe_stats_t *vps = zio->io_private;
819         vdev_t *vd = vps->vps_vd;
820
821         if (zio->io_type == ZIO_TYPE_READ) {
822                 ASSERT(zio->io_vd == vd);
823                 if (zio->io_error == 0)
824                         vps->vps_readable = 1;
825                 if (zio->io_error == 0 && (spa_mode & FWRITE)) {
826                         zio_nowait(zio_write_phys(vps->vps_root, vd,
827                             zio->io_offset, zio->io_size, zio->io_data,
828                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
829                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
830                 } else {
831                         zio_buf_free(zio->io_data, zio->io_size);
832                 }
833         } else if (zio->io_type == ZIO_TYPE_WRITE) {
834                 ASSERT(zio->io_vd == vd);
835                 if (zio->io_error == 0)
836                         vps->vps_writeable = 1;
837                 zio_buf_free(zio->io_data, zio->io_size);
838         } else if (zio->io_type == ZIO_TYPE_NULL) {
839                 ASSERT(zio->io_vd == NULL);
840                 ASSERT(zio == vps->vps_root);
841
842                 vd->vdev_cant_read |= !vps->vps_readable;
843                 vd->vdev_cant_write |= !vps->vps_writeable;
844
845                 if (vdev_readable(vd) &&
846                     (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
847                         zio->io_error = 0;
848                 } else {
849                         ASSERT(zio->io_error != 0);
850                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
851                             zio->io_spa, vd, NULL, 0, 0);
852                         zio->io_error = ENXIO;
853                 }
854                 kmem_free(vps, sizeof (*vps));
855         }
856 }
857
858 /*
859  * Determine whether this device is accessible by reading and writing
860  * to several known locations: the pad regions of each vdev label
861  * but the first (which we leave alone in case it contains a VTOC).
862  */
863 zio_t *
864 vdev_probe(vdev_t *vd, zio_t *pio)
865 {
866         spa_t *spa = vd->vdev_spa;
867         vdev_probe_stats_t *vps;
868         zio_t *zio;
869
870         vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
871
872         vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
873             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
874
875         if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
876                 /*
877                  * vdev_cant_read and vdev_cant_write can only transition
878                  * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
879                  * otherwise they can only transition from FALSE to TRUE.
880                  * This ensures that any zio looking at these values can
881                  * assume that failures persist for the life of the I/O.
882                  * That's important because when a device has intermittent
883                  * connectivity problems, we want to ensure that they're
884                  * ascribed to the device (ENXIO) and not the zio (EIO).
885                  *
886                  * Since we hold SCL_ZIO as writer here, clear both values
887                  * so the probe can reevaluate from first principles.
888                  */
889                 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
890                 vd->vdev_cant_read = B_FALSE;
891                 vd->vdev_cant_write = B_FALSE;
892         }
893
894         ASSERT(vd->vdev_ops->vdev_op_leaf);
895
896         zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
897
898         vps->vps_root = zio;
899         vps->vps_vd = vd;
900
901         for (int l = 1; l < VDEV_LABELS; l++) {
902                 zio_nowait(zio_read_phys(zio, vd,
903                     vdev_label_offset(vd->vdev_psize, l,
904                     offsetof(vdev_label_t, vl_pad)),
905                     VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
906                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
907                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
908         }
909
910         return (zio);
911 }
912
913 /*
914  * Prepare a virtual device for access.
915  */
916 int
917 vdev_open(vdev_t *vd)
918 {
919         int error;
920         int c;
921         uint64_t osize = 0;
922         uint64_t asize, psize;
923         uint64_t ashift = 0;
924
925         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
926             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
927             vd->vdev_state == VDEV_STATE_OFFLINE);
928
929         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
930
931         if (!vd->vdev_removed && vd->vdev_faulted) {
932                 ASSERT(vd->vdev_children == 0);
933                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
934                     VDEV_AUX_ERR_EXCEEDED);
935                 return (ENXIO);
936         } else if (vd->vdev_offline) {
937                 ASSERT(vd->vdev_children == 0);
938                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
939                 return (ENXIO);
940         }
941
942         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
943
944         if (zio_injection_enabled && error == 0)
945                 error = zio_handle_device_injection(vd, ENXIO);
946
947         if (error) {
948                 if (vd->vdev_removed &&
949                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
950                         vd->vdev_removed = B_FALSE;
951
952                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
953                     vd->vdev_stat.vs_aux);
954                 return (error);
955         }
956
957         vd->vdev_removed = B_FALSE;
958
959         if (vd->vdev_degraded) {
960                 ASSERT(vd->vdev_children == 0);
961                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
962                     VDEV_AUX_ERR_EXCEEDED);
963         } else {
964                 vd->vdev_state = VDEV_STATE_HEALTHY;
965         }
966
967         for (c = 0; c < vd->vdev_children; c++)
968                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
969                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
970                             VDEV_AUX_NONE);
971                         break;
972                 }
973
974         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
975
976         if (vd->vdev_children == 0) {
977                 if (osize < SPA_MINDEVSIZE) {
978                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
979                             VDEV_AUX_TOO_SMALL);
980                         return (EOVERFLOW);
981                 }
982                 psize = osize;
983                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
984         } else {
985                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
986                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
987                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
988                             VDEV_AUX_TOO_SMALL);
989                         return (EOVERFLOW);
990                 }
991                 psize = 0;
992                 asize = osize;
993         }
994
995         vd->vdev_psize = psize;
996
997         if (vd->vdev_asize == 0) {
998                 /*
999                  * This is the first-ever open, so use the computed values.
1000                  * For testing purposes, a higher ashift can be requested.
1001                  */
1002                 vd->vdev_asize = asize;
1003                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1004         } else {
1005                 /*
1006                  * Make sure the alignment requirement hasn't increased.
1007                  */
1008                 if (ashift > vd->vdev_top->vdev_ashift) {
1009                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1010                             VDEV_AUX_BAD_LABEL);
1011                         return (EINVAL);
1012                 }
1013
1014                 /*
1015                  * Make sure the device hasn't shrunk.
1016                  */
1017                 if (asize < vd->vdev_asize) {
1018                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1019                             VDEV_AUX_BAD_LABEL);
1020                         return (EINVAL);
1021                 }
1022
1023                 /*
1024                  * If all children are healthy and the asize has increased,
1025                  * then we've experienced dynamic LUN growth.
1026                  */
1027                 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1028                     asize > vd->vdev_asize) {
1029                         vd->vdev_asize = asize;
1030                 }
1031         }
1032
1033         /*
1034          * Ensure we can issue some IO before declaring the
1035          * vdev open for business.
1036          */
1037         if (vd->vdev_ops->vdev_op_leaf &&
1038             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1039                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1040                     VDEV_AUX_IO_FAILURE);
1041                 return (error);
1042         }
1043
1044         /*
1045          * If this is a top-level vdev, compute the raidz-deflation
1046          * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1047          * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1048          * changes, this algorithm must never change, or we will
1049          * inconsistently account for existing bp's.
1050          */
1051         if (vd->vdev_top == vd) {
1052                 vd->vdev_deflate_ratio = (1<<17) /
1053                     (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1054         }
1055
1056         /*
1057          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1058          * resilver.  But don't do this if we are doing a reopen for a
1059          * scrub, since this would just restart the scrub we are already
1060          * doing.
1061          */
1062         if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
1063                 mutex_enter(&vd->vdev_dtl_lock);
1064                 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
1065                         spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
1066                 mutex_exit(&vd->vdev_dtl_lock);
1067         }
1068
1069         return (0);
1070 }
1071
1072 /*
1073  * Called once the vdevs are all opened, this routine validates the label
1074  * contents.  This needs to be done before vdev_load() so that we don't
1075  * inadvertently do repair I/Os to the wrong device.
1076  *
1077  * This function will only return failure if one of the vdevs indicates that it
1078  * has since been destroyed or exported.  This is only possible if
1079  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1080  * will be updated but the function will return 0.
1081  */
1082 int
1083 vdev_validate(vdev_t *vd)
1084 {
1085         spa_t *spa = vd->vdev_spa;
1086         int c;
1087         nvlist_t *label;
1088         uint64_t guid, top_guid;
1089         uint64_t state;
1090
1091         for (c = 0; c < vd->vdev_children; c++)
1092                 if (vdev_validate(vd->vdev_child[c]) != 0)
1093                         return (EBADF);
1094
1095         /*
1096          * If the device has already failed, or was marked offline, don't do
1097          * any further validation.  Otherwise, label I/O will fail and we will
1098          * overwrite the previous state.
1099          */
1100         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1101
1102                 if ((label = vdev_label_read_config(vd)) == NULL) {
1103                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1104                             VDEV_AUX_BAD_LABEL);
1105                         return (0);
1106                 }
1107
1108                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1109                     &guid) != 0 || guid != spa_guid(spa)) {
1110                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1111                             VDEV_AUX_CORRUPT_DATA);
1112                         nvlist_free(label);
1113                         return (0);
1114                 }
1115
1116                 /*
1117                  * If this vdev just became a top-level vdev because its
1118                  * sibling was detached, it will have adopted the parent's
1119                  * vdev guid -- but the label may or may not be on disk yet.
1120                  * Fortunately, either version of the label will have the
1121                  * same top guid, so if we're a top-level vdev, we can
1122                  * safely compare to that instead.
1123                  */
1124                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1125                     &guid) != 0 ||
1126                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1127                     &top_guid) != 0 ||
1128                     (vd->vdev_guid != guid &&
1129                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1130                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1131                             VDEV_AUX_CORRUPT_DATA);
1132                         nvlist_free(label);
1133                         return (0);
1134                 }
1135
1136                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1137                     &state) != 0) {
1138                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1139                             VDEV_AUX_CORRUPT_DATA);
1140                         nvlist_free(label);
1141                         return (0);
1142                 }
1143
1144                 nvlist_free(label);
1145
1146                 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1147                     state != POOL_STATE_ACTIVE)
1148                         return (EBADF);
1149
1150                 /*
1151                  * If we were able to open and validate a vdev that was
1152                  * previously marked permanently unavailable, clear that state
1153                  * now.
1154                  */
1155                 if (vd->vdev_not_present)
1156                         vd->vdev_not_present = 0;
1157         }
1158
1159         return (0);
1160 }
1161
1162 /*
1163  * Close a virtual device.
1164  */
1165 void
1166 vdev_close(vdev_t *vd)
1167 {
1168         vd->vdev_ops->vdev_op_close(vd);
1169
1170         vdev_cache_purge(vd);
1171
1172         /*
1173          * We record the previous state before we close it, so  that if we are
1174          * doing a reopen(), we don't generate FMA ereports if we notice that
1175          * it's still faulted.
1176          */
1177         vd->vdev_prevstate = vd->vdev_state;
1178
1179         if (vd->vdev_offline)
1180                 vd->vdev_state = VDEV_STATE_OFFLINE;
1181         else
1182                 vd->vdev_state = VDEV_STATE_CLOSED;
1183         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1184 }
1185
1186 void
1187 vdev_reopen(vdev_t *vd)
1188 {
1189         spa_t *spa = vd->vdev_spa;
1190
1191         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1192
1193         vdev_close(vd);
1194         (void) vdev_open(vd);
1195
1196         /*
1197          * Call vdev_validate() here to make sure we have the same device.
1198          * Otherwise, a device with an invalid label could be successfully
1199          * opened in response to vdev_reopen().
1200          */
1201         if (vd->vdev_aux) {
1202                 (void) vdev_validate_aux(vd);
1203                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1204                     !l2arc_vdev_present(vd)) {
1205                         uint64_t size = vdev_get_rsize(vd);
1206                         l2arc_add_vdev(spa, vd,
1207                             VDEV_LABEL_START_SIZE,
1208                             size - VDEV_LABEL_START_SIZE);
1209                 }
1210         } else {
1211                 (void) vdev_validate(vd);
1212         }
1213
1214         /*
1215          * Reassess parent vdev's health.
1216          */
1217         vdev_propagate_state(vd);
1218 }
1219
1220 int
1221 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1222 {
1223         int error;
1224
1225         /*
1226          * Normally, partial opens (e.g. of a mirror) are allowed.
1227          * For a create, however, we want to fail the request if
1228          * there are any components we can't open.
1229          */
1230         error = vdev_open(vd);
1231
1232         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1233                 vdev_close(vd);
1234                 return (error ? error : ENXIO);
1235         }
1236
1237         /*
1238          * Recursively initialize all labels.
1239          */
1240         if ((error = vdev_label_init(vd, txg, isreplacing ?
1241             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1242                 vdev_close(vd);
1243                 return (error);
1244         }
1245
1246         return (0);
1247 }
1248
1249 /*
1250  * The is the latter half of vdev_create().  It is distinct because it
1251  * involves initiating transactions in order to do metaslab creation.
1252  * For creation, we want to try to create all vdevs at once and then undo it
1253  * if anything fails; this is much harder if we have pending transactions.
1254  */
1255 void
1256 vdev_init(vdev_t *vd, uint64_t txg)
1257 {
1258         /*
1259          * Aim for roughly 200 metaslabs per vdev.
1260          */
1261         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1262         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1263
1264         /*
1265          * Initialize the vdev's metaslabs.  This can't fail because
1266          * there's nothing to read when creating all new metaslabs.
1267          */
1268         VERIFY(vdev_metaslab_init(vd, txg) == 0);
1269 }
1270
1271 void
1272 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1273 {
1274         ASSERT(vd == vd->vdev_top);
1275         ASSERT(ISP2(flags));
1276
1277         if (flags & VDD_METASLAB)
1278                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1279
1280         if (flags & VDD_DTL)
1281                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1282
1283         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1284 }
1285
1286 void
1287 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1288 {
1289         mutex_enter(sm->sm_lock);
1290         if (!space_map_contains(sm, txg, size))
1291                 space_map_add(sm, txg, size);
1292         mutex_exit(sm->sm_lock);
1293 }
1294
1295 int
1296 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1297 {
1298         int dirty;
1299
1300         /*
1301          * Quick test without the lock -- covers the common case that
1302          * there are no dirty time segments.
1303          */
1304         if (sm->sm_space == 0)
1305                 return (0);
1306
1307         mutex_enter(sm->sm_lock);
1308         dirty = space_map_contains(sm, txg, size);
1309         mutex_exit(sm->sm_lock);
1310
1311         return (dirty);
1312 }
1313
1314 /*
1315  * Reassess DTLs after a config change or scrub completion.
1316  */
1317 void
1318 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1319 {
1320         spa_t *spa = vd->vdev_spa;
1321         int c;
1322
1323         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1324
1325         if (vd->vdev_children == 0) {
1326                 mutex_enter(&vd->vdev_dtl_lock);
1327                 if (scrub_txg != 0 &&
1328                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1329                         /* XXX should check scrub_done? */
1330                         /*
1331                          * We completed a scrub up to scrub_txg.  If we
1332                          * did it without rebooting, then the scrub dtl
1333                          * will be valid, so excise the old region and
1334                          * fold in the scrub dtl.  Otherwise, leave the
1335                          * dtl as-is if there was an error.
1336                          */
1337                         space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1338                         space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1339                 }
1340                 if (scrub_done)
1341                         space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1342                 mutex_exit(&vd->vdev_dtl_lock);
1343
1344                 if (txg != 0)
1345                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1346                 return;
1347         }
1348
1349         /*
1350          * Make sure the DTLs are always correct under the scrub lock.
1351          */
1352         if (vd == spa->spa_root_vdev)
1353                 mutex_enter(&spa->spa_scrub_lock);
1354
1355         mutex_enter(&vd->vdev_dtl_lock);
1356         space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1357         space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1358         mutex_exit(&vd->vdev_dtl_lock);
1359
1360         for (c = 0; c < vd->vdev_children; c++) {
1361                 vdev_t *cvd = vd->vdev_child[c];
1362                 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1363                 mutex_enter(&vd->vdev_dtl_lock);
1364                 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1365                 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1366                 mutex_exit(&vd->vdev_dtl_lock);
1367         }
1368
1369         if (vd == spa->spa_root_vdev)
1370                 mutex_exit(&spa->spa_scrub_lock);
1371 }
1372
1373 static int
1374 vdev_dtl_load(vdev_t *vd)
1375 {
1376         spa_t *spa = vd->vdev_spa;
1377         space_map_obj_t *smo = &vd->vdev_dtl;
1378         objset_t *mos = spa->spa_meta_objset;
1379         dmu_buf_t *db;
1380         int error;
1381
1382         ASSERT(vd->vdev_children == 0);
1383
1384         if (smo->smo_object == 0)
1385                 return (0);
1386
1387         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1388                 return (error);
1389
1390         ASSERT3U(db->db_size, >=, sizeof (*smo));
1391         bcopy(db->db_data, smo, sizeof (*smo));
1392         dmu_buf_rele(db, FTAG);
1393
1394         mutex_enter(&vd->vdev_dtl_lock);
1395         error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1396         mutex_exit(&vd->vdev_dtl_lock);
1397
1398         return (error);
1399 }
1400
1401 void
1402 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1403 {
1404         spa_t *spa = vd->vdev_spa;
1405         space_map_obj_t *smo = &vd->vdev_dtl;
1406         space_map_t *sm = &vd->vdev_dtl_map;
1407         objset_t *mos = spa->spa_meta_objset;
1408         space_map_t smsync;
1409         kmutex_t smlock;
1410         dmu_buf_t *db;
1411         dmu_tx_t *tx;
1412
1413         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1414
1415         if (vd->vdev_detached) {
1416                 if (smo->smo_object != 0) {
1417                         int err = dmu_object_free(mos, smo->smo_object, tx);
1418                         ASSERT3U(err, ==, 0);
1419                         smo->smo_object = 0;
1420                 }
1421                 dmu_tx_commit(tx);
1422                 return;
1423         }
1424
1425         if (smo->smo_object == 0) {
1426                 ASSERT(smo->smo_objsize == 0);
1427                 ASSERT(smo->smo_alloc == 0);
1428                 smo->smo_object = dmu_object_alloc(mos,
1429                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1430                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1431                 ASSERT(smo->smo_object != 0);
1432                 vdev_config_dirty(vd->vdev_top);
1433         }
1434
1435         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1436
1437         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1438             &smlock);
1439
1440         mutex_enter(&smlock);
1441
1442         mutex_enter(&vd->vdev_dtl_lock);
1443         space_map_walk(sm, space_map_add, &smsync);
1444         mutex_exit(&vd->vdev_dtl_lock);
1445
1446         space_map_truncate(smo, mos, tx);
1447         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1448
1449         space_map_destroy(&smsync);
1450
1451         mutex_exit(&smlock);
1452         mutex_destroy(&smlock);
1453
1454         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1455         dmu_buf_will_dirty(db, tx);
1456         ASSERT3U(db->db_size, >=, sizeof (*smo));
1457         bcopy(smo, db->db_data, sizeof (*smo));
1458         dmu_buf_rele(db, FTAG);
1459
1460         dmu_tx_commit(tx);
1461 }
1462
1463 /*
1464  * Determine if resilver is needed, and if so the txg range.
1465  */
1466 boolean_t
1467 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1468 {
1469         boolean_t needed = B_FALSE;
1470         uint64_t thismin = UINT64_MAX;
1471         uint64_t thismax = 0;
1472
1473         if (vd->vdev_children == 0) {
1474                 mutex_enter(&vd->vdev_dtl_lock);
1475                 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1476                         space_seg_t *ss;
1477
1478                         ss = avl_first(&vd->vdev_dtl_map.sm_root);
1479                         thismin = ss->ss_start - 1;
1480                         ss = avl_last(&vd->vdev_dtl_map.sm_root);
1481                         thismax = ss->ss_end;
1482                         needed = B_TRUE;
1483                 }
1484                 mutex_exit(&vd->vdev_dtl_lock);
1485         } else {
1486                 int c;
1487                 for (c = 0; c < vd->vdev_children; c++) {
1488                         vdev_t *cvd = vd->vdev_child[c];
1489                         uint64_t cmin, cmax;
1490
1491                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1492                                 thismin = MIN(thismin, cmin);
1493                                 thismax = MAX(thismax, cmax);
1494                                 needed = B_TRUE;
1495                         }
1496                 }
1497         }
1498
1499         if (needed && minp) {
1500                 *minp = thismin;
1501                 *maxp = thismax;
1502         }
1503         return (needed);
1504 }
1505
1506 void
1507 vdev_load(vdev_t *vd)
1508 {
1509         int c;
1510
1511         /*
1512          * Recursively load all children.
1513          */
1514         for (c = 0; c < vd->vdev_children; c++)
1515                 vdev_load(vd->vdev_child[c]);
1516
1517         /*
1518          * If this is a top-level vdev, initialize its metaslabs.
1519          */
1520         if (vd == vd->vdev_top &&
1521             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1522             vdev_metaslab_init(vd, 0) != 0))
1523                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1524                     VDEV_AUX_CORRUPT_DATA);
1525
1526         /*
1527          * If this is a leaf vdev, load its DTL.
1528          */
1529         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1530                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1531                     VDEV_AUX_CORRUPT_DATA);
1532 }
1533
1534 /*
1535  * The special vdev case is used for hot spares and l2cache devices.  Its
1536  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1537  * we make sure that we can open the underlying device, then try to read the
1538  * label, and make sure that the label is sane and that it hasn't been
1539  * repurposed to another pool.
1540  */
1541 int
1542 vdev_validate_aux(vdev_t *vd)
1543 {
1544         nvlist_t *label;
1545         uint64_t guid, version;
1546         uint64_t state;
1547
1548         if (!vdev_readable(vd))
1549                 return (0);
1550
1551         if ((label = vdev_label_read_config(vd)) == NULL) {
1552                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1553                     VDEV_AUX_CORRUPT_DATA);
1554                 return (-1);
1555         }
1556
1557         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1558             version > SPA_VERSION ||
1559             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1560             guid != vd->vdev_guid ||
1561             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1562                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1563                     VDEV_AUX_CORRUPT_DATA);
1564                 nvlist_free(label);
1565                 return (-1);
1566         }
1567
1568         /*
1569          * We don't actually check the pool state here.  If it's in fact in
1570          * use by another pool, we update this fact on the fly when requested.
1571          */
1572         nvlist_free(label);
1573         return (0);
1574 }
1575
1576 void
1577 vdev_sync_done(vdev_t *vd, uint64_t txg)
1578 {
1579         metaslab_t *msp;
1580
1581         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1582                 metaslab_sync_done(msp, txg);
1583 }
1584
1585 void
1586 vdev_sync(vdev_t *vd, uint64_t txg)
1587 {
1588         spa_t *spa = vd->vdev_spa;
1589         vdev_t *lvd;
1590         metaslab_t *msp;
1591         dmu_tx_t *tx;
1592
1593         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1594                 ASSERT(vd == vd->vdev_top);
1595                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1596                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1597                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1598                 ASSERT(vd->vdev_ms_array != 0);
1599                 vdev_config_dirty(vd);
1600                 dmu_tx_commit(tx);
1601         }
1602
1603         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1604                 metaslab_sync(msp, txg);
1605                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1606         }
1607
1608         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1609                 vdev_dtl_sync(lvd, txg);
1610
1611         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1612 }
1613
1614 uint64_t
1615 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1616 {
1617         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1618 }
1619
1620 /*
1621  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1622  * not be opened, and no I/O is attempted.
1623  */
1624 int
1625 vdev_fault(spa_t *spa, uint64_t guid)
1626 {
1627         vdev_t *vd;
1628
1629         spa_vdev_state_enter(spa);
1630
1631         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1632                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1633
1634         if (!vd->vdev_ops->vdev_op_leaf)
1635                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1636
1637         /*
1638          * Faulted state takes precedence over degraded.
1639          */
1640         vd->vdev_faulted = 1ULL;
1641         vd->vdev_degraded = 0ULL;
1642         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1643
1644         /*
1645          * If marking the vdev as faulted cause the top-level vdev to become
1646          * unavailable, then back off and simply mark the vdev as degraded
1647          * instead.
1648          */
1649         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1650                 vd->vdev_degraded = 1ULL;
1651                 vd->vdev_faulted = 0ULL;
1652
1653                 /*
1654                  * If we reopen the device and it's not dead, only then do we
1655                  * mark it degraded.
1656                  */
1657                 vdev_reopen(vd);
1658
1659                 if (vdev_readable(vd)) {
1660                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1661                             VDEV_AUX_ERR_EXCEEDED);
1662                 }
1663         }
1664
1665         return (spa_vdev_state_exit(spa, vd, 0));
1666 }
1667
1668 /*
1669  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1670  * user that something is wrong.  The vdev continues to operate as normal as far
1671  * as I/O is concerned.
1672  */
1673 int
1674 vdev_degrade(spa_t *spa, uint64_t guid)
1675 {
1676         vdev_t *vd;
1677
1678         spa_vdev_state_enter(spa);
1679
1680         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1681                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1682
1683         if (!vd->vdev_ops->vdev_op_leaf)
1684                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1685
1686         /*
1687          * If the vdev is already faulted, then don't do anything.
1688          */
1689         if (vd->vdev_faulted || vd->vdev_degraded)
1690                 return (spa_vdev_state_exit(spa, NULL, 0));
1691
1692         vd->vdev_degraded = 1ULL;
1693         if (!vdev_is_dead(vd))
1694                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1695                     VDEV_AUX_ERR_EXCEEDED);
1696
1697         return (spa_vdev_state_exit(spa, vd, 0));
1698 }
1699
1700 /*
1701  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1702  * any attached spare device should be detached when the device finishes
1703  * resilvering.  Second, the online should be treated like a 'test' online case,
1704  * so no FMA events are generated if the device fails to open.
1705  */
1706 int
1707 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1708 {
1709         vdev_t *vd;
1710
1711         spa_vdev_state_enter(spa);
1712
1713         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1714                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1715
1716         if (!vd->vdev_ops->vdev_op_leaf)
1717                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1718
1719         vd->vdev_offline = B_FALSE;
1720         vd->vdev_tmpoffline = B_FALSE;
1721         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1722         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1723         vdev_reopen(vd->vdev_top);
1724         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1725
1726         if (newstate)
1727                 *newstate = vd->vdev_state;
1728         if ((flags & ZFS_ONLINE_UNSPARE) &&
1729             !vdev_is_dead(vd) && vd->vdev_parent &&
1730             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1731             vd->vdev_parent->vdev_child[0] == vd)
1732                 vd->vdev_unspare = B_TRUE;
1733
1734         (void) spa_vdev_state_exit(spa, vd, 0);
1735
1736         VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
1737
1738         return (0);
1739 }
1740
1741 int
1742 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1743 {
1744         vdev_t *vd;
1745
1746         spa_vdev_state_enter(spa);
1747
1748         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1749                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1750
1751         if (!vd->vdev_ops->vdev_op_leaf)
1752                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1753
1754         /*
1755          * If the device isn't already offline, try to offline it.
1756          */
1757         if (!vd->vdev_offline) {
1758                 /*
1759                  * If this device's top-level vdev has a non-empty DTL,
1760                  * don't allow the device to be offlined.
1761                  *
1762                  * XXX -- make this more precise by allowing the offline
1763                  * as long as the remaining devices don't have any DTL holes.
1764                  */
1765                 if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1766                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1767
1768                 /*
1769                  * Offline this device and reopen its top-level vdev.
1770                  * If this action results in the top-level vdev becoming
1771                  * unusable, undo it and fail the request.
1772                  */
1773                 vd->vdev_offline = B_TRUE;
1774                 vdev_reopen(vd->vdev_top);
1775                 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1776                         vd->vdev_offline = B_FALSE;
1777                         vdev_reopen(vd->vdev_top);
1778                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1779                 }
1780         }
1781
1782         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1783
1784         return (spa_vdev_state_exit(spa, vd, 0));
1785 }
1786
1787 /*
1788  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1789  * vdev_offline(), we assume the spa config is locked.  We also clear all
1790  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1791  */
1792 void
1793 vdev_clear(spa_t *spa, vdev_t *vd)
1794 {
1795         vdev_t *rvd = spa->spa_root_vdev;
1796
1797         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1798
1799         if (vd == NULL)
1800                 vd = rvd;
1801
1802         vd->vdev_stat.vs_read_errors = 0;
1803         vd->vdev_stat.vs_write_errors = 0;
1804         vd->vdev_stat.vs_checksum_errors = 0;
1805
1806         for (int c = 0; c < vd->vdev_children; c++)
1807                 vdev_clear(spa, vd->vdev_child[c]);
1808
1809         /*
1810          * If we're in the FAULTED state or have experienced failed I/O, then
1811          * clear the persistent state and attempt to reopen the device.  We
1812          * also mark the vdev config dirty, so that the new faulted state is
1813          * written out to disk.
1814          */
1815         if (vd->vdev_faulted || vd->vdev_degraded ||
1816             !vdev_readable(vd) || !vdev_writeable(vd)) {
1817
1818                 vd->vdev_faulted = vd->vdev_degraded = 0;
1819                 vd->vdev_cant_read = B_FALSE;
1820                 vd->vdev_cant_write = B_FALSE;
1821
1822                 vdev_reopen(vd);
1823
1824                 if (vd != rvd)
1825                         vdev_state_dirty(vd->vdev_top);
1826
1827                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1828                         spa_async_request(spa, SPA_ASYNC_RESILVER);
1829
1830                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1831         }
1832 }
1833
1834 boolean_t
1835 vdev_is_dead(vdev_t *vd)
1836 {
1837         return (vd->vdev_state < VDEV_STATE_DEGRADED);
1838 }
1839
1840 boolean_t
1841 vdev_readable(vdev_t *vd)
1842 {
1843         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
1844 }
1845
1846 boolean_t
1847 vdev_writeable(vdev_t *vd)
1848 {
1849         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1850 }
1851
1852 boolean_t
1853 vdev_allocatable(vdev_t *vd)
1854 {
1855         /*
1856          * We currently allow allocations from vdevs which maybe in the
1857          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
1858          * fails to reopen then we'll catch it later when we're holding
1859          * the proper locks.
1860          */
1861         return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) &&
1862             !vd->vdev_cant_write);
1863 }
1864
1865 boolean_t
1866 vdev_accessible(vdev_t *vd, zio_t *zio)
1867 {
1868         ASSERT(zio->io_vd == vd);
1869
1870         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
1871                 return (B_FALSE);
1872
1873         if (zio->io_type == ZIO_TYPE_READ)
1874                 return (!vd->vdev_cant_read);
1875
1876         if (zio->io_type == ZIO_TYPE_WRITE)
1877                 return (!vd->vdev_cant_write);
1878
1879         return (B_TRUE);
1880 }
1881
1882 /*
1883  * Get statistics for the given vdev.
1884  */
1885 void
1886 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1887 {
1888         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1889
1890         mutex_enter(&vd->vdev_stat_lock);
1891         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1892         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
1893         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1894         vs->vs_state = vd->vdev_state;
1895         vs->vs_rsize = vdev_get_rsize(vd);
1896         mutex_exit(&vd->vdev_stat_lock);
1897
1898         /*
1899          * If we're getting stats on the root vdev, aggregate the I/O counts
1900          * over all top-level vdevs (i.e. the direct children of the root).
1901          */
1902         if (vd == rvd) {
1903                 for (int c = 0; c < rvd->vdev_children; c++) {
1904                         vdev_t *cvd = rvd->vdev_child[c];
1905                         vdev_stat_t *cvs = &cvd->vdev_stat;
1906
1907                         mutex_enter(&vd->vdev_stat_lock);
1908                         for (int t = 0; t < ZIO_TYPES; t++) {
1909                                 vs->vs_ops[t] += cvs->vs_ops[t];
1910                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
1911                         }
1912                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
1913                         mutex_exit(&vd->vdev_stat_lock);
1914                 }
1915         }
1916 }
1917
1918 void
1919 vdev_clear_stats(vdev_t *vd)
1920 {
1921         mutex_enter(&vd->vdev_stat_lock);
1922         vd->vdev_stat.vs_space = 0;
1923         vd->vdev_stat.vs_dspace = 0;
1924         vd->vdev_stat.vs_alloc = 0;
1925         mutex_exit(&vd->vdev_stat_lock);
1926 }
1927
1928 void
1929 vdev_stat_update(zio_t *zio, uint64_t psize)
1930 {
1931         vdev_t *rvd = zio->io_spa->spa_root_vdev;
1932         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
1933         vdev_t *pvd;
1934         uint64_t txg = zio->io_txg;
1935         vdev_stat_t *vs = &vd->vdev_stat;
1936         zio_type_t type = zio->io_type;
1937         int flags = zio->io_flags;
1938
1939         /*
1940          * If this i/o is a gang leader, it didn't do any actual work.
1941          */
1942         if (zio->io_gang_tree)
1943                 return;
1944
1945         if (zio->io_error == 0) {
1946                 /*
1947                  * If this is a root i/o, don't count it -- we've already
1948                  * counted the top-level vdevs, and vdev_get_stats() will
1949                  * aggregate them when asked.  This reduces contention on
1950                  * the root vdev_stat_lock and implicitly handles blocks
1951                  * that compress away to holes, for which there is no i/o.
1952                  * (Holes never create vdev children, so all the counters
1953                  * remain zero, which is what we want.)
1954                  *
1955                  * Note: this only applies to successful i/o (io_error == 0)
1956                  * because unlike i/o counts, errors are not additive.
1957                  * When reading a ditto block, for example, failure of
1958                  * one top-level vdev does not imply a root-level error.
1959                  */
1960                 if (vd == rvd)
1961                         return;
1962
1963                 ASSERT(vd == zio->io_vd);
1964                 if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1965                         mutex_enter(&vd->vdev_stat_lock);
1966                         vs->vs_ops[type]++;
1967                         vs->vs_bytes[type] += psize;
1968                         mutex_exit(&vd->vdev_stat_lock);
1969                 }
1970                 if (flags & ZIO_FLAG_IO_REPAIR) {
1971                         ASSERT(zio->io_delegate_list == NULL);
1972                         mutex_enter(&vd->vdev_stat_lock);
1973                         if (flags & ZIO_FLAG_SCRUB_THREAD)
1974                                 vs->vs_scrub_repaired += psize;
1975                         else
1976                                 vs->vs_self_healed += psize;
1977                         mutex_exit(&vd->vdev_stat_lock);
1978                 }
1979                 return;
1980         }
1981
1982         if (flags & ZIO_FLAG_SPECULATIVE)
1983                 return;
1984
1985         mutex_enter(&vd->vdev_stat_lock);
1986         if (type == ZIO_TYPE_READ) {
1987                 if (zio->io_error == ECKSUM)
1988                         vs->vs_checksum_errors++;
1989                 else
1990                         vs->vs_read_errors++;
1991         }
1992         if (type == ZIO_TYPE_WRITE)
1993                 vs->vs_write_errors++;
1994         mutex_exit(&vd->vdev_stat_lock);
1995
1996         if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
1997                 if (flags & ZIO_FLAG_SCRUB_THREAD) {
1998                         ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1999                         for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2000                                 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
2001                 }
2002                 if (!(flags & ZIO_FLAG_IO_REPAIR)) {
2003                         if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
2004                                 return;
2005                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2006                         for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2007                                 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
2008                 }
2009         }
2010 }
2011
2012 void
2013 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2014 {
2015         int c;
2016         vdev_stat_t *vs = &vd->vdev_stat;
2017
2018         for (c = 0; c < vd->vdev_children; c++)
2019                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2020
2021         mutex_enter(&vd->vdev_stat_lock);
2022
2023         if (type == POOL_SCRUB_NONE) {
2024                 /*
2025                  * Update completion and end time.  Leave everything else alone
2026                  * so we can report what happened during the previous scrub.
2027                  */
2028                 vs->vs_scrub_complete = complete;
2029                 vs->vs_scrub_end = gethrestime_sec();
2030         } else {
2031                 vs->vs_scrub_type = type;
2032                 vs->vs_scrub_complete = 0;
2033                 vs->vs_scrub_examined = 0;
2034                 vs->vs_scrub_repaired = 0;
2035                 vs->vs_scrub_start = gethrestime_sec();
2036                 vs->vs_scrub_end = 0;
2037         }
2038
2039         mutex_exit(&vd->vdev_stat_lock);
2040 }
2041
2042 /*
2043  * Update the in-core space usage stats for this vdev and the root vdev.
2044  */
2045 void
2046 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2047     boolean_t update_root)
2048 {
2049         int64_t dspace_delta = space_delta;
2050         spa_t *spa = vd->vdev_spa;
2051         vdev_t *rvd = spa->spa_root_vdev;
2052
2053         ASSERT(vd == vd->vdev_top);
2054
2055         /*
2056          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2057          * factor.  We must calculate this here and not at the root vdev
2058          * because the root vdev's psize-to-asize is simply the max of its
2059          * childrens', thus not accurate enough for us.
2060          */
2061         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2062         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2063             vd->vdev_deflate_ratio;
2064
2065         mutex_enter(&vd->vdev_stat_lock);
2066         vd->vdev_stat.vs_space += space_delta;
2067         vd->vdev_stat.vs_alloc += alloc_delta;
2068         vd->vdev_stat.vs_dspace += dspace_delta;
2069         mutex_exit(&vd->vdev_stat_lock);
2070
2071         if (update_root) {
2072                 ASSERT(rvd == vd->vdev_parent);
2073                 ASSERT(vd->vdev_ms_count != 0);
2074
2075                 /*
2076                  * Don't count non-normal (e.g. intent log) space as part of
2077                  * the pool's capacity.
2078                  */
2079                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2080                         return;
2081
2082                 mutex_enter(&rvd->vdev_stat_lock);
2083                 rvd->vdev_stat.vs_space += space_delta;
2084                 rvd->vdev_stat.vs_alloc += alloc_delta;
2085                 rvd->vdev_stat.vs_dspace += dspace_delta;
2086                 mutex_exit(&rvd->vdev_stat_lock);
2087         }
2088 }
2089
2090 /*
2091  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2092  * so that it will be written out next time the vdev configuration is synced.
2093  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2094  */
2095 void
2096 vdev_config_dirty(vdev_t *vd)
2097 {
2098         spa_t *spa = vd->vdev_spa;
2099         vdev_t *rvd = spa->spa_root_vdev;
2100         int c;
2101
2102         /*
2103          * If this is an aux vdev (as with l2cache devices), then we update the
2104          * vdev config manually and set the sync flag.
2105          */
2106         if (vd->vdev_aux != NULL) {
2107                 spa_aux_vdev_t *sav = vd->vdev_aux;
2108                 nvlist_t **aux;
2109                 uint_t naux;
2110
2111                 for (c = 0; c < sav->sav_count; c++) {
2112                         if (sav->sav_vdevs[c] == vd)
2113                                 break;
2114                 }
2115
2116                 if (c == sav->sav_count) {
2117                         /*
2118                          * We're being removed.  There's nothing more to do.
2119                          */
2120                         ASSERT(sav->sav_sync == B_TRUE);
2121                         return;
2122                 }
2123
2124                 sav->sav_sync = B_TRUE;
2125
2126                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2127                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2128
2129                 ASSERT(c < naux);
2130
2131                 /*
2132                  * Setting the nvlist in the middle if the array is a little
2133                  * sketchy, but it will work.
2134                  */
2135                 nvlist_free(aux[c]);
2136                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2137
2138                 return;
2139         }
2140
2141         /*
2142          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2143          * must either hold SCL_CONFIG as writer, or must be the sync thread
2144          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2145          * so this is sufficient to ensure mutual exclusion.
2146          */
2147         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2148             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2149             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2150
2151         if (vd == rvd) {
2152                 for (c = 0; c < rvd->vdev_children; c++)
2153                         vdev_config_dirty(rvd->vdev_child[c]);
2154         } else {
2155                 ASSERT(vd == vd->vdev_top);
2156
2157                 if (!list_link_active(&vd->vdev_config_dirty_node))
2158                         list_insert_head(&spa->spa_config_dirty_list, vd);
2159         }
2160 }
2161
2162 void
2163 vdev_config_clean(vdev_t *vd)
2164 {
2165         spa_t *spa = vd->vdev_spa;
2166
2167         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2168             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2169             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2170
2171         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2172         list_remove(&spa->spa_config_dirty_list, vd);
2173 }
2174
2175 /*
2176  * Mark a top-level vdev's state as dirty, so that the next pass of
2177  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2178  * the state changes from larger config changes because they require
2179  * much less locking, and are often needed for administrative actions.
2180  */
2181 void
2182 vdev_state_dirty(vdev_t *vd)
2183 {
2184         spa_t *spa = vd->vdev_spa;
2185
2186         ASSERT(vd == vd->vdev_top);
2187
2188         /*
2189          * The state list is protected by the SCL_STATE lock.  The caller
2190          * must either hold SCL_STATE as writer, or must be the sync thread
2191          * (which holds SCL_STATE as reader).  There's only one sync thread,
2192          * so this is sufficient to ensure mutual exclusion.
2193          */
2194         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2195             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2196             spa_config_held(spa, SCL_STATE, RW_READER)));
2197
2198         if (!list_link_active(&vd->vdev_state_dirty_node))
2199                 list_insert_head(&spa->spa_state_dirty_list, vd);
2200 }
2201
2202 void
2203 vdev_state_clean(vdev_t *vd)
2204 {
2205         spa_t *spa = vd->vdev_spa;
2206
2207         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2208             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2209             spa_config_held(spa, SCL_STATE, RW_READER)));
2210
2211         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2212         list_remove(&spa->spa_state_dirty_list, vd);
2213 }
2214
2215 /*
2216  * Propagate vdev state up from children to parent.
2217  */
2218 void
2219 vdev_propagate_state(vdev_t *vd)
2220 {
2221         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2222         int degraded = 0, faulted = 0;
2223         int corrupted = 0;
2224         int c;
2225         vdev_t *child;
2226
2227         if (vd->vdev_children > 0) {
2228                 for (c = 0; c < vd->vdev_children; c++) {
2229                         child = vd->vdev_child[c];
2230
2231                         if (!vdev_readable(child) ||
2232                             (!vdev_writeable(child) && (spa_mode & FWRITE))) {
2233                                 /*
2234                                  * Root special: if there is a top-level log
2235                                  * device, treat the root vdev as if it were
2236                                  * degraded.
2237                                  */
2238                                 if (child->vdev_islog && vd == rvd)
2239                                         degraded++;
2240                                 else
2241                                         faulted++;
2242                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2243                                 degraded++;
2244                         }
2245
2246                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2247                                 corrupted++;
2248                 }
2249
2250                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2251
2252                 /*
2253                  * Root special: if there is a top-level vdev that cannot be
2254                  * opened due to corrupted metadata, then propagate the root
2255                  * vdev's aux state as 'corrupt' rather than 'insufficient
2256                  * replicas'.
2257                  */
2258                 if (corrupted && vd == rvd &&
2259                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2260                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2261                             VDEV_AUX_CORRUPT_DATA);
2262         }
2263
2264         if (vd->vdev_parent)
2265                 vdev_propagate_state(vd->vdev_parent);
2266 }
2267
2268 /*
2269  * Set a vdev's state.  If this is during an open, we don't update the parent
2270  * state, because we're in the process of opening children depth-first.
2271  * Otherwise, we propagate the change to the parent.
2272  *
2273  * If this routine places a device in a faulted state, an appropriate ereport is
2274  * generated.
2275  */
2276 void
2277 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2278 {
2279         uint64_t save_state;
2280         spa_t *spa = vd->vdev_spa;
2281
2282         if (state == vd->vdev_state) {
2283                 vd->vdev_stat.vs_aux = aux;
2284                 return;
2285         }
2286
2287         save_state = vd->vdev_state;
2288
2289         vd->vdev_state = state;
2290         vd->vdev_stat.vs_aux = aux;
2291
2292         /*
2293          * If we are setting the vdev state to anything but an open state, then
2294          * always close the underlying device.  Otherwise, we keep accessible
2295          * but invalid devices open forever.  We don't call vdev_close() itself,
2296          * because that implies some extra checks (offline, etc) that we don't
2297          * want here.  This is limited to leaf devices, because otherwise
2298          * closing the device will affect other children.
2299          */
2300         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2301                 vd->vdev_ops->vdev_op_close(vd);
2302
2303         if (vd->vdev_removed &&
2304             state == VDEV_STATE_CANT_OPEN &&
2305             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2306                 /*
2307                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2308                  * device was previously marked removed and someone attempted to
2309                  * reopen it.  If this failed due to a nonexistent device, then
2310                  * keep the device in the REMOVED state.  We also let this be if
2311                  * it is one of our special test online cases, which is only
2312                  * attempting to online the device and shouldn't generate an FMA
2313                  * fault.
2314                  */
2315                 vd->vdev_state = VDEV_STATE_REMOVED;
2316                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2317         } else if (state == VDEV_STATE_REMOVED) {
2318                 /*
2319                  * Indicate to the ZFS DE that this device has been removed, and
2320                  * any recent errors should be ignored.
2321                  */
2322                 zfs_post_remove(spa, vd);
2323                 vd->vdev_removed = B_TRUE;
2324         } else if (state == VDEV_STATE_CANT_OPEN) {
2325                 /*
2326                  * If we fail to open a vdev during an import, we mark it as
2327                  * "not available", which signifies that it was never there to
2328                  * begin with.  Failure to open such a device is not considered
2329                  * an error.
2330                  */
2331                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2332                     !spa->spa_import_faulted &&
2333                     vd->vdev_ops->vdev_op_leaf)
2334                         vd->vdev_not_present = 1;
2335
2336                 /*
2337                  * Post the appropriate ereport.  If the 'prevstate' field is
2338                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2339                  * that this is part of a vdev_reopen().  In this case, we don't
2340                  * want to post the ereport if the device was already in the
2341                  * CANT_OPEN state beforehand.
2342                  *
2343                  * If the 'checkremove' flag is set, then this is an attempt to
2344                  * online the device in response to an insertion event.  If we
2345                  * hit this case, then we have detected an insertion event for a
2346                  * faulted or offline device that wasn't in the removed state.
2347                  * In this scenario, we don't post an ereport because we are
2348                  * about to replace the device, or attempt an online with
2349                  * vdev_forcefault, which will generate the fault for us.
2350                  */
2351                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2352                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2353                     vd != spa->spa_root_vdev) {
2354                         const char *class;
2355
2356                         switch (aux) {
2357                         case VDEV_AUX_OPEN_FAILED:
2358                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2359                                 break;
2360                         case VDEV_AUX_CORRUPT_DATA:
2361                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2362                                 break;
2363                         case VDEV_AUX_NO_REPLICAS:
2364                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2365                                 break;
2366                         case VDEV_AUX_BAD_GUID_SUM:
2367                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2368                                 break;
2369                         case VDEV_AUX_TOO_SMALL:
2370                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2371                                 break;
2372                         case VDEV_AUX_BAD_LABEL:
2373                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2374                                 break;
2375                         case VDEV_AUX_IO_FAILURE:
2376                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2377                                 break;
2378                         default:
2379                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2380                         }
2381
2382                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2383                 }
2384
2385                 /* Erase any notion of persistent removed state */
2386                 vd->vdev_removed = B_FALSE;
2387         } else {
2388                 vd->vdev_removed = B_FALSE;
2389         }
2390
2391         if (!isopen)
2392                 vdev_propagate_state(vd);
2393 }
2394
2395 /*
2396  * Check the vdev configuration to ensure that it's capable of supporting
2397  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2398  * In addition, only a single top-level vdev is allowed and none of the leaves
2399  * can be wholedisks.
2400  */
2401 boolean_t
2402 vdev_is_bootable(vdev_t *vd)
2403 {
2404         int c;
2405
2406         if (!vd->vdev_ops->vdev_op_leaf) {
2407                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2408
2409                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2410                     vd->vdev_children > 1) {
2411                         return (B_FALSE);
2412                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2413                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2414                         return (B_FALSE);
2415                 }
2416         } else if (vd->vdev_wholedisk == 1) {
2417                 return (B_FALSE);
2418         }
2419
2420         for (c = 0; c < vd->vdev_children; c++) {
2421                 if (!vdev_is_bootable(vd->vdev_child[c]))
2422                         return (B_FALSE);
2423         }
2424         return (B_TRUE);
2425 }