Add linux events
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88         int c;
89
90         for (c = 0; c < vd->vdev_children; c++) {
91                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92                 asize = MAX(asize, csize);
93         }
94
95         return (asize);
96 }
97
98 /*
99  * Get the minimum allocatable size. We define the allocatable size as
100  * the vdev's asize rounded to the nearest metaslab. This allows us to
101  * replace or attach devices which don't have the same physical size but
102  * can still satisfy the same number of allocations.
103  */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107         vdev_t *pvd = vd->vdev_parent;
108
109         /*
110          * The our parent is NULL (inactive spare or cache) or is the root,
111          * just return our own asize.
112          */
113         if (pvd == NULL)
114                 return (vd->vdev_asize);
115
116         /*
117          * The top-level vdev just returns the allocatable size rounded
118          * to the nearest metaslab.
119          */
120         if (vd == vd->vdev_top)
121                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123         /*
124          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125          * so each child must provide at least 1/Nth of its asize.
126          */
127         if (pvd->vdev_ops == &vdev_raidz_ops)
128                 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130         return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136         int c;
137         vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139         for (c = 0; c < vd->vdev_children; c++)
140                 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146         vdev_t *rvd = spa->spa_root_vdev;
147
148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150         if (vdev < rvd->vdev_children) {
151                 ASSERT(rvd->vdev_child[vdev] != NULL);
152                 return (rvd->vdev_child[vdev]);
153         }
154
155         return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161         vdev_t *mvd;
162         int c;
163
164         if (vd->vdev_guid == guid)
165                 return (vd);
166
167         for (c = 0; c < vd->vdev_children; c++)
168                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169                     NULL)
170                         return (mvd);
171
172         return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178         size_t oldsize, newsize;
179         uint64_t id = cvd->vdev_id;
180         vdev_t **newchild;
181
182         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183         ASSERT(cvd->vdev_parent == NULL);
184
185         cvd->vdev_parent = pvd;
186
187         if (pvd == NULL)
188                 return;
189
190         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192         oldsize = pvd->vdev_children * sizeof (vdev_t *);
193         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194         newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196         newchild = kmem_zalloc(newsize, KM_SLEEP);
197         if (pvd->vdev_child != NULL) {
198                 bcopy(pvd->vdev_child, newchild, oldsize);
199                 kmem_free(pvd->vdev_child, oldsize);
200         }
201
202         pvd->vdev_child = newchild;
203         pvd->vdev_child[id] = cvd;
204
205         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208         /*
209          * Walk up all ancestors to update guid sum.
210          */
211         for (; pvd != NULL; pvd = pvd->vdev_parent)
212                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255         vdev_t **newchild, *cvd;
256         int oldc = pvd->vdev_children;
257         int newc;
258         int c;
259
260         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262         for (c = newc = 0; c < oldc; c++)
263                 if (pvd->vdev_child[c])
264                         newc++;
265
266         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
268         for (c = newc = 0; c < oldc; c++) {
269                 if ((cvd = pvd->vdev_child[c]) != NULL) {
270                         newchild[newc] = cvd;
271                         cvd->vdev_id = newc++;
272                 }
273         }
274
275         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276         pvd->vdev_child = newchild;
277         pvd->vdev_children = newc;
278 }
279
280 /*
281  * Allocate and minimally initialize a vdev_t.
282  */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286         vdev_t *vd;
287         int t;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0 && ops != &vdev_hole_ops) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         guid = spa_generate_guid(NULL);
303                 } else {
304                         /*
305                          * Any other vdev's guid must be unique within the pool.
306                          */
307                         guid = spa_generate_guid(spa);
308                 }
309                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310         }
311
312         vd->vdev_spa = spa;
313         vd->vdev_id = id;
314         vd->vdev_guid = guid;
315         vd->vdev_guid_sum = guid;
316         vd->vdev_ops = ops;
317         vd->vdev_state = VDEV_STATE_CLOSED;
318         vd->vdev_ishole = (ops == &vdev_hole_ops);
319
320         list_link_init(&vd->vdev_config_dirty_node);
321         list_link_init(&vd->vdev_state_dirty_node);
322         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325         for (t = 0; t < DTL_TYPES; t++) {
326                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327                     &vd->vdev_dtl_lock);
328         }
329         txg_list_create(&vd->vdev_ms_list,
330             offsetof(struct metaslab, ms_txg_node));
331         txg_list_create(&vd->vdev_dtl_list,
332             offsetof(struct vdev, vdev_dtl_node));
333         vd->vdev_stat.vs_timestamp = gethrtime();
334         vdev_queue_init(vd);
335         vdev_cache_init(vd);
336
337         return (vd);
338 }
339
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349         vdev_ops_t *ops;
350         char *type;
351         uint64_t guid = 0, islog, nparity;
352         vdev_t *vd;
353
354         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357                 return (EINVAL);
358
359         if ((ops = vdev_getops(type)) == NULL)
360                 return (EINVAL);
361
362         /*
363          * If this is a load, get the vdev guid from the nvlist.
364          * Otherwise, vdev_alloc_common() will generate one for us.
365          */
366         if (alloctype == VDEV_ALLOC_LOAD) {
367                 uint64_t label_id;
368
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370                     label_id != id)
371                         return (EINVAL);
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         } else if (alloctype == VDEV_ALLOC_SPARE) {
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         }
385
386         /*
387          * The first allocated vdev must be of type 'root'.
388          */
389         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390                 return (EINVAL);
391
392         /*
393          * Determine whether we're a log vdev.
394          */
395         islog = 0;
396         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398                 return (ENOTSUP);
399
400         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
401                 return (ENOTSUP);
402
403         /*
404          * Set the nparity property for RAID-Z vdevs.
405          */
406         nparity = -1ULL;
407         if (ops == &vdev_raidz_ops) {
408                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
409                     &nparity) == 0) {
410                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
411                                 return (EINVAL);
412                         /*
413                          * Previous versions could only support 1 or 2 parity
414                          * device.
415                          */
416                         if (nparity > 1 &&
417                             spa_version(spa) < SPA_VERSION_RAIDZ2)
418                                 return (ENOTSUP);
419                         if (nparity > 2 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ3)
421                                 return (ENOTSUP);
422                 } else {
423                         /*
424                          * We require the parity to be specified for SPAs that
425                          * support multiple parity levels.
426                          */
427                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428                                 return (EINVAL);
429                         /*
430                          * Otherwise, we default to 1 parity device for RAID-Z.
431                          */
432                         nparity = 1;
433                 }
434         } else {
435                 nparity = 0;
436         }
437         ASSERT(nparity != -1ULL);
438
439         vd = vdev_alloc_common(spa, id, guid, ops);
440
441         vd->vdev_islog = islog;
442         vd->vdev_nparity = nparity;
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445                 vd->vdev_path = spa_strdup(vd->vdev_path);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449             &vd->vdev_physpath) == 0)
450                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
453
454         /*
455          * Set the whole_disk property.  If it's not specified, leave the value
456          * as -1.
457          */
458         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459             &vd->vdev_wholedisk) != 0)
460                 vd->vdev_wholedisk = -1ULL;
461
462         /*
463          * Look for the 'not present' flag.  This will only be set if the device
464          * was not present at the time of import.
465          */
466         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467             &vd->vdev_not_present);
468
469         /*
470          * Get the alignment requirement.
471          */
472         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474         /*
475          * Retrieve the vdev creation time.
476          */
477         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
478             &vd->vdev_crtxg);
479
480         /*
481          * If we're a top-level vdev, try to load the allocation parameters.
482          */
483         if (parent && !parent->vdev_parent &&
484             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
486                     &vd->vdev_ms_array);
487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
488                     &vd->vdev_ms_shift);
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
490                     &vd->vdev_asize);
491                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
492                     &vd->vdev_removing);
493         }
494
495         if (parent && !parent->vdev_parent) {
496                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
497                     alloctype == VDEV_ALLOC_ADD ||
498                     alloctype == VDEV_ALLOC_SPLIT ||
499                     alloctype == VDEV_ALLOC_ROOTPOOL);
500                 vd->vdev_mg = metaslab_group_create(islog ?
501                     spa_log_class(spa) : spa_normal_class(spa), vd);
502         }
503
504         /*
505          * If we're a leaf vdev, try to load the DTL object and other state.
506          */
507         if (vd->vdev_ops->vdev_op_leaf &&
508             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
509             alloctype == VDEV_ALLOC_ROOTPOOL)) {
510                 if (alloctype == VDEV_ALLOC_LOAD) {
511                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
512                             &vd->vdev_dtl_smo.smo_object);
513                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
514                             &vd->vdev_unspare);
515                 }
516
517                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
518                         uint64_t spare = 0;
519
520                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
521                             &spare) == 0 && spare)
522                                 spa_spare_add(vd);
523                 }
524
525                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
526                     &vd->vdev_offline);
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
529                     &vd->vdev_resilvering);
530
531                 /*
532                  * When importing a pool, we want to ignore the persistent fault
533                  * state, as the diagnosis made on another system may not be
534                  * valid in the current context.  Local vdevs will
535                  * remain in the faulted state.
536                  */
537                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
539                             &vd->vdev_faulted);
540                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
541                             &vd->vdev_degraded);
542                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
543                             &vd->vdev_removed);
544
545                         if (vd->vdev_faulted || vd->vdev_degraded) {
546                                 char *aux;
547
548                                 vd->vdev_label_aux =
549                                     VDEV_AUX_ERR_EXCEEDED;
550                                 if (nvlist_lookup_string(nv,
551                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
552                                     strcmp(aux, "external") == 0)
553                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
554                         }
555                 }
556         }
557
558         /*
559          * Add ourselves to the parent's list of children.
560          */
561         vdev_add_child(parent, vd);
562
563         *vdp = vd;
564
565         return (0);
566 }
567
568 void
569 vdev_free(vdev_t *vd)
570 {
571         int c, t;
572         spa_t *spa = vd->vdev_spa;
573
574         /*
575          * vdev_free() implies closing the vdev first.  This is simpler than
576          * trying to ensure complicated semantics for all callers.
577          */
578         vdev_close(vd);
579
580         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583         /*
584          * Free all children.
585          */
586         for (c = 0; c < vd->vdev_children; c++)
587                 vdev_free(vd->vdev_child[c]);
588
589         ASSERT(vd->vdev_child == NULL);
590         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592         /*
593          * Discard allocation state.
594          */
595         if (vd->vdev_mg != NULL) {
596                 vdev_metaslab_fini(vd);
597                 metaslab_group_destroy(vd->vdev_mg);
598         }
599
600         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
601         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
602         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
603
604         /*
605          * Remove this vdev from its parent's child list.
606          */
607         vdev_remove_child(vd->vdev_parent, vd);
608
609         ASSERT(vd->vdev_parent == NULL);
610
611         /*
612          * Clean up vdev structure.
613          */
614         vdev_queue_fini(vd);
615         vdev_cache_fini(vd);
616
617         if (vd->vdev_path)
618                 spa_strfree(vd->vdev_path);
619         if (vd->vdev_devid)
620                 spa_strfree(vd->vdev_devid);
621         if (vd->vdev_physpath)
622                 spa_strfree(vd->vdev_physpath);
623         if (vd->vdev_fru)
624                 spa_strfree(vd->vdev_fru);
625
626         if (vd->vdev_isspare)
627                 spa_spare_remove(vd);
628         if (vd->vdev_isl2cache)
629                 spa_l2cache_remove(vd);
630
631         txg_list_destroy(&vd->vdev_ms_list);
632         txg_list_destroy(&vd->vdev_dtl_list);
633
634         mutex_enter(&vd->vdev_dtl_lock);
635         for (t = 0; t < DTL_TYPES; t++) {
636                 space_map_unload(&vd->vdev_dtl[t]);
637                 space_map_destroy(&vd->vdev_dtl[t]);
638         }
639         mutex_exit(&vd->vdev_dtl_lock);
640
641         mutex_destroy(&vd->vdev_dtl_lock);
642         mutex_destroy(&vd->vdev_stat_lock);
643         mutex_destroy(&vd->vdev_probe_lock);
644
645         if (vd == spa->spa_root_vdev)
646                 spa->spa_root_vdev = NULL;
647
648         kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652  * Transfer top-level vdev state from svd to tvd.
653  */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657         spa_t *spa = svd->vdev_spa;
658         metaslab_t *msp;
659         vdev_t *vd;
660         int t;
661
662         ASSERT(tvd == tvd->vdev_top);
663
664         tvd->vdev_ms_array = svd->vdev_ms_array;
665         tvd->vdev_ms_shift = svd->vdev_ms_shift;
666         tvd->vdev_ms_count = svd->vdev_ms_count;
667
668         svd->vdev_ms_array = 0;
669         svd->vdev_ms_shift = 0;
670         svd->vdev_ms_count = 0;
671
672         tvd->vdev_mg = svd->vdev_mg;
673         tvd->vdev_ms = svd->vdev_ms;
674
675         svd->vdev_mg = NULL;
676         svd->vdev_ms = NULL;
677
678         if (tvd->vdev_mg != NULL)
679                 tvd->vdev_mg->mg_vd = tvd;
680
681         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
682         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
683         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
684
685         svd->vdev_stat.vs_alloc = 0;
686         svd->vdev_stat.vs_space = 0;
687         svd->vdev_stat.vs_dspace = 0;
688
689         for (t = 0; t < TXG_SIZE; t++) {
690                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
691                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
692                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
693                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
694                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
695                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
696         }
697
698         if (list_link_active(&svd->vdev_config_dirty_node)) {
699                 vdev_config_clean(svd);
700                 vdev_config_dirty(tvd);
701         }
702
703         if (list_link_active(&svd->vdev_state_dirty_node)) {
704                 vdev_state_clean(svd);
705                 vdev_state_dirty(tvd);
706         }
707
708         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
709         svd->vdev_deflate_ratio = 0;
710
711         tvd->vdev_islog = svd->vdev_islog;
712         svd->vdev_islog = 0;
713 }
714
715 static void
716 vdev_top_update(vdev_t *tvd, vdev_t *vd)
717 {
718         int c;
719
720         if (vd == NULL)
721                 return;
722
723         vd->vdev_top = tvd;
724
725         for (c = 0; c < vd->vdev_children; c++)
726                 vdev_top_update(tvd, vd->vdev_child[c]);
727 }
728
729 /*
730  * Add a mirror/replacing vdev above an existing vdev.
731  */
732 vdev_t *
733 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734 {
735         spa_t *spa = cvd->vdev_spa;
736         vdev_t *pvd = cvd->vdev_parent;
737         vdev_t *mvd;
738
739         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743         mvd->vdev_asize = cvd->vdev_asize;
744         mvd->vdev_min_asize = cvd->vdev_min_asize;
745         mvd->vdev_ashift = cvd->vdev_ashift;
746         mvd->vdev_state = cvd->vdev_state;
747         mvd->vdev_crtxg = cvd->vdev_crtxg;
748
749         vdev_remove_child(pvd, cvd);
750         vdev_add_child(pvd, mvd);
751         cvd->vdev_id = mvd->vdev_children;
752         vdev_add_child(mvd, cvd);
753         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
754
755         if (mvd == mvd->vdev_top)
756                 vdev_top_transfer(cvd, mvd);
757
758         return (mvd);
759 }
760
761 /*
762  * Remove a 1-way mirror/replacing vdev from the tree.
763  */
764 void
765 vdev_remove_parent(vdev_t *cvd)
766 {
767         vdev_t *mvd = cvd->vdev_parent;
768         vdev_t *pvd = mvd->vdev_parent;
769
770         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
771
772         ASSERT(mvd->vdev_children == 1);
773         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
774             mvd->vdev_ops == &vdev_replacing_ops ||
775             mvd->vdev_ops == &vdev_spare_ops);
776         cvd->vdev_ashift = mvd->vdev_ashift;
777
778         vdev_remove_child(mvd, cvd);
779         vdev_remove_child(pvd, mvd);
780
781         /*
782          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
783          * Otherwise, we could have detached an offline device, and when we
784          * go to import the pool we'll think we have two top-level vdevs,
785          * instead of a different version of the same top-level vdev.
786          */
787         if (mvd->vdev_top == mvd) {
788                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
789                 cvd->vdev_orig_guid = cvd->vdev_guid;
790                 cvd->vdev_guid += guid_delta;
791                 cvd->vdev_guid_sum += guid_delta;
792         }
793         cvd->vdev_id = mvd->vdev_id;
794         vdev_add_child(pvd, cvd);
795         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
796
797         if (cvd == cvd->vdev_top)
798                 vdev_top_transfer(mvd, cvd);
799
800         ASSERT(mvd->vdev_children == 0);
801         vdev_free(mvd);
802 }
803
804 int
805 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
806 {
807         spa_t *spa = vd->vdev_spa;
808         objset_t *mos = spa->spa_meta_objset;
809         uint64_t m;
810         uint64_t oldc = vd->vdev_ms_count;
811         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
812         metaslab_t **mspp;
813         int error;
814
815         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
816
817         /*
818          * This vdev is not being allocated from yet or is a hole.
819          */
820         if (vd->vdev_ms_shift == 0)
821                 return (0);
822
823         ASSERT(!vd->vdev_ishole);
824
825         /*
826          * Compute the raidz-deflation ratio.  Note, we hard-code
827          * in 128k (1 << 17) because it is the current "typical" blocksize.
828          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
829          * or we will inconsistently account for existing bp's.
830          */
831         vd->vdev_deflate_ratio = (1 << 17) /
832             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
833
834         ASSERT(oldc <= newc);
835
836         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
837
838         if (oldc != 0) {
839                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
840                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
841         }
842
843         vd->vdev_ms = mspp;
844         vd->vdev_ms_count = newc;
845
846         for (m = oldc; m < newc; m++) {
847                 space_map_obj_t smo = { 0, 0, 0 };
848                 if (txg == 0) {
849                         uint64_t object = 0;
850                         error = dmu_read(mos, vd->vdev_ms_array,
851                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
852                             DMU_READ_PREFETCH);
853                         if (error)
854                                 return (error);
855                         if (object != 0) {
856                                 dmu_buf_t *db;
857                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
858                                 if (error)
859                                         return (error);
860                                 ASSERT3U(db->db_size, >=, sizeof (smo));
861                                 bcopy(db->db_data, &smo, sizeof (smo));
862                                 ASSERT3U(smo.smo_object, ==, object);
863                                 dmu_buf_rele(db, FTAG);
864                         }
865                 }
866                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
867                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
868         }
869
870         if (txg == 0)
871                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
872
873         /*
874          * If the vdev is being removed we don't activate
875          * the metaslabs since we want to ensure that no new
876          * allocations are performed on this device.
877          */
878         if (oldc == 0 && !vd->vdev_removing)
879                 metaslab_group_activate(vd->vdev_mg);
880
881         if (txg == 0)
882                 spa_config_exit(spa, SCL_ALLOC, FTAG);
883
884         return (0);
885 }
886
887 void
888 vdev_metaslab_fini(vdev_t *vd)
889 {
890         uint64_t m;
891         uint64_t count = vd->vdev_ms_count;
892
893         if (vd->vdev_ms != NULL) {
894                 metaslab_group_passivate(vd->vdev_mg);
895                 for (m = 0; m < count; m++)
896                         if (vd->vdev_ms[m] != NULL)
897                                 metaslab_fini(vd->vdev_ms[m]);
898                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
899                 vd->vdev_ms = NULL;
900         }
901 }
902
903 typedef struct vdev_probe_stats {
904         boolean_t       vps_readable;
905         boolean_t       vps_writeable;
906         int             vps_flags;
907 } vdev_probe_stats_t;
908
909 static void
910 vdev_probe_done(zio_t *zio)
911 {
912         spa_t *spa = zio->io_spa;
913         vdev_t *vd = zio->io_vd;
914         vdev_probe_stats_t *vps = zio->io_private;
915
916         ASSERT(vd->vdev_probe_zio != NULL);
917
918         if (zio->io_type == ZIO_TYPE_READ) {
919                 if (zio->io_error == 0)
920                         vps->vps_readable = 1;
921                 if (zio->io_error == 0 && spa_writeable(spa)) {
922                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
923                             zio->io_offset, zio->io_size, zio->io_data,
924                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
925                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
926                 } else {
927                         zio_buf_free(zio->io_data, zio->io_size);
928                 }
929         } else if (zio->io_type == ZIO_TYPE_WRITE) {
930                 if (zio->io_error == 0)
931                         vps->vps_writeable = 1;
932                 zio_buf_free(zio->io_data, zio->io_size);
933         } else if (zio->io_type == ZIO_TYPE_NULL) {
934                 zio_t *pio;
935
936                 vd->vdev_cant_read |= !vps->vps_readable;
937                 vd->vdev_cant_write |= !vps->vps_writeable;
938
939                 if (vdev_readable(vd) &&
940                     (vdev_writeable(vd) || !spa_writeable(spa))) {
941                         zio->io_error = 0;
942                 } else {
943                         ASSERT(zio->io_error != 0);
944                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
945                             spa, vd, NULL, 0, 0);
946                         zio->io_error = ENXIO;
947                 }
948
949                 mutex_enter(&vd->vdev_probe_lock);
950                 ASSERT(vd->vdev_probe_zio == zio);
951                 vd->vdev_probe_zio = NULL;
952                 mutex_exit(&vd->vdev_probe_lock);
953
954                 while ((pio = zio_walk_parents(zio)) != NULL)
955                         if (!vdev_accessible(vd, pio))
956                                 pio->io_error = ENXIO;
957
958                 kmem_free(vps, sizeof (*vps));
959         }
960 }
961
962 /*
963  * Determine whether this device is accessible by reading and writing
964  * to several known locations: the pad regions of each vdev label
965  * but the first (which we leave alone in case it contains a VTOC).
966  */
967 zio_t *
968 vdev_probe(vdev_t *vd, zio_t *zio)
969 {
970         spa_t *spa = vd->vdev_spa;
971         vdev_probe_stats_t *vps = NULL;
972         zio_t *pio;
973         int l;
974
975         ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977         /*
978          * Don't probe the probe.
979          */
980         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981                 return (NULL);
982
983         /*
984          * To prevent 'probe storms' when a device fails, we create
985          * just one probe i/o at a time.  All zios that want to probe
986          * this vdev will become parents of the probe io.
987          */
988         mutex_enter(&vd->vdev_probe_lock);
989
990         if ((pio = vd->vdev_probe_zio) == NULL) {
991                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995                     ZIO_FLAG_TRYHARD;
996
997                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998                         /*
999                          * vdev_cant_read and vdev_cant_write can only
1000                          * transition from TRUE to FALSE when we have the
1001                          * SCL_ZIO lock as writer; otherwise they can only
1002                          * transition from FALSE to TRUE.  This ensures that
1003                          * any zio looking at these values can assume that
1004                          * failures persist for the life of the I/O.  That's
1005                          * important because when a device has intermittent
1006                          * connectivity problems, we want to ensure that
1007                          * they're ascribed to the device (ENXIO) and not
1008                          * the zio (EIO).
1009                          *
1010                          * Since we hold SCL_ZIO as writer here, clear both
1011                          * values so the probe can reevaluate from first
1012                          * principles.
1013                          */
1014                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015                         vd->vdev_cant_read = B_FALSE;
1016                         vd->vdev_cant_write = B_FALSE;
1017                 }
1018
1019                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020                     vdev_probe_done, vps,
1021                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023                 /*
1024                  * We can't change the vdev state in this context, so we
1025                  * kick off an async task to do it on our behalf.
1026                  */
1027                 if (zio != NULL) {
1028                         vd->vdev_probe_wanted = B_TRUE;
1029                         spa_async_request(spa, SPA_ASYNC_PROBE);
1030                 }
1031         }
1032
1033         if (zio != NULL)
1034                 zio_add_child(zio, pio);
1035
1036         mutex_exit(&vd->vdev_probe_lock);
1037
1038         if (vps == NULL) {
1039                 ASSERT(zio != NULL);
1040                 return (NULL);
1041         }
1042
1043         for (l = 1; l < VDEV_LABELS; l++) {
1044                 zio_nowait(zio_read_phys(pio, vd,
1045                     vdev_label_offset(vd->vdev_psize, l,
1046                     offsetof(vdev_label_t, vl_pad2)),
1047                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050         }
1051
1052         if (zio == NULL)
1053                 return (pio);
1054
1055         zio_nowait(pio);
1056         return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062         vdev_t *vd = arg;
1063
1064         vd->vdev_open_thread = curthread;
1065         vd->vdev_open_error = vdev_open(vd);
1066         vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072         int c;
1073
1074         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1075             strlen(ZVOL_DIR)) == 0)
1076                 return (B_TRUE);
1077         for (c = 0; c < vd->vdev_children; c++)
1078                 if (vdev_uses_zvols(vd->vdev_child[c]))
1079                         return (B_TRUE);
1080         return (B_FALSE);
1081 }
1082
1083 void
1084 vdev_open_children(vdev_t *vd)
1085 {
1086         taskq_t *tq;
1087         int children = vd->vdev_children;
1088         int c;
1089
1090         /*
1091          * in order to handle pools on top of zvols, do the opens
1092          * in a single thread so that the same thread holds the
1093          * spa_namespace_lock
1094          */
1095         if (vdev_uses_zvols(vd)) {
1096                 for (c = 0; c < children; c++)
1097                         vd->vdev_child[c]->vdev_open_error =
1098                             vdev_open(vd->vdev_child[c]);
1099                 return;
1100         }
1101         tq = taskq_create("vdev_open", children, minclsyspri,
1102             children, children, TASKQ_PREPOPULATE);
1103
1104         for (c = 0; c < children; c++)
1105                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1106                     TQ_SLEEP) != 0);
1107
1108         taskq_destroy(tq);
1109 }
1110
1111 /*
1112  * Prepare a virtual device for access.
1113  */
1114 int
1115 vdev_open(vdev_t *vd)
1116 {
1117         spa_t *spa = vd->vdev_spa;
1118         int error;
1119         uint64_t osize = 0;
1120         uint64_t asize, psize;
1121         uint64_t ashift = 0;
1122         int c;
1123
1124         ASSERT(vd->vdev_open_thread == curthread ||
1125             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1126         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1127             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1128             vd->vdev_state == VDEV_STATE_OFFLINE);
1129
1130         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1131         vd->vdev_cant_read = B_FALSE;
1132         vd->vdev_cant_write = B_FALSE;
1133         vd->vdev_min_asize = vdev_get_min_asize(vd);
1134
1135         /*
1136          * If this vdev is not removed, check its fault status.  If it's
1137          * faulted, bail out of the open.
1138          */
1139         if (!vd->vdev_removed && vd->vdev_faulted) {
1140                 ASSERT(vd->vdev_children == 0);
1141                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1142                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1143                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1144                     vd->vdev_label_aux);
1145                 return (ENXIO);
1146         } else if (vd->vdev_offline) {
1147                 ASSERT(vd->vdev_children == 0);
1148                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1149                 return (ENXIO);
1150         }
1151
1152         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1153
1154         /*
1155          * Reset the vdev_reopening flag so that we actually close
1156          * the vdev on error.
1157          */
1158         vd->vdev_reopening = B_FALSE;
1159         if (zio_injection_enabled && error == 0)
1160                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1161
1162         if (error) {
1163                 if (vd->vdev_removed &&
1164                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1165                         vd->vdev_removed = B_FALSE;
1166
1167                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1168                     vd->vdev_stat.vs_aux);
1169                 return (error);
1170         }
1171
1172         vd->vdev_removed = B_FALSE;
1173
1174         /*
1175          * Recheck the faulted flag now that we have confirmed that
1176          * the vdev is accessible.  If we're faulted, bail.
1177          */
1178         if (vd->vdev_faulted) {
1179                 ASSERT(vd->vdev_children == 0);
1180                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1181                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1182                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1183                     vd->vdev_label_aux);
1184                 return (ENXIO);
1185         }
1186
1187         if (vd->vdev_degraded) {
1188                 ASSERT(vd->vdev_children == 0);
1189                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1190                     VDEV_AUX_ERR_EXCEEDED);
1191         } else {
1192                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1193         }
1194
1195         /*
1196          * For hole or missing vdevs we just return success.
1197          */
1198         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1199                 return (0);
1200
1201         for (c = 0; c < vd->vdev_children; c++) {
1202                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1203                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1204                             VDEV_AUX_NONE);
1205                         break;
1206                 }
1207         }
1208
1209         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1210
1211         if (vd->vdev_children == 0) {
1212                 if (osize < SPA_MINDEVSIZE) {
1213                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214                             VDEV_AUX_TOO_SMALL);
1215                         return (EOVERFLOW);
1216                 }
1217                 psize = osize;
1218                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1219         } else {
1220                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1221                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1222                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1223                             VDEV_AUX_TOO_SMALL);
1224                         return (EOVERFLOW);
1225                 }
1226                 psize = 0;
1227                 asize = osize;
1228         }
1229
1230         vd->vdev_psize = psize;
1231
1232         /*
1233          * Make sure the allocatable size hasn't shrunk.
1234          */
1235         if (asize < vd->vdev_min_asize) {
1236                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1237                     VDEV_AUX_BAD_LABEL);
1238                 return (EINVAL);
1239         }
1240
1241         if (vd->vdev_asize == 0) {
1242                 /*
1243                  * This is the first-ever open, so use the computed values.
1244                  * For testing purposes, a higher ashift can be requested.
1245                  */
1246                 vd->vdev_asize = asize;
1247                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1248         } else {
1249                 /*
1250                  * Make sure the alignment requirement hasn't increased.
1251                  */
1252                 if (ashift > vd->vdev_top->vdev_ashift) {
1253                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254                             VDEV_AUX_BAD_LABEL);
1255                         return (EINVAL);
1256                 }
1257         }
1258
1259         /*
1260          * If all children are healthy and the asize has increased,
1261          * then we've experienced dynamic LUN growth.  If automatic
1262          * expansion is enabled then use the additional space.
1263          */
1264         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1265             (vd->vdev_expanding || spa->spa_autoexpand))
1266                 vd->vdev_asize = asize;
1267
1268         vdev_set_min_asize(vd);
1269
1270         /*
1271          * Ensure we can issue some IO before declaring the
1272          * vdev open for business.
1273          */
1274         if (vd->vdev_ops->vdev_op_leaf &&
1275             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1276                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1277                     VDEV_AUX_ERR_EXCEEDED);
1278                 return (error);
1279         }
1280
1281         /*
1282          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1283          * resilver.  But don't do this if we are doing a reopen for a scrub,
1284          * since this would just restart the scrub we are already doing.
1285          */
1286         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1287             vdev_resilver_needed(vd, NULL, NULL))
1288                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1289
1290         return (0);
1291 }
1292
1293 /*
1294  * Called once the vdevs are all opened, this routine validates the label
1295  * contents.  This needs to be done before vdev_load() so that we don't
1296  * inadvertently do repair I/Os to the wrong device.
1297  *
1298  * This function will only return failure if one of the vdevs indicates that it
1299  * has since been destroyed or exported.  This is only possible if
1300  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1301  * will be updated but the function will return 0.
1302  */
1303 int
1304 vdev_validate(vdev_t *vd)
1305 {
1306         spa_t *spa = vd->vdev_spa;
1307         nvlist_t *label;
1308         uint64_t guid = 0, top_guid;
1309         uint64_t state;
1310         int c;
1311
1312         for (c = 0; c < vd->vdev_children; c++)
1313                 if (vdev_validate(vd->vdev_child[c]) != 0)
1314                         return (EBADF);
1315
1316         /*
1317          * If the device has already failed, or was marked offline, don't do
1318          * any further validation.  Otherwise, label I/O will fail and we will
1319          * overwrite the previous state.
1320          */
1321         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1322                 uint64_t aux_guid = 0;
1323                 nvlist_t *nvl;
1324
1325                 if ((label = vdev_label_read_config(vd)) == NULL) {
1326                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1327                             VDEV_AUX_BAD_LABEL);
1328                         return (0);
1329                 }
1330
1331                 /*
1332                  * Determine if this vdev has been split off into another
1333                  * pool.  If so, then refuse to open it.
1334                  */
1335                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1336                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1337                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1338                             VDEV_AUX_SPLIT_POOL);
1339                         nvlist_free(label);
1340                         return (0);
1341                 }
1342
1343                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1344                     &guid) != 0 || guid != spa_guid(spa)) {
1345                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1346                             VDEV_AUX_CORRUPT_DATA);
1347                         nvlist_free(label);
1348                         return (0);
1349                 }
1350
1351                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1352                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1353                     &aux_guid) != 0)
1354                         aux_guid = 0;
1355
1356                 /*
1357                  * If this vdev just became a top-level vdev because its
1358                  * sibling was detached, it will have adopted the parent's
1359                  * vdev guid -- but the label may or may not be on disk yet.
1360                  * Fortunately, either version of the label will have the
1361                  * same top guid, so if we're a top-level vdev, we can
1362                  * safely compare to that instead.
1363                  *
1364                  * If we split this vdev off instead, then we also check the
1365                  * original pool's guid.  We don't want to consider the vdev
1366                  * corrupt if it is partway through a split operation.
1367                  */
1368                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1369                     &guid) != 0 ||
1370                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1371                     &top_guid) != 0 ||
1372                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1373                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1374                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1375                             VDEV_AUX_CORRUPT_DATA);
1376                         nvlist_free(label);
1377                         return (0);
1378                 }
1379
1380                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1381                     &state) != 0) {
1382                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1383                             VDEV_AUX_CORRUPT_DATA);
1384                         nvlist_free(label);
1385                         return (0);
1386                 }
1387
1388                 nvlist_free(label);
1389
1390                 /*
1391                  * If this is a verbatim import, no need to check the
1392                  * state of the pool.
1393                  */
1394                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1395                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1396                     state != POOL_STATE_ACTIVE)
1397                         return (EBADF);
1398
1399                 /*
1400                  * If we were able to open and validate a vdev that was
1401                  * previously marked permanently unavailable, clear that state
1402                  * now.
1403                  */
1404                 if (vd->vdev_not_present)
1405                         vd->vdev_not_present = 0;
1406         }
1407
1408         return (0);
1409 }
1410
1411 /*
1412  * Close a virtual device.
1413  */
1414 void
1415 vdev_close(vdev_t *vd)
1416 {
1417         vdev_t *pvd = vd->vdev_parent;
1418         ASSERTV(spa_t *spa = vd->vdev_spa);
1419
1420         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1421
1422         /*
1423          * If our parent is reopening, then we are as well, unless we are
1424          * going offline.
1425          */
1426         if (pvd != NULL && pvd->vdev_reopening)
1427                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1428
1429         vd->vdev_ops->vdev_op_close(vd);
1430
1431         vdev_cache_purge(vd);
1432
1433         /*
1434          * We record the previous state before we close it, so that if we are
1435          * doing a reopen(), we don't generate FMA ereports if we notice that
1436          * it's still faulted.
1437          */
1438         vd->vdev_prevstate = vd->vdev_state;
1439
1440         if (vd->vdev_offline)
1441                 vd->vdev_state = VDEV_STATE_OFFLINE;
1442         else
1443                 vd->vdev_state = VDEV_STATE_CLOSED;
1444         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1445 }
1446
1447 void
1448 vdev_hold(vdev_t *vd)
1449 {
1450         spa_t *spa = vd->vdev_spa;
1451         int c;
1452
1453         ASSERT(spa_is_root(spa));
1454         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1455                 return;
1456
1457         for (c = 0; c < vd->vdev_children; c++)
1458                 vdev_hold(vd->vdev_child[c]);
1459
1460         if (vd->vdev_ops->vdev_op_leaf)
1461                 vd->vdev_ops->vdev_op_hold(vd);
1462 }
1463
1464 void
1465 vdev_rele(vdev_t *vd)
1466 {
1467         int c;
1468
1469         ASSERT(spa_is_root(vd->vdev_spa));
1470         for (c = 0; c < vd->vdev_children; c++)
1471                 vdev_rele(vd->vdev_child[c]);
1472
1473         if (vd->vdev_ops->vdev_op_leaf)
1474                 vd->vdev_ops->vdev_op_rele(vd);
1475 }
1476
1477 /*
1478  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1479  * reopen leaf vdevs which had previously been opened as they might deadlock
1480  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1481  * If the leaf has never been opened then open it, as usual.
1482  */
1483 void
1484 vdev_reopen(vdev_t *vd)
1485 {
1486         spa_t *spa = vd->vdev_spa;
1487
1488         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1489
1490         /* set the reopening flag unless we're taking the vdev offline */
1491         vd->vdev_reopening = !vd->vdev_offline;
1492         vdev_close(vd);
1493         (void) vdev_open(vd);
1494
1495         /*
1496          * Call vdev_validate() here to make sure we have the same device.
1497          * Otherwise, a device with an invalid label could be successfully
1498          * opened in response to vdev_reopen().
1499          */
1500         if (vd->vdev_aux) {
1501                 (void) vdev_validate_aux(vd);
1502                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1503                     vd->vdev_aux == &spa->spa_l2cache &&
1504                     !l2arc_vdev_present(vd))
1505                         l2arc_add_vdev(spa, vd);
1506         } else {
1507                 (void) vdev_validate(vd);
1508         }
1509
1510         /*
1511          * Reassess parent vdev's health.
1512          */
1513         vdev_propagate_state(vd);
1514 }
1515
1516 int
1517 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1518 {
1519         int error;
1520
1521         /*
1522          * Normally, partial opens (e.g. of a mirror) are allowed.
1523          * For a create, however, we want to fail the request if
1524          * there are any components we can't open.
1525          */
1526         error = vdev_open(vd);
1527
1528         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1529                 vdev_close(vd);
1530                 return (error ? error : ENXIO);
1531         }
1532
1533         /*
1534          * Recursively initialize all labels.
1535          */
1536         if ((error = vdev_label_init(vd, txg, isreplacing ?
1537             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1538                 vdev_close(vd);
1539                 return (error);
1540         }
1541
1542         return (0);
1543 }
1544
1545 void
1546 vdev_metaslab_set_size(vdev_t *vd)
1547 {
1548         /*
1549          * Aim for roughly 200 metaslabs per vdev.
1550          */
1551         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1552         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1553 }
1554
1555 void
1556 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1557 {
1558         ASSERT(vd == vd->vdev_top);
1559         ASSERT(!vd->vdev_ishole);
1560         ASSERT(ISP2(flags));
1561         ASSERT(spa_writeable(vd->vdev_spa));
1562
1563         if (flags & VDD_METASLAB)
1564                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1565
1566         if (flags & VDD_DTL)
1567                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1568
1569         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1570 }
1571
1572 /*
1573  * DTLs.
1574  *
1575  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1576  * the vdev has less than perfect replication.  There are four kinds of DTL:
1577  *
1578  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1579  *
1580  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1581  *
1582  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1583  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1584  *      txgs that was scrubbed.
1585  *
1586  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1587  *      persistent errors or just some device being offline.
1588  *      Unlike the other three, the DTL_OUTAGE map is not generally
1589  *      maintained; it's only computed when needed, typically to
1590  *      determine whether a device can be detached.
1591  *
1592  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1593  * either has the data or it doesn't.
1594  *
1595  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1596  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1597  * if any child is less than fully replicated, then so is its parent.
1598  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1599  * comprising only those txgs which appear in 'maxfaults' or more children;
1600  * those are the txgs we don't have enough replication to read.  For example,
1601  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1602  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1603  * two child DTL_MISSING maps.
1604  *
1605  * It should be clear from the above that to compute the DTLs and outage maps
1606  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1607  * Therefore, that is all we keep on disk.  When loading the pool, or after
1608  * a configuration change, we generate all other DTLs from first principles.
1609  */
1610 void
1611 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1612 {
1613         space_map_t *sm = &vd->vdev_dtl[t];
1614
1615         ASSERT(t < DTL_TYPES);
1616         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1617         ASSERT(spa_writeable(vd->vdev_spa));
1618
1619         mutex_enter(sm->sm_lock);
1620         if (!space_map_contains(sm, txg, size))
1621                 space_map_add(sm, txg, size);
1622         mutex_exit(sm->sm_lock);
1623 }
1624
1625 boolean_t
1626 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1627 {
1628         space_map_t *sm = &vd->vdev_dtl[t];
1629         boolean_t dirty = B_FALSE;
1630
1631         ASSERT(t < DTL_TYPES);
1632         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1633
1634         mutex_enter(sm->sm_lock);
1635         if (sm->sm_space != 0)
1636                 dirty = space_map_contains(sm, txg, size);
1637         mutex_exit(sm->sm_lock);
1638
1639         return (dirty);
1640 }
1641
1642 boolean_t
1643 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1644 {
1645         space_map_t *sm = &vd->vdev_dtl[t];
1646         boolean_t empty;
1647
1648         mutex_enter(sm->sm_lock);
1649         empty = (sm->sm_space == 0);
1650         mutex_exit(sm->sm_lock);
1651
1652         return (empty);
1653 }
1654
1655 /*
1656  * Reassess DTLs after a config change or scrub completion.
1657  */
1658 void
1659 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1660 {
1661         spa_t *spa = vd->vdev_spa;
1662         avl_tree_t reftree;
1663         int c, t, minref;
1664
1665         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1666
1667         for (c = 0; c < vd->vdev_children; c++)
1668                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1669                     scrub_txg, scrub_done);
1670
1671         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1672                 return;
1673
1674         if (vd->vdev_ops->vdev_op_leaf) {
1675                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1676
1677                 mutex_enter(&vd->vdev_dtl_lock);
1678                 if (scrub_txg != 0 &&
1679                     (spa->spa_scrub_started ||
1680                     (scn && scn->scn_phys.scn_errors == 0))) {
1681                         /*
1682                          * We completed a scrub up to scrub_txg.  If we
1683                          * did it without rebooting, then the scrub dtl
1684                          * will be valid, so excise the old region and
1685                          * fold in the scrub dtl.  Otherwise, leave the
1686                          * dtl as-is if there was an error.
1687                          *
1688                          * There's little trick here: to excise the beginning
1689                          * of the DTL_MISSING map, we put it into a reference
1690                          * tree and then add a segment with refcnt -1 that
1691                          * covers the range [0, scrub_txg).  This means
1692                          * that each txg in that range has refcnt -1 or 0.
1693                          * We then add DTL_SCRUB with a refcnt of 2, so that
1694                          * entries in the range [0, scrub_txg) will have a
1695                          * positive refcnt -- either 1 or 2.  We then convert
1696                          * the reference tree into the new DTL_MISSING map.
1697                          */
1698                         space_map_ref_create(&reftree);
1699                         space_map_ref_add_map(&reftree,
1700                             &vd->vdev_dtl[DTL_MISSING], 1);
1701                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1702                         space_map_ref_add_map(&reftree,
1703                             &vd->vdev_dtl[DTL_SCRUB], 2);
1704                         space_map_ref_generate_map(&reftree,
1705                             &vd->vdev_dtl[DTL_MISSING], 1);
1706                         space_map_ref_destroy(&reftree);
1707                 }
1708                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1709                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1710                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1711                 if (scrub_done)
1712                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1713                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1714                 if (!vdev_readable(vd))
1715                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1716                 else
1717                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1718                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1719                 mutex_exit(&vd->vdev_dtl_lock);
1720
1721                 if (txg != 0)
1722                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1723                 return;
1724         }
1725
1726         mutex_enter(&vd->vdev_dtl_lock);
1727         for (t = 0; t < DTL_TYPES; t++) {
1728                 /* account for child's outage in parent's missing map */
1729                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1730                 if (t == DTL_SCRUB)
1731                         continue;                       /* leaf vdevs only */
1732                 if (t == DTL_PARTIAL)
1733                         minref = 1;                     /* i.e. non-zero */
1734                 else if (vd->vdev_nparity != 0)
1735                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1736                 else
1737                         minref = vd->vdev_children;     /* any kind of mirror */
1738                 space_map_ref_create(&reftree);
1739                 for (c = 0; c < vd->vdev_children; c++) {
1740                         vdev_t *cvd = vd->vdev_child[c];
1741                         mutex_enter(&cvd->vdev_dtl_lock);
1742                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1743                         mutex_exit(&cvd->vdev_dtl_lock);
1744                 }
1745                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1746                 space_map_ref_destroy(&reftree);
1747         }
1748         mutex_exit(&vd->vdev_dtl_lock);
1749 }
1750
1751 static int
1752 vdev_dtl_load(vdev_t *vd)
1753 {
1754         spa_t *spa = vd->vdev_spa;
1755         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1756         objset_t *mos = spa->spa_meta_objset;
1757         dmu_buf_t *db;
1758         int error;
1759
1760         ASSERT(vd->vdev_children == 0);
1761
1762         if (smo->smo_object == 0)
1763                 return (0);
1764
1765         ASSERT(!vd->vdev_ishole);
1766
1767         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1768                 return (error);
1769
1770         ASSERT3U(db->db_size, >=, sizeof (*smo));
1771         bcopy(db->db_data, smo, sizeof (*smo));
1772         dmu_buf_rele(db, FTAG);
1773
1774         mutex_enter(&vd->vdev_dtl_lock);
1775         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1776             NULL, SM_ALLOC, smo, mos);
1777         mutex_exit(&vd->vdev_dtl_lock);
1778
1779         return (error);
1780 }
1781
1782 void
1783 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1784 {
1785         spa_t *spa = vd->vdev_spa;
1786         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1787         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1788         objset_t *mos = spa->spa_meta_objset;
1789         space_map_t smsync;
1790         kmutex_t smlock;
1791         dmu_buf_t *db;
1792         dmu_tx_t *tx;
1793
1794         ASSERT(!vd->vdev_ishole);
1795
1796         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1797
1798         if (vd->vdev_detached) {
1799                 if (smo->smo_object != 0) {
1800                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1801                         smo->smo_object = 0;
1802                 }
1803                 dmu_tx_commit(tx);
1804                 return;
1805         }
1806
1807         if (smo->smo_object == 0) {
1808                 ASSERT(smo->smo_objsize == 0);
1809                 ASSERT(smo->smo_alloc == 0);
1810                 smo->smo_object = dmu_object_alloc(mos,
1811                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1812                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1813                 ASSERT(smo->smo_object != 0);
1814                 vdev_config_dirty(vd->vdev_top);
1815         }
1816
1817         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1818
1819         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1820             &smlock);
1821
1822         mutex_enter(&smlock);
1823
1824         mutex_enter(&vd->vdev_dtl_lock);
1825         space_map_walk(sm, space_map_add, &smsync);
1826         mutex_exit(&vd->vdev_dtl_lock);
1827
1828         space_map_truncate(smo, mos, tx);
1829         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1830
1831         space_map_destroy(&smsync);
1832
1833         mutex_exit(&smlock);
1834         mutex_destroy(&smlock);
1835
1836         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1837         dmu_buf_will_dirty(db, tx);
1838         ASSERT3U(db->db_size, >=, sizeof (*smo));
1839         bcopy(smo, db->db_data, sizeof (*smo));
1840         dmu_buf_rele(db, FTAG);
1841
1842         dmu_tx_commit(tx);
1843 }
1844
1845 /*
1846  * Determine whether the specified vdev can be offlined/detached/removed
1847  * without losing data.
1848  */
1849 boolean_t
1850 vdev_dtl_required(vdev_t *vd)
1851 {
1852         spa_t *spa = vd->vdev_spa;
1853         vdev_t *tvd = vd->vdev_top;
1854         uint8_t cant_read = vd->vdev_cant_read;
1855         boolean_t required;
1856
1857         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1858
1859         if (vd == spa->spa_root_vdev || vd == tvd)
1860                 return (B_TRUE);
1861
1862         /*
1863          * Temporarily mark the device as unreadable, and then determine
1864          * whether this results in any DTL outages in the top-level vdev.
1865          * If not, we can safely offline/detach/remove the device.
1866          */
1867         vd->vdev_cant_read = B_TRUE;
1868         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1869         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1870         vd->vdev_cant_read = cant_read;
1871         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1872
1873         if (!required && zio_injection_enabled)
1874                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1875
1876         return (required);
1877 }
1878
1879 /*
1880  * Determine if resilver is needed, and if so the txg range.
1881  */
1882 boolean_t
1883 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1884 {
1885         boolean_t needed = B_FALSE;
1886         uint64_t thismin = UINT64_MAX;
1887         uint64_t thismax = 0;
1888         int c;
1889
1890         if (vd->vdev_children == 0) {
1891                 mutex_enter(&vd->vdev_dtl_lock);
1892                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1893                     vdev_writeable(vd)) {
1894                         space_seg_t *ss;
1895
1896                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1897                         thismin = ss->ss_start - 1;
1898                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1899                         thismax = ss->ss_end;
1900                         needed = B_TRUE;
1901                 }
1902                 mutex_exit(&vd->vdev_dtl_lock);
1903         } else {
1904                 for (c = 0; c < vd->vdev_children; c++) {
1905                         vdev_t *cvd = vd->vdev_child[c];
1906                         uint64_t cmin, cmax;
1907
1908                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1909                                 thismin = MIN(thismin, cmin);
1910                                 thismax = MAX(thismax, cmax);
1911                                 needed = B_TRUE;
1912                         }
1913                 }
1914         }
1915
1916         if (needed && minp) {
1917                 *minp = thismin;
1918                 *maxp = thismax;
1919         }
1920         return (needed);
1921 }
1922
1923 void
1924 vdev_load(vdev_t *vd)
1925 {
1926         int c;
1927
1928         /*
1929          * Recursively load all children.
1930          */
1931         for (c = 0; c < vd->vdev_children; c++)
1932                 vdev_load(vd->vdev_child[c]);
1933
1934         /*
1935          * If this is a top-level vdev, initialize its metaslabs.
1936          */
1937         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1938             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1939             vdev_metaslab_init(vd, 0) != 0))
1940                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1941                     VDEV_AUX_CORRUPT_DATA);
1942
1943         /*
1944          * If this is a leaf vdev, load its DTL.
1945          */
1946         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1947                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1948                     VDEV_AUX_CORRUPT_DATA);
1949 }
1950
1951 /*
1952  * The special vdev case is used for hot spares and l2cache devices.  Its
1953  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1954  * we make sure that we can open the underlying device, then try to read the
1955  * label, and make sure that the label is sane and that it hasn't been
1956  * repurposed to another pool.
1957  */
1958 int
1959 vdev_validate_aux(vdev_t *vd)
1960 {
1961         nvlist_t *label;
1962         uint64_t guid, version;
1963         uint64_t state;
1964
1965         if (!vdev_readable(vd))
1966                 return (0);
1967
1968         if ((label = vdev_label_read_config(vd)) == NULL) {
1969                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1970                     VDEV_AUX_CORRUPT_DATA);
1971                 return (-1);
1972         }
1973
1974         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1975             version > SPA_VERSION ||
1976             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1977             guid != vd->vdev_guid ||
1978             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1979                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1980                     VDEV_AUX_CORRUPT_DATA);
1981                 nvlist_free(label);
1982                 return (-1);
1983         }
1984
1985         /*
1986          * We don't actually check the pool state here.  If it's in fact in
1987          * use by another pool, we update this fact on the fly when requested.
1988          */
1989         nvlist_free(label);
1990         return (0);
1991 }
1992
1993 void
1994 vdev_remove(vdev_t *vd, uint64_t txg)
1995 {
1996         spa_t *spa = vd->vdev_spa;
1997         objset_t *mos = spa->spa_meta_objset;
1998         dmu_tx_t *tx;
1999         int m;
2000
2001         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2002
2003         if (vd->vdev_dtl_smo.smo_object) {
2004                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2005                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2006                 vd->vdev_dtl_smo.smo_object = 0;
2007         }
2008
2009         if (vd->vdev_ms != NULL) {
2010                 for (m = 0; m < vd->vdev_ms_count; m++) {
2011                         metaslab_t *msp = vd->vdev_ms[m];
2012
2013                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2014                                 continue;
2015
2016                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2017                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2018                         msp->ms_smo.smo_object = 0;
2019                 }
2020         }
2021
2022         if (vd->vdev_ms_array) {
2023                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2024                 vd->vdev_ms_array = 0;
2025                 vd->vdev_ms_shift = 0;
2026         }
2027         dmu_tx_commit(tx);
2028 }
2029
2030 void
2031 vdev_sync_done(vdev_t *vd, uint64_t txg)
2032 {
2033         metaslab_t *msp;
2034         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2035
2036         ASSERT(!vd->vdev_ishole);
2037
2038         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2039                 metaslab_sync_done(msp, txg);
2040
2041         if (reassess)
2042                 metaslab_sync_reassess(vd->vdev_mg);
2043 }
2044
2045 void
2046 vdev_sync(vdev_t *vd, uint64_t txg)
2047 {
2048         spa_t *spa = vd->vdev_spa;
2049         vdev_t *lvd;
2050         metaslab_t *msp;
2051         dmu_tx_t *tx;
2052
2053         ASSERT(!vd->vdev_ishole);
2054
2055         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2056                 ASSERT(vd == vd->vdev_top);
2057                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2058                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2059                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2060                 ASSERT(vd->vdev_ms_array != 0);
2061                 vdev_config_dirty(vd);
2062                 dmu_tx_commit(tx);
2063         }
2064
2065         /*
2066          * Remove the metadata associated with this vdev once it's empty.
2067          */
2068         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2069                 vdev_remove(vd, txg);
2070
2071         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2072                 metaslab_sync(msp, txg);
2073                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2074         }
2075
2076         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2077                 vdev_dtl_sync(lvd, txg);
2078
2079         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2080 }
2081
2082 uint64_t
2083 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2084 {
2085         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2086 }
2087
2088 /*
2089  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2090  * not be opened, and no I/O is attempted.
2091  */
2092 int
2093 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2094 {
2095         vdev_t *vd, *tvd;
2096
2097         spa_vdev_state_enter(spa, SCL_NONE);
2098
2099         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2100                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2101
2102         if (!vd->vdev_ops->vdev_op_leaf)
2103                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2104
2105         tvd = vd->vdev_top;
2106
2107         /*
2108          * We don't directly use the aux state here, but if we do a
2109          * vdev_reopen(), we need this value to be present to remember why we
2110          * were faulted.
2111          */
2112         vd->vdev_label_aux = aux;
2113
2114         /*
2115          * Faulted state takes precedence over degraded.
2116          */
2117         vd->vdev_delayed_close = B_FALSE;
2118         vd->vdev_faulted = 1ULL;
2119         vd->vdev_degraded = 0ULL;
2120         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2121
2122         /*
2123          * If this device has the only valid copy of the data, then
2124          * back off and simply mark the vdev as degraded instead.
2125          */
2126         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2127                 vd->vdev_degraded = 1ULL;
2128                 vd->vdev_faulted = 0ULL;
2129
2130                 /*
2131                  * If we reopen the device and it's not dead, only then do we
2132                  * mark it degraded.
2133                  */
2134                 vdev_reopen(tvd);
2135
2136                 if (vdev_readable(vd))
2137                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2138         }
2139
2140         return (spa_vdev_state_exit(spa, vd, 0));
2141 }
2142
2143 /*
2144  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2145  * user that something is wrong.  The vdev continues to operate as normal as far
2146  * as I/O is concerned.
2147  */
2148 int
2149 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2150 {
2151         vdev_t *vd;
2152
2153         spa_vdev_state_enter(spa, SCL_NONE);
2154
2155         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2156                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2157
2158         if (!vd->vdev_ops->vdev_op_leaf)
2159                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2160
2161         /*
2162          * If the vdev is already faulted, then don't do anything.
2163          */
2164         if (vd->vdev_faulted || vd->vdev_degraded)
2165                 return (spa_vdev_state_exit(spa, NULL, 0));
2166
2167         vd->vdev_degraded = 1ULL;
2168         if (!vdev_is_dead(vd))
2169                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2170                     aux);
2171
2172         return (spa_vdev_state_exit(spa, vd, 0));
2173 }
2174
2175 /*
2176  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2177  * any attached spare device should be detached when the device finishes
2178  * resilvering.  Second, the online should be treated like a 'test' online case,
2179  * so no FMA events are generated if the device fails to open.
2180  */
2181 int
2182 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2183 {
2184         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2185
2186         spa_vdev_state_enter(spa, SCL_NONE);
2187
2188         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2189                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2190
2191         if (!vd->vdev_ops->vdev_op_leaf)
2192                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2193
2194         tvd = vd->vdev_top;
2195         vd->vdev_offline = B_FALSE;
2196         vd->vdev_tmpoffline = B_FALSE;
2197         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2198         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2199
2200         /* XXX - L2ARC 1.0 does not support expansion */
2201         if (!vd->vdev_aux) {
2202                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2203                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2204         }
2205
2206         vdev_reopen(tvd);
2207         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2208
2209         if (!vd->vdev_aux) {
2210                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2211                         pvd->vdev_expanding = B_FALSE;
2212         }
2213
2214         if (newstate)
2215                 *newstate = vd->vdev_state;
2216         if ((flags & ZFS_ONLINE_UNSPARE) &&
2217             !vdev_is_dead(vd) && vd->vdev_parent &&
2218             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2219             vd->vdev_parent->vdev_child[0] == vd)
2220                 vd->vdev_unspare = B_TRUE;
2221
2222         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2223
2224                 /* XXX - L2ARC 1.0 does not support expansion */
2225                 if (vd->vdev_aux)
2226                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2227                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2228         }
2229         return (spa_vdev_state_exit(spa, vd, 0));
2230 }
2231
2232 static int
2233 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2234 {
2235         vdev_t *vd, *tvd;
2236         int error = 0;
2237         uint64_t generation;
2238         metaslab_group_t *mg;
2239
2240 top:
2241         spa_vdev_state_enter(spa, SCL_ALLOC);
2242
2243         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2244                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2245
2246         if (!vd->vdev_ops->vdev_op_leaf)
2247                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2248
2249         tvd = vd->vdev_top;
2250         mg = tvd->vdev_mg;
2251         generation = spa->spa_config_generation + 1;
2252
2253         /*
2254          * If the device isn't already offline, try to offline it.
2255          */
2256         if (!vd->vdev_offline) {
2257                 /*
2258                  * If this device has the only valid copy of some data,
2259                  * don't allow it to be offlined. Log devices are always
2260                  * expendable.
2261                  */
2262                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2263                     vdev_dtl_required(vd))
2264                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2265
2266                 /*
2267                  * If the top-level is a slog and it has had allocations
2268                  * then proceed.  We check that the vdev's metaslab group
2269                  * is not NULL since it's possible that we may have just
2270                  * added this vdev but not yet initialized its metaslabs.
2271                  */
2272                 if (tvd->vdev_islog && mg != NULL) {
2273                         /*
2274                          * Prevent any future allocations.
2275                          */
2276                         metaslab_group_passivate(mg);
2277                         (void) spa_vdev_state_exit(spa, vd, 0);
2278
2279                         error = spa_offline_log(spa);
2280
2281                         spa_vdev_state_enter(spa, SCL_ALLOC);
2282
2283                         /*
2284                          * Check to see if the config has changed.
2285                          */
2286                         if (error || generation != spa->spa_config_generation) {
2287                                 metaslab_group_activate(mg);
2288                                 if (error)
2289                                         return (spa_vdev_state_exit(spa,
2290                                             vd, error));
2291                                 (void) spa_vdev_state_exit(spa, vd, 0);
2292                                 goto top;
2293                         }
2294                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2295                 }
2296
2297                 /*
2298                  * Offline this device and reopen its top-level vdev.
2299                  * If the top-level vdev is a log device then just offline
2300                  * it. Otherwise, if this action results in the top-level
2301                  * vdev becoming unusable, undo it and fail the request.
2302                  */
2303                 vd->vdev_offline = B_TRUE;
2304                 vdev_reopen(tvd);
2305
2306                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2307                     vdev_is_dead(tvd)) {
2308                         vd->vdev_offline = B_FALSE;
2309                         vdev_reopen(tvd);
2310                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2311                 }
2312
2313                 /*
2314                  * Add the device back into the metaslab rotor so that
2315                  * once we online the device it's open for business.
2316                  */
2317                 if (tvd->vdev_islog && mg != NULL)
2318                         metaslab_group_activate(mg);
2319         }
2320
2321         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2322
2323         return (spa_vdev_state_exit(spa, vd, 0));
2324 }
2325
2326 int
2327 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2328 {
2329         int error;
2330
2331         mutex_enter(&spa->spa_vdev_top_lock);
2332         error = vdev_offline_locked(spa, guid, flags);
2333         mutex_exit(&spa->spa_vdev_top_lock);
2334
2335         return (error);
2336 }
2337
2338 /*
2339  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2340  * vdev_offline(), we assume the spa config is locked.  We also clear all
2341  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2342  */
2343 void
2344 vdev_clear(spa_t *spa, vdev_t *vd)
2345 {
2346         vdev_t *rvd = spa->spa_root_vdev;
2347         int c;
2348
2349         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2350
2351         if (vd == NULL)
2352                 vd = rvd;
2353
2354         vd->vdev_stat.vs_read_errors = 0;
2355         vd->vdev_stat.vs_write_errors = 0;
2356         vd->vdev_stat.vs_checksum_errors = 0;
2357
2358         for (c = 0; c < vd->vdev_children; c++)
2359                 vdev_clear(spa, vd->vdev_child[c]);
2360
2361         /*
2362          * If we're in the FAULTED state or have experienced failed I/O, then
2363          * clear the persistent state and attempt to reopen the device.  We
2364          * also mark the vdev config dirty, so that the new faulted state is
2365          * written out to disk.
2366          */
2367         if (vd->vdev_faulted || vd->vdev_degraded ||
2368             !vdev_readable(vd) || !vdev_writeable(vd)) {
2369
2370                 /*
2371                  * When reopening in reponse to a clear event, it may be due to
2372                  * a fmadm repair request.  In this case, if the device is
2373                  * still broken, we want to still post the ereport again.
2374                  */
2375                 vd->vdev_forcefault = B_TRUE;
2376
2377                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2378                 vd->vdev_cant_read = B_FALSE;
2379                 vd->vdev_cant_write = B_FALSE;
2380
2381                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2382
2383                 vd->vdev_forcefault = B_FALSE;
2384
2385                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2386                         vdev_state_dirty(vd->vdev_top);
2387
2388                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2389                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2390
2391                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2392         }
2393
2394         /*
2395          * When clearing a FMA-diagnosed fault, we always want to
2396          * unspare the device, as we assume that the original spare was
2397          * done in response to the FMA fault.
2398          */
2399         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2400             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2401             vd->vdev_parent->vdev_child[0] == vd)
2402                 vd->vdev_unspare = B_TRUE;
2403 }
2404
2405 boolean_t
2406 vdev_is_dead(vdev_t *vd)
2407 {
2408         /*
2409          * Holes and missing devices are always considered "dead".
2410          * This simplifies the code since we don't have to check for
2411          * these types of devices in the various code paths.
2412          * Instead we rely on the fact that we skip over dead devices
2413          * before issuing I/O to them.
2414          */
2415         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2416             vd->vdev_ops == &vdev_missing_ops);
2417 }
2418
2419 boolean_t
2420 vdev_readable(vdev_t *vd)
2421 {
2422         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2423 }
2424
2425 boolean_t
2426 vdev_writeable(vdev_t *vd)
2427 {
2428         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2429 }
2430
2431 boolean_t
2432 vdev_allocatable(vdev_t *vd)
2433 {
2434         uint64_t state = vd->vdev_state;
2435
2436         /*
2437          * We currently allow allocations from vdevs which may be in the
2438          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2439          * fails to reopen then we'll catch it later when we're holding
2440          * the proper locks.  Note that we have to get the vdev state
2441          * in a local variable because although it changes atomically,
2442          * we're asking two separate questions about it.
2443          */
2444         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2445             !vd->vdev_cant_write && !vd->vdev_ishole);
2446 }
2447
2448 boolean_t
2449 vdev_accessible(vdev_t *vd, zio_t *zio)
2450 {
2451         ASSERT(zio->io_vd == vd);
2452
2453         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2454                 return (B_FALSE);
2455
2456         if (zio->io_type == ZIO_TYPE_READ)
2457                 return (!vd->vdev_cant_read);
2458
2459         if (zio->io_type == ZIO_TYPE_WRITE)
2460                 return (!vd->vdev_cant_write);
2461
2462         return (B_TRUE);
2463 }
2464
2465 /*
2466  * Get statistics for the given vdev.
2467  */
2468 void
2469 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2470 {
2471         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2472         int c, t;
2473
2474         mutex_enter(&vd->vdev_stat_lock);
2475         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2476         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2477         vs->vs_state = vd->vdev_state;
2478         vs->vs_rsize = vdev_get_min_asize(vd);
2479         if (vd->vdev_ops->vdev_op_leaf)
2480                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2481         mutex_exit(&vd->vdev_stat_lock);
2482
2483         /*
2484          * If we're getting stats on the root vdev, aggregate the I/O counts
2485          * over all top-level vdevs (i.e. the direct children of the root).
2486          */
2487         if (vd == rvd) {
2488                 for (c = 0; c < rvd->vdev_children; c++) {
2489                         vdev_t *cvd = rvd->vdev_child[c];
2490                         vdev_stat_t *cvs = &cvd->vdev_stat;
2491
2492                         mutex_enter(&vd->vdev_stat_lock);
2493                         for (t = 0; t < ZIO_TYPES; t++) {
2494                                 vs->vs_ops[t] += cvs->vs_ops[t];
2495                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2496                         }
2497                         cvs->vs_scan_removing = cvd->vdev_removing;
2498                         mutex_exit(&vd->vdev_stat_lock);
2499                 }
2500         }
2501 }
2502
2503 void
2504 vdev_clear_stats(vdev_t *vd)
2505 {
2506         mutex_enter(&vd->vdev_stat_lock);
2507         vd->vdev_stat.vs_space = 0;
2508         vd->vdev_stat.vs_dspace = 0;
2509         vd->vdev_stat.vs_alloc = 0;
2510         mutex_exit(&vd->vdev_stat_lock);
2511 }
2512
2513 void
2514 vdev_scan_stat_init(vdev_t *vd)
2515 {
2516         vdev_stat_t *vs = &vd->vdev_stat;
2517         int c;
2518
2519         for (c = 0; c < vd->vdev_children; c++)
2520                 vdev_scan_stat_init(vd->vdev_child[c]);
2521
2522         mutex_enter(&vd->vdev_stat_lock);
2523         vs->vs_scan_processed = 0;
2524         mutex_exit(&vd->vdev_stat_lock);
2525 }
2526
2527 void
2528 vdev_stat_update(zio_t *zio, uint64_t psize)
2529 {
2530         spa_t *spa = zio->io_spa;
2531         vdev_t *rvd = spa->spa_root_vdev;
2532         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2533         vdev_t *pvd;
2534         uint64_t txg = zio->io_txg;
2535         vdev_stat_t *vs = &vd->vdev_stat;
2536         zio_type_t type = zio->io_type;
2537         int flags = zio->io_flags;
2538
2539         /*
2540          * If this i/o is a gang leader, it didn't do any actual work.
2541          */
2542         if (zio->io_gang_tree)
2543                 return;
2544
2545         if (zio->io_error == 0) {
2546                 /*
2547                  * If this is a root i/o, don't count it -- we've already
2548                  * counted the top-level vdevs, and vdev_get_stats() will
2549                  * aggregate them when asked.  This reduces contention on
2550                  * the root vdev_stat_lock and implicitly handles blocks
2551                  * that compress away to holes, for which there is no i/o.
2552                  * (Holes never create vdev children, so all the counters
2553                  * remain zero, which is what we want.)
2554                  *
2555                  * Note: this only applies to successful i/o (io_error == 0)
2556                  * because unlike i/o counts, errors are not additive.
2557                  * When reading a ditto block, for example, failure of
2558                  * one top-level vdev does not imply a root-level error.
2559                  */
2560                 if (vd == rvd)
2561                         return;
2562
2563                 ASSERT(vd == zio->io_vd);
2564
2565                 if (flags & ZIO_FLAG_IO_BYPASS)
2566                         return;
2567
2568                 mutex_enter(&vd->vdev_stat_lock);
2569
2570                 if (flags & ZIO_FLAG_IO_REPAIR) {
2571                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2572                                 dsl_scan_phys_t *scn_phys =
2573                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2574                                 uint64_t *processed = &scn_phys->scn_processed;
2575
2576                                 /* XXX cleanup? */
2577                                 if (vd->vdev_ops->vdev_op_leaf)
2578                                         atomic_add_64(processed, psize);
2579                                 vs->vs_scan_processed += psize;
2580                         }
2581
2582                         if (flags & ZIO_FLAG_SELF_HEAL)
2583                                 vs->vs_self_healed += psize;
2584                 }
2585
2586                 vs->vs_ops[type]++;
2587                 vs->vs_bytes[type] += psize;
2588
2589                 mutex_exit(&vd->vdev_stat_lock);
2590                 return;
2591         }
2592
2593         if (flags & ZIO_FLAG_SPECULATIVE)
2594                 return;
2595
2596         /*
2597          * If this is an I/O error that is going to be retried, then ignore the
2598          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2599          * hard errors, when in reality they can happen for any number of
2600          * innocuous reasons (bus resets, MPxIO link failure, etc).
2601          */
2602         if (zio->io_error == EIO &&
2603             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2604                 return;
2605
2606         /*
2607          * Intent logs writes won't propagate their error to the root
2608          * I/O so don't mark these types of failures as pool-level
2609          * errors.
2610          */
2611         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2612                 return;
2613
2614         mutex_enter(&vd->vdev_stat_lock);
2615         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2616                 if (zio->io_error == ECKSUM)
2617                         vs->vs_checksum_errors++;
2618                 else
2619                         vs->vs_read_errors++;
2620         }
2621         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2622                 vs->vs_write_errors++;
2623         mutex_exit(&vd->vdev_stat_lock);
2624
2625         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2626             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2627             (flags & ZIO_FLAG_SCAN_THREAD) ||
2628             spa->spa_claiming)) {
2629                 /*
2630                  * This is either a normal write (not a repair), or it's
2631                  * a repair induced by the scrub thread, or it's a repair
2632                  * made by zil_claim() during spa_load() in the first txg.
2633                  * In the normal case, we commit the DTL change in the same
2634                  * txg as the block was born.  In the scrub-induced repair
2635                  * case, we know that scrubs run in first-pass syncing context,
2636                  * so we commit the DTL change in spa_syncing_txg(spa).
2637                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2638                  *
2639                  * We currently do not make DTL entries for failed spontaneous
2640                  * self-healing writes triggered by normal (non-scrubbing)
2641                  * reads, because we have no transactional context in which to
2642                  * do so -- and it's not clear that it'd be desirable anyway.
2643                  */
2644                 if (vd->vdev_ops->vdev_op_leaf) {
2645                         uint64_t commit_txg = txg;
2646                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2647                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2648                                 ASSERT(spa_sync_pass(spa) == 1);
2649                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2650                                 commit_txg = spa_syncing_txg(spa);
2651                         } else if (spa->spa_claiming) {
2652                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2653                                 commit_txg = spa_first_txg(spa);
2654                         }
2655                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2656                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2657                                 return;
2658                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2659                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2660                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2661                 }
2662                 if (vd != rvd)
2663                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2664         }
2665 }
2666
2667 /*
2668  * Update the in-core space usage stats for this vdev, its metaslab class,
2669  * and the root vdev.
2670  */
2671 void
2672 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2673     int64_t space_delta)
2674 {
2675         int64_t dspace_delta = space_delta;
2676         spa_t *spa = vd->vdev_spa;
2677         vdev_t *rvd = spa->spa_root_vdev;
2678         metaslab_group_t *mg = vd->vdev_mg;
2679         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2680
2681         ASSERT(vd == vd->vdev_top);
2682
2683         /*
2684          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2685          * factor.  We must calculate this here and not at the root vdev
2686          * because the root vdev's psize-to-asize is simply the max of its
2687          * childrens', thus not accurate enough for us.
2688          */
2689         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2690         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2691         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2692             vd->vdev_deflate_ratio;
2693
2694         mutex_enter(&vd->vdev_stat_lock);
2695         vd->vdev_stat.vs_alloc += alloc_delta;
2696         vd->vdev_stat.vs_space += space_delta;
2697         vd->vdev_stat.vs_dspace += dspace_delta;
2698         mutex_exit(&vd->vdev_stat_lock);
2699
2700         if (mc == spa_normal_class(spa)) {
2701                 mutex_enter(&rvd->vdev_stat_lock);
2702                 rvd->vdev_stat.vs_alloc += alloc_delta;
2703                 rvd->vdev_stat.vs_space += space_delta;
2704                 rvd->vdev_stat.vs_dspace += dspace_delta;
2705                 mutex_exit(&rvd->vdev_stat_lock);
2706         }
2707
2708         if (mc != NULL) {
2709                 ASSERT(rvd == vd->vdev_parent);
2710                 ASSERT(vd->vdev_ms_count != 0);
2711
2712                 metaslab_class_space_update(mc,
2713                     alloc_delta, defer_delta, space_delta, dspace_delta);
2714         }
2715 }
2716
2717 /*
2718  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2719  * so that it will be written out next time the vdev configuration is synced.
2720  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2721  */
2722 void
2723 vdev_config_dirty(vdev_t *vd)
2724 {
2725         spa_t *spa = vd->vdev_spa;
2726         vdev_t *rvd = spa->spa_root_vdev;
2727         int c;
2728
2729         ASSERT(spa_writeable(spa));
2730
2731         /*
2732          * If this is an aux vdev (as with l2cache and spare devices), then we
2733          * update the vdev config manually and set the sync flag.
2734          */
2735         if (vd->vdev_aux != NULL) {
2736                 spa_aux_vdev_t *sav = vd->vdev_aux;
2737                 nvlist_t **aux;
2738                 uint_t naux;
2739
2740                 for (c = 0; c < sav->sav_count; c++) {
2741                         if (sav->sav_vdevs[c] == vd)
2742                                 break;
2743                 }
2744
2745                 if (c == sav->sav_count) {
2746                         /*
2747                          * We're being removed.  There's nothing more to do.
2748                          */
2749                         ASSERT(sav->sav_sync == B_TRUE);
2750                         return;
2751                 }
2752
2753                 sav->sav_sync = B_TRUE;
2754
2755                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2756                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2757                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2758                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2759                 }
2760
2761                 ASSERT(c < naux);
2762
2763                 /*
2764                  * Setting the nvlist in the middle if the array is a little
2765                  * sketchy, but it will work.
2766                  */
2767                 nvlist_free(aux[c]);
2768                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2769
2770                 return;
2771         }
2772
2773         /*
2774          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2775          * must either hold SCL_CONFIG as writer, or must be the sync thread
2776          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2777          * so this is sufficient to ensure mutual exclusion.
2778          */
2779         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2780             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2781             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2782
2783         if (vd == rvd) {
2784                 for (c = 0; c < rvd->vdev_children; c++)
2785                         vdev_config_dirty(rvd->vdev_child[c]);
2786         } else {
2787                 ASSERT(vd == vd->vdev_top);
2788
2789                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2790                     !vd->vdev_ishole)
2791                         list_insert_head(&spa->spa_config_dirty_list, vd);
2792         }
2793 }
2794
2795 void
2796 vdev_config_clean(vdev_t *vd)
2797 {
2798         spa_t *spa = vd->vdev_spa;
2799
2800         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2801             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2802             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2803
2804         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2805         list_remove(&spa->spa_config_dirty_list, vd);
2806 }
2807
2808 /*
2809  * Mark a top-level vdev's state as dirty, so that the next pass of
2810  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2811  * the state changes from larger config changes because they require
2812  * much less locking, and are often needed for administrative actions.
2813  */
2814 void
2815 vdev_state_dirty(vdev_t *vd)
2816 {
2817         spa_t *spa = vd->vdev_spa;
2818
2819         ASSERT(spa_writeable(spa));
2820         ASSERT(vd == vd->vdev_top);
2821
2822         /*
2823          * The state list is protected by the SCL_STATE lock.  The caller
2824          * must either hold SCL_STATE as writer, or must be the sync thread
2825          * (which holds SCL_STATE as reader).  There's only one sync thread,
2826          * so this is sufficient to ensure mutual exclusion.
2827          */
2828         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2829             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2830             spa_config_held(spa, SCL_STATE, RW_READER)));
2831
2832         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2833                 list_insert_head(&spa->spa_state_dirty_list, vd);
2834 }
2835
2836 void
2837 vdev_state_clean(vdev_t *vd)
2838 {
2839         spa_t *spa = vd->vdev_spa;
2840
2841         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2842             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2843             spa_config_held(spa, SCL_STATE, RW_READER)));
2844
2845         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2846         list_remove(&spa->spa_state_dirty_list, vd);
2847 }
2848
2849 /*
2850  * Propagate vdev state up from children to parent.
2851  */
2852 void
2853 vdev_propagate_state(vdev_t *vd)
2854 {
2855         spa_t *spa = vd->vdev_spa;
2856         vdev_t *rvd = spa->spa_root_vdev;
2857         int degraded = 0, faulted = 0;
2858         int corrupted = 0;
2859         vdev_t *child;
2860         int c;
2861
2862         if (vd->vdev_children > 0) {
2863                 for (c = 0; c < vd->vdev_children; c++) {
2864                         child = vd->vdev_child[c];
2865
2866                         /*
2867                          * Don't factor holes into the decision.
2868                          */
2869                         if (child->vdev_ishole)
2870                                 continue;
2871
2872                         if (!vdev_readable(child) ||
2873                             (!vdev_writeable(child) && spa_writeable(spa))) {
2874                                 /*
2875                                  * Root special: if there is a top-level log
2876                                  * device, treat the root vdev as if it were
2877                                  * degraded.
2878                                  */
2879                                 if (child->vdev_islog && vd == rvd)
2880                                         degraded++;
2881                                 else
2882                                         faulted++;
2883                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2884                                 degraded++;
2885                         }
2886
2887                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2888                                 corrupted++;
2889                 }
2890
2891                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2892
2893                 /*
2894                  * Root special: if there is a top-level vdev that cannot be
2895                  * opened due to corrupted metadata, then propagate the root
2896                  * vdev's aux state as 'corrupt' rather than 'insufficient
2897                  * replicas'.
2898                  */
2899                 if (corrupted && vd == rvd &&
2900                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2901                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2902                             VDEV_AUX_CORRUPT_DATA);
2903         }
2904
2905         if (vd->vdev_parent)
2906                 vdev_propagate_state(vd->vdev_parent);
2907 }
2908
2909 /*
2910  * Set a vdev's state.  If this is during an open, we don't update the parent
2911  * state, because we're in the process of opening children depth-first.
2912  * Otherwise, we propagate the change to the parent.
2913  *
2914  * If this routine places a device in a faulted state, an appropriate ereport is
2915  * generated.
2916  */
2917 void
2918 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2919 {
2920         uint64_t save_state;
2921         spa_t *spa = vd->vdev_spa;
2922
2923         if (state == vd->vdev_state) {
2924                 vd->vdev_stat.vs_aux = aux;
2925                 return;
2926         }
2927
2928         save_state = vd->vdev_state;
2929
2930         vd->vdev_state = state;
2931         vd->vdev_stat.vs_aux = aux;
2932
2933         /*
2934          * If we are setting the vdev state to anything but an open state, then
2935          * always close the underlying device unless the device has requested
2936          * a delayed close (i.e. we're about to remove or fault the device).
2937          * Otherwise, we keep accessible but invalid devices open forever.
2938          * We don't call vdev_close() itself, because that implies some extra
2939          * checks (offline, etc) that we don't want here.  This is limited to
2940          * leaf devices, because otherwise closing the device will affect other
2941          * children.
2942          */
2943         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2944             vd->vdev_ops->vdev_op_leaf)
2945                 vd->vdev_ops->vdev_op_close(vd);
2946
2947         /*
2948          * If we have brought this vdev back into service, we need
2949          * to notify fmd so that it can gracefully repair any outstanding
2950          * cases due to a missing device.  We do this in all cases, even those
2951          * that probably don't correlate to a repaired fault.  This is sure to
2952          * catch all cases, and we let the zfs-retire agent sort it out.  If
2953          * this is a transient state it's OK, as the retire agent will
2954          * double-check the state of the vdev before repairing it.
2955          */
2956         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2957             vd->vdev_prevstate != state)
2958                 zfs_post_state_change(spa, vd);
2959
2960         if (vd->vdev_removed &&
2961             state == VDEV_STATE_CANT_OPEN &&
2962             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2963                 /*
2964                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2965                  * device was previously marked removed and someone attempted to
2966                  * reopen it.  If this failed due to a nonexistent device, then
2967                  * keep the device in the REMOVED state.  We also let this be if
2968                  * it is one of our special test online cases, which is only
2969                  * attempting to online the device and shouldn't generate an FMA
2970                  * fault.
2971                  */
2972                 vd->vdev_state = VDEV_STATE_REMOVED;
2973                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2974         } else if (state == VDEV_STATE_REMOVED) {
2975                 vd->vdev_removed = B_TRUE;
2976         } else if (state == VDEV_STATE_CANT_OPEN) {
2977                 /*
2978                  * If we fail to open a vdev during an import or recovery, we
2979                  * mark it as "not available", which signifies that it was
2980                  * never there to begin with.  Failure to open such a device
2981                  * is not considered an error.
2982                  */
2983                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2984                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2985                     vd->vdev_ops->vdev_op_leaf)
2986                         vd->vdev_not_present = 1;
2987
2988                 /*
2989                  * Post the appropriate ereport.  If the 'prevstate' field is
2990                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2991                  * that this is part of a vdev_reopen().  In this case, we don't
2992                  * want to post the ereport if the device was already in the
2993                  * CANT_OPEN state beforehand.
2994                  *
2995                  * If the 'checkremove' flag is set, then this is an attempt to
2996                  * online the device in response to an insertion event.  If we
2997                  * hit this case, then we have detected an insertion event for a
2998                  * faulted or offline device that wasn't in the removed state.
2999                  * In this scenario, we don't post an ereport because we are
3000                  * about to replace the device, or attempt an online with
3001                  * vdev_forcefault, which will generate the fault for us.
3002                  */
3003                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3004                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3005                     vd != spa->spa_root_vdev) {
3006                         const char *class;
3007
3008                         switch (aux) {
3009                         case VDEV_AUX_OPEN_FAILED:
3010                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3011                                 break;
3012                         case VDEV_AUX_CORRUPT_DATA:
3013                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3014                                 break;
3015                         case VDEV_AUX_NO_REPLICAS:
3016                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3017                                 break;
3018                         case VDEV_AUX_BAD_GUID_SUM:
3019                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3020                                 break;
3021                         case VDEV_AUX_TOO_SMALL:
3022                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3023                                 break;
3024                         case VDEV_AUX_BAD_LABEL:
3025                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3026                                 break;
3027                         default:
3028                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3029                         }
3030
3031                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3032                 }
3033
3034                 /* Erase any notion of persistent removed state */
3035                 vd->vdev_removed = B_FALSE;
3036         } else {
3037                 vd->vdev_removed = B_FALSE;
3038         }
3039
3040         if (!isopen && vd->vdev_parent)
3041                 vdev_propagate_state(vd->vdev_parent);
3042 }
3043
3044 /*
3045  * Check the vdev configuration to ensure that it's capable of supporting
3046  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3047  * In addition, only a single top-level vdev is allowed and none of the leaves
3048  * can be wholedisks.
3049  */
3050 boolean_t
3051 vdev_is_bootable(vdev_t *vd)
3052 {
3053         int c;
3054
3055         if (!vd->vdev_ops->vdev_op_leaf) {
3056                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3057
3058                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3059                     vd->vdev_children > 1) {
3060                         return (B_FALSE);
3061                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3062                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3063                         return (B_FALSE);
3064                 }
3065         } else if (vd->vdev_wholedisk == 1) {
3066                 return (B_FALSE);
3067         }
3068
3069         for (c = 0; c < vd->vdev_children; c++) {
3070                 if (!vdev_is_bootable(vd->vdev_child[c]))
3071                         return (B_FALSE);
3072         }
3073         return (B_TRUE);
3074 }
3075
3076 /*
3077  * Load the state from the original vdev tree (ovd) which
3078  * we've retrieved from the MOS config object. If the original
3079  * vdev was offline or faulted then we transfer that state to the
3080  * device in the current vdev tree (nvd).
3081  */
3082 void
3083 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3084 {
3085         int c;
3086
3087         ASSERT(nvd->vdev_top->vdev_islog);
3088         ASSERT(spa_config_held(nvd->vdev_spa,
3089             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3090         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3091
3092         for (c = 0; c < nvd->vdev_children; c++)
3093                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3094
3095         if (nvd->vdev_ops->vdev_op_leaf) {
3096                 /*
3097                  * Restore the persistent vdev state
3098                  */
3099                 nvd->vdev_offline = ovd->vdev_offline;
3100                 nvd->vdev_faulted = ovd->vdev_faulted;
3101                 nvd->vdev_degraded = ovd->vdev_degraded;
3102                 nvd->vdev_removed = ovd->vdev_removed;
3103         }
3104 }
3105
3106 /*
3107  * Determine if a log device has valid content.  If the vdev was
3108  * removed or faulted in the MOS config then we know that
3109  * the content on the log device has already been written to the pool.
3110  */
3111 boolean_t
3112 vdev_log_state_valid(vdev_t *vd)
3113 {
3114         int c;
3115
3116         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3117             !vd->vdev_removed)
3118                 return (B_TRUE);
3119
3120         for (c = 0; c < vd->vdev_children; c++)
3121                 if (vdev_log_state_valid(vd->vdev_child[c]))
3122                         return (B_TRUE);
3123
3124         return (B_FALSE);
3125 }
3126
3127 /*
3128  * Expand a vdev if possible.
3129  */
3130 void
3131 vdev_expand(vdev_t *vd, uint64_t txg)
3132 {
3133         ASSERT(vd->vdev_top == vd);
3134         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3135
3136         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3137                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3138                 vdev_config_dirty(vd);
3139         }
3140 }
3141
3142 /*
3143  * Split a vdev.
3144  */
3145 void
3146 vdev_split(vdev_t *vd)
3147 {
3148         vdev_t *cvd, *pvd = vd->vdev_parent;
3149
3150         vdev_remove_child(pvd, vd);
3151         vdev_compact_children(pvd);
3152
3153         cvd = pvd->vdev_child[0];
3154         if (pvd->vdev_children == 1) {
3155                 vdev_remove_parent(cvd);
3156                 cvd->vdev_splitting = B_TRUE;
3157         }
3158         vdev_propagate_state(cvd);
3159 }