Illumos #1748: desire support for reguid in zfs
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56         &vdev_disk_ops,
57         &vdev_file_ops,
58         &vdev_missing_ops,
59         &vdev_hole_ops,
60         NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72         vdev_ops_t *ops, **opspp;
73
74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75                 if (strcmp(ops->vdev_op_type, type) == 0)
76                         break;
77
78         return (ops);
79 }
80
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89         uint64_t csize;
90         int c;
91
92         for (c = 0; c < vd->vdev_children; c++) {
93                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94                 asize = MAX(asize, csize);
95         }
96
97         return (asize);
98 }
99
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109         vdev_t *pvd = vd->vdev_parent;
110
111         /*
112          * The our parent is NULL (inactive spare or cache) or is the root,
113          * just return our own asize.
114          */
115         if (pvd == NULL)
116                 return (vd->vdev_asize);
117
118         /*
119          * The top-level vdev just returns the allocatable size rounded
120          * to the nearest metaslab.
121          */
122         if (vd == vd->vdev_top)
123                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125         /*
126          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127          * so each child must provide at least 1/Nth of its asize.
128          */
129         if (pvd->vdev_ops == &vdev_raidz_ops)
130                 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132         return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138         int c;
139         vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141         for (c = 0; c < vd->vdev_children; c++)
142                 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         vdev_t *mvd;
164         int c;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_SLEEP);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220         int c;
221         uint_t id = cvd->vdev_id;
222
223         ASSERT(cvd->vdev_parent == pvd);
224
225         if (pvd == NULL)
226                 return;
227
228         ASSERT(id < pvd->vdev_children);
229         ASSERT(pvd->vdev_child[id] == cvd);
230
231         pvd->vdev_child[id] = NULL;
232         cvd->vdev_parent = NULL;
233
234         for (c = 0; c < pvd->vdev_children; c++)
235                 if (pvd->vdev_child[c])
236                         break;
237
238         if (c == pvd->vdev_children) {
239                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240                 pvd->vdev_child = NULL;
241                 pvd->vdev_children = 0;
242         }
243
244         /*
245          * Walk up all ancestors to update guid sum.
246          */
247         for (; pvd != NULL; pvd = pvd->vdev_parent)
248                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260         int c;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269
270         for (c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289         int t;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         list_link_init(&vd->vdev_config_dirty_node);
324         list_link_init(&vd->vdev_state_dirty_node);
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (EINVAL);
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (EINVAL);
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (EINVAL);
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (ENOTSUP);
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (EINVAL);
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (ENOTSUP);
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (ENOTSUP);
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (EINVAL);
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         int c, t;
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         if (tvd->vdev_mg)
676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677         tvd->vdev_mg = svd->vdev_mg;
678         tvd->vdev_ms = svd->vdev_ms;
679
680         svd->vdev_mg = NULL;
681         svd->vdev_ms = NULL;
682
683         if (tvd->vdev_mg != NULL)
684                 tvd->vdev_mg->mg_vd = tvd;
685
686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690         svd->vdev_stat.vs_alloc = 0;
691         svd->vdev_stat.vs_space = 0;
692         svd->vdev_stat.vs_dspace = 0;
693
694         for (t = 0; t < TXG_SIZE; t++) {
695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701         }
702
703         if (list_link_active(&svd->vdev_config_dirty_node)) {
704                 vdev_config_clean(svd);
705                 vdev_config_dirty(tvd);
706         }
707
708         if (list_link_active(&svd->vdev_state_dirty_node)) {
709                 vdev_state_clean(svd);
710                 vdev_state_dirty(tvd);
711         }
712
713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714         svd->vdev_deflate_ratio = 0;
715
716         tvd->vdev_islog = svd->vdev_islog;
717         svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723         int c;
724
725         if (vd == NULL)
726                 return;
727
728         vd->vdev_top = tvd;
729
730         for (c = 0; c < vd->vdev_children; c++)
731                 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735  * Add a mirror/replacing vdev above an existing vdev.
736  */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740         spa_t *spa = cvd->vdev_spa;
741         vdev_t *pvd = cvd->vdev_parent;
742         vdev_t *mvd;
743
744         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748         mvd->vdev_asize = cvd->vdev_asize;
749         mvd->vdev_min_asize = cvd->vdev_min_asize;
750         mvd->vdev_ashift = cvd->vdev_ashift;
751         mvd->vdev_state = cvd->vdev_state;
752         mvd->vdev_crtxg = cvd->vdev_crtxg;
753
754         vdev_remove_child(pvd, cvd);
755         vdev_add_child(pvd, mvd);
756         cvd->vdev_id = mvd->vdev_children;
757         vdev_add_child(mvd, cvd);
758         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
759
760         if (mvd == mvd->vdev_top)
761                 vdev_top_transfer(cvd, mvd);
762
763         return (mvd);
764 }
765
766 /*
767  * Remove a 1-way mirror/replacing vdev from the tree.
768  */
769 void
770 vdev_remove_parent(vdev_t *cvd)
771 {
772         vdev_t *mvd = cvd->vdev_parent;
773         vdev_t *pvd = mvd->vdev_parent;
774
775         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
776
777         ASSERT(mvd->vdev_children == 1);
778         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
779             mvd->vdev_ops == &vdev_replacing_ops ||
780             mvd->vdev_ops == &vdev_spare_ops);
781         cvd->vdev_ashift = mvd->vdev_ashift;
782
783         vdev_remove_child(mvd, cvd);
784         vdev_remove_child(pvd, mvd);
785
786         /*
787          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
788          * Otherwise, we could have detached an offline device, and when we
789          * go to import the pool we'll think we have two top-level vdevs,
790          * instead of a different version of the same top-level vdev.
791          */
792         if (mvd->vdev_top == mvd) {
793                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
794                 cvd->vdev_orig_guid = cvd->vdev_guid;
795                 cvd->vdev_guid += guid_delta;
796                 cvd->vdev_guid_sum += guid_delta;
797         }
798         cvd->vdev_id = mvd->vdev_id;
799         vdev_add_child(pvd, cvd);
800         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
801
802         if (cvd == cvd->vdev_top)
803                 vdev_top_transfer(mvd, cvd);
804
805         ASSERT(mvd->vdev_children == 0);
806         vdev_free(mvd);
807 }
808
809 int
810 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
811 {
812         spa_t *spa = vd->vdev_spa;
813         objset_t *mos = spa->spa_meta_objset;
814         uint64_t m;
815         uint64_t oldc = vd->vdev_ms_count;
816         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
817         metaslab_t **mspp;
818         int error;
819
820         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
821
822         /*
823          * This vdev is not being allocated from yet or is a hole.
824          */
825         if (vd->vdev_ms_shift == 0)
826                 return (0);
827
828         ASSERT(!vd->vdev_ishole);
829
830         /*
831          * Compute the raidz-deflation ratio.  Note, we hard-code
832          * in 128k (1 << 17) because it is the current "typical" blocksize.
833          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
834          * or we will inconsistently account for existing bp's.
835          */
836         vd->vdev_deflate_ratio = (1 << 17) /
837             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
838
839         ASSERT(oldc <= newc);
840
841         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP | KM_NODEBUG);
842
843         if (oldc != 0) {
844                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
845                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
846         }
847
848         vd->vdev_ms = mspp;
849         vd->vdev_ms_count = newc;
850
851         for (m = oldc; m < newc; m++) {
852                 space_map_obj_t smo = { 0, 0, 0 };
853                 if (txg == 0) {
854                         uint64_t object = 0;
855                         error = dmu_read(mos, vd->vdev_ms_array,
856                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
857                             DMU_READ_PREFETCH);
858                         if (error)
859                                 return (error);
860                         if (object != 0) {
861                                 dmu_buf_t *db;
862                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
863                                 if (error)
864                                         return (error);
865                                 ASSERT3U(db->db_size, >=, sizeof (smo));
866                                 bcopy(db->db_data, &smo, sizeof (smo));
867                                 ASSERT3U(smo.smo_object, ==, object);
868                                 dmu_buf_rele(db, FTAG);
869                         }
870                 }
871                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
872                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
873         }
874
875         if (txg == 0)
876                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
877
878         /*
879          * If the vdev is being removed we don't activate
880          * the metaslabs since we want to ensure that no new
881          * allocations are performed on this device.
882          */
883         if (oldc == 0 && !vd->vdev_removing)
884                 metaslab_group_activate(vd->vdev_mg);
885
886         if (txg == 0)
887                 spa_config_exit(spa, SCL_ALLOC, FTAG);
888
889         return (0);
890 }
891
892 void
893 vdev_metaslab_fini(vdev_t *vd)
894 {
895         uint64_t m;
896         uint64_t count = vd->vdev_ms_count;
897
898         if (vd->vdev_ms != NULL) {
899                 metaslab_group_passivate(vd->vdev_mg);
900                 for (m = 0; m < count; m++)
901                         if (vd->vdev_ms[m] != NULL)
902                                 metaslab_fini(vd->vdev_ms[m]);
903                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
904                 vd->vdev_ms = NULL;
905         }
906 }
907
908 typedef struct vdev_probe_stats {
909         boolean_t       vps_readable;
910         boolean_t       vps_writeable;
911         int             vps_flags;
912 } vdev_probe_stats_t;
913
914 static void
915 vdev_probe_done(zio_t *zio)
916 {
917         spa_t *spa = zio->io_spa;
918         vdev_t *vd = zio->io_vd;
919         vdev_probe_stats_t *vps = zio->io_private;
920
921         ASSERT(vd->vdev_probe_zio != NULL);
922
923         if (zio->io_type == ZIO_TYPE_READ) {
924                 if (zio->io_error == 0)
925                         vps->vps_readable = 1;
926                 if (zio->io_error == 0 && spa_writeable(spa)) {
927                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
928                             zio->io_offset, zio->io_size, zio->io_data,
929                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
930                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
931                 } else {
932                         zio_buf_free(zio->io_data, zio->io_size);
933                 }
934         } else if (zio->io_type == ZIO_TYPE_WRITE) {
935                 if (zio->io_error == 0)
936                         vps->vps_writeable = 1;
937                 zio_buf_free(zio->io_data, zio->io_size);
938         } else if (zio->io_type == ZIO_TYPE_NULL) {
939                 zio_t *pio;
940
941                 vd->vdev_cant_read |= !vps->vps_readable;
942                 vd->vdev_cant_write |= !vps->vps_writeable;
943
944                 if (vdev_readable(vd) &&
945                     (vdev_writeable(vd) || !spa_writeable(spa))) {
946                         zio->io_error = 0;
947                 } else {
948                         ASSERT(zio->io_error != 0);
949                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
950                             spa, vd, NULL, 0, 0);
951                         zio->io_error = ENXIO;
952                 }
953
954                 mutex_enter(&vd->vdev_probe_lock);
955                 ASSERT(vd->vdev_probe_zio == zio);
956                 vd->vdev_probe_zio = NULL;
957                 mutex_exit(&vd->vdev_probe_lock);
958
959                 while ((pio = zio_walk_parents(zio)) != NULL)
960                         if (!vdev_accessible(vd, pio))
961                                 pio->io_error = ENXIO;
962
963                 kmem_free(vps, sizeof (*vps));
964         }
965 }
966
967 /*
968  * Determine whether this device is accessible by reading and writing
969  * to several known locations: the pad regions of each vdev label
970  * but the first (which we leave alone in case it contains a VTOC).
971  */
972 zio_t *
973 vdev_probe(vdev_t *vd, zio_t *zio)
974 {
975         spa_t *spa = vd->vdev_spa;
976         vdev_probe_stats_t *vps = NULL;
977         zio_t *pio;
978         int l;
979
980         ASSERT(vd->vdev_ops->vdev_op_leaf);
981
982         /*
983          * Don't probe the probe.
984          */
985         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
986                 return (NULL);
987
988         /*
989          * To prevent 'probe storms' when a device fails, we create
990          * just one probe i/o at a time.  All zios that want to probe
991          * this vdev will become parents of the probe io.
992          */
993         mutex_enter(&vd->vdev_probe_lock);
994
995         if ((pio = vd->vdev_probe_zio) == NULL) {
996                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
997
998                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
999                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1000                     ZIO_FLAG_TRYHARD;
1001
1002                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1003                         /*
1004                          * vdev_cant_read and vdev_cant_write can only
1005                          * transition from TRUE to FALSE when we have the
1006                          * SCL_ZIO lock as writer; otherwise they can only
1007                          * transition from FALSE to TRUE.  This ensures that
1008                          * any zio looking at these values can assume that
1009                          * failures persist for the life of the I/O.  That's
1010                          * important because when a device has intermittent
1011                          * connectivity problems, we want to ensure that
1012                          * they're ascribed to the device (ENXIO) and not
1013                          * the zio (EIO).
1014                          *
1015                          * Since we hold SCL_ZIO as writer here, clear both
1016                          * values so the probe can reevaluate from first
1017                          * principles.
1018                          */
1019                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1020                         vd->vdev_cant_read = B_FALSE;
1021                         vd->vdev_cant_write = B_FALSE;
1022                 }
1023
1024                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1025                     vdev_probe_done, vps,
1026                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1027
1028                 /*
1029                  * We can't change the vdev state in this context, so we
1030                  * kick off an async task to do it on our behalf.
1031                  */
1032                 if (zio != NULL) {
1033                         vd->vdev_probe_wanted = B_TRUE;
1034                         spa_async_request(spa, SPA_ASYNC_PROBE);
1035                 }
1036         }
1037
1038         if (zio != NULL)
1039                 zio_add_child(zio, pio);
1040
1041         mutex_exit(&vd->vdev_probe_lock);
1042
1043         if (vps == NULL) {
1044                 ASSERT(zio != NULL);
1045                 return (NULL);
1046         }
1047
1048         for (l = 1; l < VDEV_LABELS; l++) {
1049                 zio_nowait(zio_read_phys(pio, vd,
1050                     vdev_label_offset(vd->vdev_psize, l,
1051                     offsetof(vdev_label_t, vl_pad2)),
1052                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1053                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1054                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1055         }
1056
1057         if (zio == NULL)
1058                 return (pio);
1059
1060         zio_nowait(pio);
1061         return (NULL);
1062 }
1063
1064 static void
1065 vdev_open_child(void *arg)
1066 {
1067         vdev_t *vd = arg;
1068
1069         vd->vdev_open_thread = curthread;
1070         vd->vdev_open_error = vdev_open(vd);
1071         vd->vdev_open_thread = NULL;
1072 }
1073
1074 boolean_t
1075 vdev_uses_zvols(vdev_t *vd)
1076 {
1077 /*
1078  * Stacking zpools on top of zvols is unsupported until we implement a method
1079  * for determining if an arbitrary block device is a zvol without using the
1080  * path.  Solaris would check the 'zvol' path component but this does not
1081  * exist in the Linux port, so we really should do something like stat the
1082  * file and check the major number.  This is complicated by the fact that
1083  * we need to do this portably in user or kernel space.
1084  */
1085 #if 0
1086         int c;
1087
1088         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1089             strlen(ZVOL_DIR)) == 0)
1090                 return (B_TRUE);
1091         for (c = 0; c < vd->vdev_children; c++)
1092                 if (vdev_uses_zvols(vd->vdev_child[c]))
1093                         return (B_TRUE);
1094 #endif
1095         return (B_FALSE);
1096 }
1097
1098 void
1099 vdev_open_children(vdev_t *vd)
1100 {
1101         taskq_t *tq;
1102         int children = vd->vdev_children;
1103         int c;
1104
1105         /*
1106          * in order to handle pools on top of zvols, do the opens
1107          * in a single thread so that the same thread holds the
1108          * spa_namespace_lock
1109          */
1110         if (vdev_uses_zvols(vd)) {
1111                 for (c = 0; c < children; c++)
1112                         vd->vdev_child[c]->vdev_open_error =
1113                             vdev_open(vd->vdev_child[c]);
1114                 return;
1115         }
1116         tq = taskq_create("vdev_open", children, minclsyspri,
1117             children, children, TASKQ_PREPOPULATE);
1118
1119         for (c = 0; c < children; c++)
1120                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1121                     TQ_SLEEP) != 0);
1122
1123         taskq_destroy(tq);
1124 }
1125
1126 /*
1127  * Prepare a virtual device for access.
1128  */
1129 int
1130 vdev_open(vdev_t *vd)
1131 {
1132         spa_t *spa = vd->vdev_spa;
1133         int error;
1134         uint64_t osize = 0;
1135         uint64_t asize, psize;
1136         uint64_t ashift = 0;
1137         int c;
1138
1139         ASSERT(vd->vdev_open_thread == curthread ||
1140             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1141         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1142             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1143             vd->vdev_state == VDEV_STATE_OFFLINE);
1144
1145         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1146         vd->vdev_cant_read = B_FALSE;
1147         vd->vdev_cant_write = B_FALSE;
1148         vd->vdev_min_asize = vdev_get_min_asize(vd);
1149
1150         /*
1151          * If this vdev is not removed, check its fault status.  If it's
1152          * faulted, bail out of the open.
1153          */
1154         if (!vd->vdev_removed && vd->vdev_faulted) {
1155                 ASSERT(vd->vdev_children == 0);
1156                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1157                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1158                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1159                     vd->vdev_label_aux);
1160                 return (ENXIO);
1161         } else if (vd->vdev_offline) {
1162                 ASSERT(vd->vdev_children == 0);
1163                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1164                 return (ENXIO);
1165         }
1166
1167         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1168
1169         /*
1170          * Reset the vdev_reopening flag so that we actually close
1171          * the vdev on error.
1172          */
1173         vd->vdev_reopening = B_FALSE;
1174         if (zio_injection_enabled && error == 0)
1175                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1176
1177         if (error) {
1178                 if (vd->vdev_removed &&
1179                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1180                         vd->vdev_removed = B_FALSE;
1181
1182                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1183                     vd->vdev_stat.vs_aux);
1184                 return (error);
1185         }
1186
1187         vd->vdev_removed = B_FALSE;
1188
1189         /*
1190          * Recheck the faulted flag now that we have confirmed that
1191          * the vdev is accessible.  If we're faulted, bail.
1192          */
1193         if (vd->vdev_faulted) {
1194                 ASSERT(vd->vdev_children == 0);
1195                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1196                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1197                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1198                     vd->vdev_label_aux);
1199                 return (ENXIO);
1200         }
1201
1202         if (vd->vdev_degraded) {
1203                 ASSERT(vd->vdev_children == 0);
1204                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1205                     VDEV_AUX_ERR_EXCEEDED);
1206         } else {
1207                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1208         }
1209
1210         /*
1211          * For hole or missing vdevs we just return success.
1212          */
1213         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1214                 return (0);
1215
1216         for (c = 0; c < vd->vdev_children; c++) {
1217                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1218                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1219                             VDEV_AUX_NONE);
1220                         break;
1221                 }
1222         }
1223
1224         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1225
1226         if (vd->vdev_children == 0) {
1227                 if (osize < SPA_MINDEVSIZE) {
1228                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229                             VDEV_AUX_TOO_SMALL);
1230                         return (EOVERFLOW);
1231                 }
1232                 psize = osize;
1233                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1234         } else {
1235                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1236                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1237                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238                             VDEV_AUX_TOO_SMALL);
1239                         return (EOVERFLOW);
1240                 }
1241                 psize = 0;
1242                 asize = osize;
1243         }
1244
1245         vd->vdev_psize = psize;
1246
1247         /*
1248          * Make sure the allocatable size hasn't shrunk.
1249          */
1250         if (asize < vd->vdev_min_asize) {
1251                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252                     VDEV_AUX_BAD_LABEL);
1253                 return (EINVAL);
1254         }
1255
1256         if (vd->vdev_asize == 0) {
1257                 /*
1258                  * This is the first-ever open, so use the computed values.
1259                  * For testing purposes, a higher ashift can be requested.
1260                  */
1261                 vd->vdev_asize = asize;
1262                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1263         } else {
1264                 /*
1265                  * Make sure the alignment requirement hasn't increased.
1266                  */
1267                 if (ashift > vd->vdev_top->vdev_ashift) {
1268                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1269                             VDEV_AUX_BAD_LABEL);
1270                         return (EINVAL);
1271                 }
1272         }
1273
1274         /*
1275          * If all children are healthy and the asize has increased,
1276          * then we've experienced dynamic LUN growth.  If automatic
1277          * expansion is enabled then use the additional space.
1278          */
1279         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1280             (vd->vdev_expanding || spa->spa_autoexpand))
1281                 vd->vdev_asize = asize;
1282
1283         vdev_set_min_asize(vd);
1284
1285         /*
1286          * Ensure we can issue some IO before declaring the
1287          * vdev open for business.
1288          */
1289         if (vd->vdev_ops->vdev_op_leaf &&
1290             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1292                     VDEV_AUX_ERR_EXCEEDED);
1293                 return (error);
1294         }
1295
1296         /*
1297          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1298          * resilver.  But don't do this if we are doing a reopen for a scrub,
1299          * since this would just restart the scrub we are already doing.
1300          */
1301         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1302             vdev_resilver_needed(vd, NULL, NULL))
1303                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1304
1305         return (0);
1306 }
1307
1308 /*
1309  * Called once the vdevs are all opened, this routine validates the label
1310  * contents.  This needs to be done before vdev_load() so that we don't
1311  * inadvertently do repair I/Os to the wrong device.
1312  *
1313  * This function will only return failure if one of the vdevs indicates that it
1314  * has since been destroyed or exported.  This is only possible if
1315  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1316  * will be updated but the function will return 0.
1317  */
1318 int
1319 vdev_validate(vdev_t *vd)
1320 {
1321         spa_t *spa = vd->vdev_spa;
1322         nvlist_t *label;
1323         uint64_t guid = 0, top_guid;
1324         uint64_t state;
1325         int c;
1326
1327         for (c = 0; c < vd->vdev_children; c++)
1328                 if (vdev_validate(vd->vdev_child[c]) != 0)
1329                         return (EBADF);
1330
1331         /*
1332          * If the device has already failed, or was marked offline, don't do
1333          * any further validation.  Otherwise, label I/O will fail and we will
1334          * overwrite the previous state.
1335          */
1336         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1337                 uint64_t aux_guid = 0;
1338                 nvlist_t *nvl;
1339
1340                 if ((label = vdev_label_read_config(vd)) == NULL) {
1341                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342                             VDEV_AUX_BAD_LABEL);
1343                         return (0);
1344                 }
1345
1346                 /*
1347                  * Determine if this vdev has been split off into another
1348                  * pool.  If so, then refuse to open it.
1349                  */
1350                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1351                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1352                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1353                             VDEV_AUX_SPLIT_POOL);
1354                         nvlist_free(label);
1355                         return (0);
1356                 }
1357
1358                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1359                     &guid) != 0 || guid != spa_guid(spa)) {
1360                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1361                             VDEV_AUX_CORRUPT_DATA);
1362                         nvlist_free(label);
1363                         return (0);
1364                 }
1365
1366                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1367                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1368                     &aux_guid) != 0)
1369                         aux_guid = 0;
1370
1371                 /*
1372                  * If this vdev just became a top-level vdev because its
1373                  * sibling was detached, it will have adopted the parent's
1374                  * vdev guid -- but the label may or may not be on disk yet.
1375                  * Fortunately, either version of the label will have the
1376                  * same top guid, so if we're a top-level vdev, we can
1377                  * safely compare to that instead.
1378                  *
1379                  * If we split this vdev off instead, then we also check the
1380                  * original pool's guid.  We don't want to consider the vdev
1381                  * corrupt if it is partway through a split operation.
1382                  */
1383                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1384                     &guid) != 0 ||
1385                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1386                     &top_guid) != 0 ||
1387                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1388                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1389                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1390                             VDEV_AUX_CORRUPT_DATA);
1391                         nvlist_free(label);
1392                         return (0);
1393                 }
1394
1395                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1396                     &state) != 0) {
1397                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1398                             VDEV_AUX_CORRUPT_DATA);
1399                         nvlist_free(label);
1400                         return (0);
1401                 }
1402
1403                 nvlist_free(label);
1404
1405                 /*
1406                  * If this is a verbatim import, no need to check the
1407                  * state of the pool.
1408                  */
1409                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1410                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1411                     state != POOL_STATE_ACTIVE)
1412                         return (EBADF);
1413
1414                 /*
1415                  * If we were able to open and validate a vdev that was
1416                  * previously marked permanently unavailable, clear that state
1417                  * now.
1418                  */
1419                 if (vd->vdev_not_present)
1420                         vd->vdev_not_present = 0;
1421         }
1422
1423         return (0);
1424 }
1425
1426 /*
1427  * Close a virtual device.
1428  */
1429 void
1430 vdev_close(vdev_t *vd)
1431 {
1432         vdev_t *pvd = vd->vdev_parent;
1433         ASSERTV(spa_t *spa = vd->vdev_spa);
1434
1435         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1436
1437         /*
1438          * If our parent is reopening, then we are as well, unless we are
1439          * going offline.
1440          */
1441         if (pvd != NULL && pvd->vdev_reopening)
1442                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1443
1444         vd->vdev_ops->vdev_op_close(vd);
1445
1446         vdev_cache_purge(vd);
1447
1448         /*
1449          * We record the previous state before we close it, so that if we are
1450          * doing a reopen(), we don't generate FMA ereports if we notice that
1451          * it's still faulted.
1452          */
1453         vd->vdev_prevstate = vd->vdev_state;
1454
1455         if (vd->vdev_offline)
1456                 vd->vdev_state = VDEV_STATE_OFFLINE;
1457         else
1458                 vd->vdev_state = VDEV_STATE_CLOSED;
1459         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1460 }
1461
1462 void
1463 vdev_hold(vdev_t *vd)
1464 {
1465         spa_t *spa = vd->vdev_spa;
1466         int c;
1467
1468         ASSERT(spa_is_root(spa));
1469         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1470                 return;
1471
1472         for (c = 0; c < vd->vdev_children; c++)
1473                 vdev_hold(vd->vdev_child[c]);
1474
1475         if (vd->vdev_ops->vdev_op_leaf)
1476                 vd->vdev_ops->vdev_op_hold(vd);
1477 }
1478
1479 void
1480 vdev_rele(vdev_t *vd)
1481 {
1482         int c;
1483
1484         ASSERT(spa_is_root(vd->vdev_spa));
1485         for (c = 0; c < vd->vdev_children; c++)
1486                 vdev_rele(vd->vdev_child[c]);
1487
1488         if (vd->vdev_ops->vdev_op_leaf)
1489                 vd->vdev_ops->vdev_op_rele(vd);
1490 }
1491
1492 /*
1493  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1494  * reopen leaf vdevs which had previously been opened as they might deadlock
1495  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1496  * If the leaf has never been opened then open it, as usual.
1497  */
1498 void
1499 vdev_reopen(vdev_t *vd)
1500 {
1501         spa_t *spa = vd->vdev_spa;
1502
1503         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1504
1505         /* set the reopening flag unless we're taking the vdev offline */
1506         vd->vdev_reopening = !vd->vdev_offline;
1507         vdev_close(vd);
1508         (void) vdev_open(vd);
1509
1510         /*
1511          * Call vdev_validate() here to make sure we have the same device.
1512          * Otherwise, a device with an invalid label could be successfully
1513          * opened in response to vdev_reopen().
1514          */
1515         if (vd->vdev_aux) {
1516                 (void) vdev_validate_aux(vd);
1517                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1518                     vd->vdev_aux == &spa->spa_l2cache &&
1519                     !l2arc_vdev_present(vd))
1520                         l2arc_add_vdev(spa, vd);
1521         } else {
1522                 (void) vdev_validate(vd);
1523         }
1524
1525         /*
1526          * Reassess parent vdev's health.
1527          */
1528         vdev_propagate_state(vd);
1529 }
1530
1531 int
1532 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1533 {
1534         int error;
1535
1536         /*
1537          * Normally, partial opens (e.g. of a mirror) are allowed.
1538          * For a create, however, we want to fail the request if
1539          * there are any components we can't open.
1540          */
1541         error = vdev_open(vd);
1542
1543         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1544                 vdev_close(vd);
1545                 return (error ? error : ENXIO);
1546         }
1547
1548         /*
1549          * Recursively initialize all labels.
1550          */
1551         if ((error = vdev_label_init(vd, txg, isreplacing ?
1552             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1553                 vdev_close(vd);
1554                 return (error);
1555         }
1556
1557         return (0);
1558 }
1559
1560 void
1561 vdev_metaslab_set_size(vdev_t *vd)
1562 {
1563         /*
1564          * Aim for roughly 200 metaslabs per vdev.
1565          */
1566         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1567         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1568 }
1569
1570 void
1571 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1572 {
1573         ASSERT(vd == vd->vdev_top);
1574         ASSERT(!vd->vdev_ishole);
1575         ASSERT(ISP2(flags));
1576         ASSERT(spa_writeable(vd->vdev_spa));
1577
1578         if (flags & VDD_METASLAB)
1579                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1580
1581         if (flags & VDD_DTL)
1582                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1583
1584         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1585 }
1586
1587 /*
1588  * DTLs.
1589  *
1590  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1591  * the vdev has less than perfect replication.  There are four kinds of DTL:
1592  *
1593  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1594  *
1595  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1596  *
1597  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1598  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1599  *      txgs that was scrubbed.
1600  *
1601  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1602  *      persistent errors or just some device being offline.
1603  *      Unlike the other three, the DTL_OUTAGE map is not generally
1604  *      maintained; it's only computed when needed, typically to
1605  *      determine whether a device can be detached.
1606  *
1607  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1608  * either has the data or it doesn't.
1609  *
1610  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1611  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1612  * if any child is less than fully replicated, then so is its parent.
1613  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1614  * comprising only those txgs which appear in 'maxfaults' or more children;
1615  * those are the txgs we don't have enough replication to read.  For example,
1616  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1617  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1618  * two child DTL_MISSING maps.
1619  *
1620  * It should be clear from the above that to compute the DTLs and outage maps
1621  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1622  * Therefore, that is all we keep on disk.  When loading the pool, or after
1623  * a configuration change, we generate all other DTLs from first principles.
1624  */
1625 void
1626 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1627 {
1628         space_map_t *sm = &vd->vdev_dtl[t];
1629
1630         ASSERT(t < DTL_TYPES);
1631         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1632         ASSERT(spa_writeable(vd->vdev_spa));
1633
1634         mutex_enter(sm->sm_lock);
1635         if (!space_map_contains(sm, txg, size))
1636                 space_map_add(sm, txg, size);
1637         mutex_exit(sm->sm_lock);
1638 }
1639
1640 boolean_t
1641 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1642 {
1643         space_map_t *sm = &vd->vdev_dtl[t];
1644         boolean_t dirty = B_FALSE;
1645
1646         ASSERT(t < DTL_TYPES);
1647         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1648
1649         mutex_enter(sm->sm_lock);
1650         if (sm->sm_space != 0)
1651                 dirty = space_map_contains(sm, txg, size);
1652         mutex_exit(sm->sm_lock);
1653
1654         return (dirty);
1655 }
1656
1657 boolean_t
1658 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1659 {
1660         space_map_t *sm = &vd->vdev_dtl[t];
1661         boolean_t empty;
1662
1663         mutex_enter(sm->sm_lock);
1664         empty = (sm->sm_space == 0);
1665         mutex_exit(sm->sm_lock);
1666
1667         return (empty);
1668 }
1669
1670 /*
1671  * Reassess DTLs after a config change or scrub completion.
1672  */
1673 void
1674 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1675 {
1676         spa_t *spa = vd->vdev_spa;
1677         avl_tree_t reftree;
1678         int c, t, minref;
1679
1680         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1681
1682         for (c = 0; c < vd->vdev_children; c++)
1683                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1684                     scrub_txg, scrub_done);
1685
1686         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1687                 return;
1688
1689         if (vd->vdev_ops->vdev_op_leaf) {
1690                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1691
1692                 mutex_enter(&vd->vdev_dtl_lock);
1693                 if (scrub_txg != 0 &&
1694                     (spa->spa_scrub_started ||
1695                     (scn && scn->scn_phys.scn_errors == 0))) {
1696                         /*
1697                          * We completed a scrub up to scrub_txg.  If we
1698                          * did it without rebooting, then the scrub dtl
1699                          * will be valid, so excise the old region and
1700                          * fold in the scrub dtl.  Otherwise, leave the
1701                          * dtl as-is if there was an error.
1702                          *
1703                          * There's little trick here: to excise the beginning
1704                          * of the DTL_MISSING map, we put it into a reference
1705                          * tree and then add a segment with refcnt -1 that
1706                          * covers the range [0, scrub_txg).  This means
1707                          * that each txg in that range has refcnt -1 or 0.
1708                          * We then add DTL_SCRUB with a refcnt of 2, so that
1709                          * entries in the range [0, scrub_txg) will have a
1710                          * positive refcnt -- either 1 or 2.  We then convert
1711                          * the reference tree into the new DTL_MISSING map.
1712                          */
1713                         space_map_ref_create(&reftree);
1714                         space_map_ref_add_map(&reftree,
1715                             &vd->vdev_dtl[DTL_MISSING], 1);
1716                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1717                         space_map_ref_add_map(&reftree,
1718                             &vd->vdev_dtl[DTL_SCRUB], 2);
1719                         space_map_ref_generate_map(&reftree,
1720                             &vd->vdev_dtl[DTL_MISSING], 1);
1721                         space_map_ref_destroy(&reftree);
1722                 }
1723                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1724                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1725                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1726                 if (scrub_done)
1727                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1728                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1729                 if (!vdev_readable(vd))
1730                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1731                 else
1732                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1733                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1734                 mutex_exit(&vd->vdev_dtl_lock);
1735
1736                 if (txg != 0)
1737                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1738                 return;
1739         }
1740
1741         mutex_enter(&vd->vdev_dtl_lock);
1742         for (t = 0; t < DTL_TYPES; t++) {
1743                 /* account for child's outage in parent's missing map */
1744                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1745                 if (t == DTL_SCRUB)
1746                         continue;                       /* leaf vdevs only */
1747                 if (t == DTL_PARTIAL)
1748                         minref = 1;                     /* i.e. non-zero */
1749                 else if (vd->vdev_nparity != 0)
1750                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1751                 else
1752                         minref = vd->vdev_children;     /* any kind of mirror */
1753                 space_map_ref_create(&reftree);
1754                 for (c = 0; c < vd->vdev_children; c++) {
1755                         vdev_t *cvd = vd->vdev_child[c];
1756                         mutex_enter(&cvd->vdev_dtl_lock);
1757                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1758                         mutex_exit(&cvd->vdev_dtl_lock);
1759                 }
1760                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1761                 space_map_ref_destroy(&reftree);
1762         }
1763         mutex_exit(&vd->vdev_dtl_lock);
1764 }
1765
1766 static int
1767 vdev_dtl_load(vdev_t *vd)
1768 {
1769         spa_t *spa = vd->vdev_spa;
1770         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1771         objset_t *mos = spa->spa_meta_objset;
1772         dmu_buf_t *db;
1773         int error;
1774
1775         ASSERT(vd->vdev_children == 0);
1776
1777         if (smo->smo_object == 0)
1778                 return (0);
1779
1780         ASSERT(!vd->vdev_ishole);
1781
1782         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1783                 return (error);
1784
1785         ASSERT3U(db->db_size, >=, sizeof (*smo));
1786         bcopy(db->db_data, smo, sizeof (*smo));
1787         dmu_buf_rele(db, FTAG);
1788
1789         mutex_enter(&vd->vdev_dtl_lock);
1790         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1791             NULL, SM_ALLOC, smo, mos);
1792         mutex_exit(&vd->vdev_dtl_lock);
1793
1794         return (error);
1795 }
1796
1797 void
1798 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1799 {
1800         spa_t *spa = vd->vdev_spa;
1801         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1802         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1803         objset_t *mos = spa->spa_meta_objset;
1804         space_map_t smsync;
1805         kmutex_t smlock;
1806         dmu_buf_t *db;
1807         dmu_tx_t *tx;
1808
1809         ASSERT(!vd->vdev_ishole);
1810
1811         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1812
1813         if (vd->vdev_detached) {
1814                 if (smo->smo_object != 0) {
1815                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1816                         smo->smo_object = 0;
1817                 }
1818                 dmu_tx_commit(tx);
1819                 return;
1820         }
1821
1822         if (smo->smo_object == 0) {
1823                 ASSERT(smo->smo_objsize == 0);
1824                 ASSERT(smo->smo_alloc == 0);
1825                 smo->smo_object = dmu_object_alloc(mos,
1826                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1827                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1828                 ASSERT(smo->smo_object != 0);
1829                 vdev_config_dirty(vd->vdev_top);
1830         }
1831
1832         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1833
1834         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1835             &smlock);
1836
1837         mutex_enter(&smlock);
1838
1839         mutex_enter(&vd->vdev_dtl_lock);
1840         space_map_walk(sm, space_map_add, &smsync);
1841         mutex_exit(&vd->vdev_dtl_lock);
1842
1843         space_map_truncate(smo, mos, tx);
1844         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1845
1846         space_map_destroy(&smsync);
1847
1848         mutex_exit(&smlock);
1849         mutex_destroy(&smlock);
1850
1851         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1852         dmu_buf_will_dirty(db, tx);
1853         ASSERT3U(db->db_size, >=, sizeof (*smo));
1854         bcopy(smo, db->db_data, sizeof (*smo));
1855         dmu_buf_rele(db, FTAG);
1856
1857         dmu_tx_commit(tx);
1858 }
1859
1860 /*
1861  * Determine whether the specified vdev can be offlined/detached/removed
1862  * without losing data.
1863  */
1864 boolean_t
1865 vdev_dtl_required(vdev_t *vd)
1866 {
1867         spa_t *spa = vd->vdev_spa;
1868         vdev_t *tvd = vd->vdev_top;
1869         uint8_t cant_read = vd->vdev_cant_read;
1870         boolean_t required;
1871
1872         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1873
1874         if (vd == spa->spa_root_vdev || vd == tvd)
1875                 return (B_TRUE);
1876
1877         /*
1878          * Temporarily mark the device as unreadable, and then determine
1879          * whether this results in any DTL outages in the top-level vdev.
1880          * If not, we can safely offline/detach/remove the device.
1881          */
1882         vd->vdev_cant_read = B_TRUE;
1883         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1884         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1885         vd->vdev_cant_read = cant_read;
1886         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1887
1888         if (!required && zio_injection_enabled)
1889                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1890
1891         return (required);
1892 }
1893
1894 /*
1895  * Determine if resilver is needed, and if so the txg range.
1896  */
1897 boolean_t
1898 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1899 {
1900         boolean_t needed = B_FALSE;
1901         uint64_t thismin = UINT64_MAX;
1902         uint64_t thismax = 0;
1903         int c;
1904
1905         if (vd->vdev_children == 0) {
1906                 mutex_enter(&vd->vdev_dtl_lock);
1907                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1908                     vdev_writeable(vd)) {
1909                         space_seg_t *ss;
1910
1911                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1912                         thismin = ss->ss_start - 1;
1913                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1914                         thismax = ss->ss_end;
1915                         needed = B_TRUE;
1916                 }
1917                 mutex_exit(&vd->vdev_dtl_lock);
1918         } else {
1919                 for (c = 0; c < vd->vdev_children; c++) {
1920                         vdev_t *cvd = vd->vdev_child[c];
1921                         uint64_t cmin, cmax;
1922
1923                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1924                                 thismin = MIN(thismin, cmin);
1925                                 thismax = MAX(thismax, cmax);
1926                                 needed = B_TRUE;
1927                         }
1928                 }
1929         }
1930
1931         if (needed && minp) {
1932                 *minp = thismin;
1933                 *maxp = thismax;
1934         }
1935         return (needed);
1936 }
1937
1938 void
1939 vdev_load(vdev_t *vd)
1940 {
1941         int c;
1942
1943         /*
1944          * Recursively load all children.
1945          */
1946         for (c = 0; c < vd->vdev_children; c++)
1947                 vdev_load(vd->vdev_child[c]);
1948
1949         /*
1950          * If this is a top-level vdev, initialize its metaslabs.
1951          */
1952         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1953             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1954             vdev_metaslab_init(vd, 0) != 0))
1955                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1956                     VDEV_AUX_CORRUPT_DATA);
1957
1958         /*
1959          * If this is a leaf vdev, load its DTL.
1960          */
1961         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1962                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1963                     VDEV_AUX_CORRUPT_DATA);
1964 }
1965
1966 /*
1967  * The special vdev case is used for hot spares and l2cache devices.  Its
1968  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1969  * we make sure that we can open the underlying device, then try to read the
1970  * label, and make sure that the label is sane and that it hasn't been
1971  * repurposed to another pool.
1972  */
1973 int
1974 vdev_validate_aux(vdev_t *vd)
1975 {
1976         nvlist_t *label;
1977         uint64_t guid, version;
1978         uint64_t state;
1979
1980         if (!vdev_readable(vd))
1981                 return (0);
1982
1983         if ((label = vdev_label_read_config(vd)) == NULL) {
1984                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1985                     VDEV_AUX_CORRUPT_DATA);
1986                 return (-1);
1987         }
1988
1989         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1990             version > SPA_VERSION ||
1991             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1992             guid != vd->vdev_guid ||
1993             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1994                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1995                     VDEV_AUX_CORRUPT_DATA);
1996                 nvlist_free(label);
1997                 return (-1);
1998         }
1999
2000         /*
2001          * We don't actually check the pool state here.  If it's in fact in
2002          * use by another pool, we update this fact on the fly when requested.
2003          */
2004         nvlist_free(label);
2005         return (0);
2006 }
2007
2008 void
2009 vdev_remove(vdev_t *vd, uint64_t txg)
2010 {
2011         spa_t *spa = vd->vdev_spa;
2012         objset_t *mos = spa->spa_meta_objset;
2013         dmu_tx_t *tx;
2014         int m;
2015
2016         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2017
2018         if (vd->vdev_dtl_smo.smo_object) {
2019                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2020                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2021                 vd->vdev_dtl_smo.smo_object = 0;
2022         }
2023
2024         if (vd->vdev_ms != NULL) {
2025                 for (m = 0; m < vd->vdev_ms_count; m++) {
2026                         metaslab_t *msp = vd->vdev_ms[m];
2027
2028                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2029                                 continue;
2030
2031                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2032                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2033                         msp->ms_smo.smo_object = 0;
2034                 }
2035         }
2036
2037         if (vd->vdev_ms_array) {
2038                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2039                 vd->vdev_ms_array = 0;
2040                 vd->vdev_ms_shift = 0;
2041         }
2042         dmu_tx_commit(tx);
2043 }
2044
2045 void
2046 vdev_sync_done(vdev_t *vd, uint64_t txg)
2047 {
2048         metaslab_t *msp;
2049         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2050
2051         ASSERT(!vd->vdev_ishole);
2052
2053         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2054                 metaslab_sync_done(msp, txg);
2055
2056         if (reassess)
2057                 metaslab_sync_reassess(vd->vdev_mg);
2058 }
2059
2060 void
2061 vdev_sync(vdev_t *vd, uint64_t txg)
2062 {
2063         spa_t *spa = vd->vdev_spa;
2064         vdev_t *lvd;
2065         metaslab_t *msp;
2066         dmu_tx_t *tx;
2067
2068         ASSERT(!vd->vdev_ishole);
2069
2070         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2071                 ASSERT(vd == vd->vdev_top);
2072                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2073                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2074                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2075                 ASSERT(vd->vdev_ms_array != 0);
2076                 vdev_config_dirty(vd);
2077                 dmu_tx_commit(tx);
2078         }
2079
2080         /*
2081          * Remove the metadata associated with this vdev once it's empty.
2082          */
2083         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2084                 vdev_remove(vd, txg);
2085
2086         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2087                 metaslab_sync(msp, txg);
2088                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2089         }
2090
2091         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2092                 vdev_dtl_sync(lvd, txg);
2093
2094         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2095 }
2096
2097 uint64_t
2098 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2099 {
2100         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2101 }
2102
2103 /*
2104  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2105  * not be opened, and no I/O is attempted.
2106  */
2107 int
2108 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2109 {
2110         vdev_t *vd, *tvd;
2111
2112         spa_vdev_state_enter(spa, SCL_NONE);
2113
2114         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2115                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2116
2117         if (!vd->vdev_ops->vdev_op_leaf)
2118                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2119
2120         tvd = vd->vdev_top;
2121
2122         /*
2123          * We don't directly use the aux state here, but if we do a
2124          * vdev_reopen(), we need this value to be present to remember why we
2125          * were faulted.
2126          */
2127         vd->vdev_label_aux = aux;
2128
2129         /*
2130          * Faulted state takes precedence over degraded.
2131          */
2132         vd->vdev_delayed_close = B_FALSE;
2133         vd->vdev_faulted = 1ULL;
2134         vd->vdev_degraded = 0ULL;
2135         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2136
2137         /*
2138          * If this device has the only valid copy of the data, then
2139          * back off and simply mark the vdev as degraded instead.
2140          */
2141         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2142                 vd->vdev_degraded = 1ULL;
2143                 vd->vdev_faulted = 0ULL;
2144
2145                 /*
2146                  * If we reopen the device and it's not dead, only then do we
2147                  * mark it degraded.
2148                  */
2149                 vdev_reopen(tvd);
2150
2151                 if (vdev_readable(vd))
2152                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2153         }
2154
2155         return (spa_vdev_state_exit(spa, vd, 0));
2156 }
2157
2158 /*
2159  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2160  * user that something is wrong.  The vdev continues to operate as normal as far
2161  * as I/O is concerned.
2162  */
2163 int
2164 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2165 {
2166         vdev_t *vd;
2167
2168         spa_vdev_state_enter(spa, SCL_NONE);
2169
2170         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2171                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2172
2173         if (!vd->vdev_ops->vdev_op_leaf)
2174                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2175
2176         /*
2177          * If the vdev is already faulted, then don't do anything.
2178          */
2179         if (vd->vdev_faulted || vd->vdev_degraded)
2180                 return (spa_vdev_state_exit(spa, NULL, 0));
2181
2182         vd->vdev_degraded = 1ULL;
2183         if (!vdev_is_dead(vd))
2184                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2185                     aux);
2186
2187         return (spa_vdev_state_exit(spa, vd, 0));
2188 }
2189
2190 /*
2191  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2192  * any attached spare device should be detached when the device finishes
2193  * resilvering.  Second, the online should be treated like a 'test' online case,
2194  * so no FMA events are generated if the device fails to open.
2195  */
2196 int
2197 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2198 {
2199         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2200
2201         spa_vdev_state_enter(spa, SCL_NONE);
2202
2203         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2204                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2205
2206         if (!vd->vdev_ops->vdev_op_leaf)
2207                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2208
2209         tvd = vd->vdev_top;
2210         vd->vdev_offline = B_FALSE;
2211         vd->vdev_tmpoffline = B_FALSE;
2212         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2213         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2214
2215         /* XXX - L2ARC 1.0 does not support expansion */
2216         if (!vd->vdev_aux) {
2217                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2218                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2219         }
2220
2221         vdev_reopen(tvd);
2222         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2223
2224         if (!vd->vdev_aux) {
2225                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2226                         pvd->vdev_expanding = B_FALSE;
2227         }
2228
2229         if (newstate)
2230                 *newstate = vd->vdev_state;
2231         if ((flags & ZFS_ONLINE_UNSPARE) &&
2232             !vdev_is_dead(vd) && vd->vdev_parent &&
2233             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2234             vd->vdev_parent->vdev_child[0] == vd)
2235                 vd->vdev_unspare = B_TRUE;
2236
2237         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2238
2239                 /* XXX - L2ARC 1.0 does not support expansion */
2240                 if (vd->vdev_aux)
2241                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2242                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2243         }
2244         return (spa_vdev_state_exit(spa, vd, 0));
2245 }
2246
2247 static int
2248 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2249 {
2250         vdev_t *vd, *tvd;
2251         int error = 0;
2252         uint64_t generation;
2253         metaslab_group_t *mg;
2254
2255 top:
2256         spa_vdev_state_enter(spa, SCL_ALLOC);
2257
2258         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2259                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2260
2261         if (!vd->vdev_ops->vdev_op_leaf)
2262                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2263
2264         tvd = vd->vdev_top;
2265         mg = tvd->vdev_mg;
2266         generation = spa->spa_config_generation + 1;
2267
2268         /*
2269          * If the device isn't already offline, try to offline it.
2270          */
2271         if (!vd->vdev_offline) {
2272                 /*
2273                  * If this device has the only valid copy of some data,
2274                  * don't allow it to be offlined. Log devices are always
2275                  * expendable.
2276                  */
2277                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2278                     vdev_dtl_required(vd))
2279                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2280
2281                 /*
2282                  * If the top-level is a slog and it has had allocations
2283                  * then proceed.  We check that the vdev's metaslab group
2284                  * is not NULL since it's possible that we may have just
2285                  * added this vdev but not yet initialized its metaslabs.
2286                  */
2287                 if (tvd->vdev_islog && mg != NULL) {
2288                         /*
2289                          * Prevent any future allocations.
2290                          */
2291                         metaslab_group_passivate(mg);
2292                         (void) spa_vdev_state_exit(spa, vd, 0);
2293
2294                         error = spa_offline_log(spa);
2295
2296                         spa_vdev_state_enter(spa, SCL_ALLOC);
2297
2298                         /*
2299                          * Check to see if the config has changed.
2300                          */
2301                         if (error || generation != spa->spa_config_generation) {
2302                                 metaslab_group_activate(mg);
2303                                 if (error)
2304                                         return (spa_vdev_state_exit(spa,
2305                                             vd, error));
2306                                 (void) spa_vdev_state_exit(spa, vd, 0);
2307                                 goto top;
2308                         }
2309                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2310                 }
2311
2312                 /*
2313                  * Offline this device and reopen its top-level vdev.
2314                  * If the top-level vdev is a log device then just offline
2315                  * it. Otherwise, if this action results in the top-level
2316                  * vdev becoming unusable, undo it and fail the request.
2317                  */
2318                 vd->vdev_offline = B_TRUE;
2319                 vdev_reopen(tvd);
2320
2321                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2322                     vdev_is_dead(tvd)) {
2323                         vd->vdev_offline = B_FALSE;
2324                         vdev_reopen(tvd);
2325                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2326                 }
2327
2328                 /*
2329                  * Add the device back into the metaslab rotor so that
2330                  * once we online the device it's open for business.
2331                  */
2332                 if (tvd->vdev_islog && mg != NULL)
2333                         metaslab_group_activate(mg);
2334         }
2335
2336         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2337
2338         return (spa_vdev_state_exit(spa, vd, 0));
2339 }
2340
2341 int
2342 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2343 {
2344         int error;
2345
2346         mutex_enter(&spa->spa_vdev_top_lock);
2347         error = vdev_offline_locked(spa, guid, flags);
2348         mutex_exit(&spa->spa_vdev_top_lock);
2349
2350         return (error);
2351 }
2352
2353 /*
2354  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2355  * vdev_offline(), we assume the spa config is locked.  We also clear all
2356  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2357  */
2358 void
2359 vdev_clear(spa_t *spa, vdev_t *vd)
2360 {
2361         vdev_t *rvd = spa->spa_root_vdev;
2362         int c;
2363
2364         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2365
2366         if (vd == NULL)
2367                 vd = rvd;
2368
2369         vd->vdev_stat.vs_read_errors = 0;
2370         vd->vdev_stat.vs_write_errors = 0;
2371         vd->vdev_stat.vs_checksum_errors = 0;
2372
2373         for (c = 0; c < vd->vdev_children; c++)
2374                 vdev_clear(spa, vd->vdev_child[c]);
2375
2376         /*
2377          * If we're in the FAULTED state or have experienced failed I/O, then
2378          * clear the persistent state and attempt to reopen the device.  We
2379          * also mark the vdev config dirty, so that the new faulted state is
2380          * written out to disk.
2381          */
2382         if (vd->vdev_faulted || vd->vdev_degraded ||
2383             !vdev_readable(vd) || !vdev_writeable(vd)) {
2384
2385                 /*
2386                  * When reopening in reponse to a clear event, it may be due to
2387                  * a fmadm repair request.  In this case, if the device is
2388                  * still broken, we want to still post the ereport again.
2389                  */
2390                 vd->vdev_forcefault = B_TRUE;
2391
2392                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2393                 vd->vdev_cant_read = B_FALSE;
2394                 vd->vdev_cant_write = B_FALSE;
2395
2396                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2397
2398                 vd->vdev_forcefault = B_FALSE;
2399
2400                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2401                         vdev_state_dirty(vd->vdev_top);
2402
2403                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2404                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2405
2406                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2407         }
2408
2409         /*
2410          * When clearing a FMA-diagnosed fault, we always want to
2411          * unspare the device, as we assume that the original spare was
2412          * done in response to the FMA fault.
2413          */
2414         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2415             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2416             vd->vdev_parent->vdev_child[0] == vd)
2417                 vd->vdev_unspare = B_TRUE;
2418 }
2419
2420 boolean_t
2421 vdev_is_dead(vdev_t *vd)
2422 {
2423         /*
2424          * Holes and missing devices are always considered "dead".
2425          * This simplifies the code since we don't have to check for
2426          * these types of devices in the various code paths.
2427          * Instead we rely on the fact that we skip over dead devices
2428          * before issuing I/O to them.
2429          */
2430         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2431             vd->vdev_ops == &vdev_missing_ops);
2432 }
2433
2434 boolean_t
2435 vdev_readable(vdev_t *vd)
2436 {
2437         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2438 }
2439
2440 boolean_t
2441 vdev_writeable(vdev_t *vd)
2442 {
2443         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2444 }
2445
2446 boolean_t
2447 vdev_allocatable(vdev_t *vd)
2448 {
2449         uint64_t state = vd->vdev_state;
2450
2451         /*
2452          * We currently allow allocations from vdevs which may be in the
2453          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2454          * fails to reopen then we'll catch it later when we're holding
2455          * the proper locks.  Note that we have to get the vdev state
2456          * in a local variable because although it changes atomically,
2457          * we're asking two separate questions about it.
2458          */
2459         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2460             !vd->vdev_cant_write && !vd->vdev_ishole);
2461 }
2462
2463 boolean_t
2464 vdev_accessible(vdev_t *vd, zio_t *zio)
2465 {
2466         ASSERT(zio->io_vd == vd);
2467
2468         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2469                 return (B_FALSE);
2470
2471         if (zio->io_type == ZIO_TYPE_READ)
2472                 return (!vd->vdev_cant_read);
2473
2474         if (zio->io_type == ZIO_TYPE_WRITE)
2475                 return (!vd->vdev_cant_write);
2476
2477         return (B_TRUE);
2478 }
2479
2480 /*
2481  * Get statistics for the given vdev.
2482  */
2483 void
2484 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2485 {
2486         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2487         int c, t;
2488
2489         mutex_enter(&vd->vdev_stat_lock);
2490         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2491         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2492         vs->vs_state = vd->vdev_state;
2493         vs->vs_rsize = vdev_get_min_asize(vd);
2494         if (vd->vdev_ops->vdev_op_leaf)
2495                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2496         mutex_exit(&vd->vdev_stat_lock);
2497
2498         /*
2499          * If we're getting stats on the root vdev, aggregate the I/O counts
2500          * over all top-level vdevs (i.e. the direct children of the root).
2501          */
2502         if (vd == rvd) {
2503                 for (c = 0; c < rvd->vdev_children; c++) {
2504                         vdev_t *cvd = rvd->vdev_child[c];
2505                         vdev_stat_t *cvs = &cvd->vdev_stat;
2506
2507                         mutex_enter(&vd->vdev_stat_lock);
2508                         for (t = 0; t < ZIO_TYPES; t++) {
2509                                 vs->vs_ops[t] += cvs->vs_ops[t];
2510                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2511                         }
2512                         cvs->vs_scan_removing = cvd->vdev_removing;
2513                         mutex_exit(&vd->vdev_stat_lock);
2514                 }
2515         }
2516 }
2517
2518 void
2519 vdev_clear_stats(vdev_t *vd)
2520 {
2521         mutex_enter(&vd->vdev_stat_lock);
2522         vd->vdev_stat.vs_space = 0;
2523         vd->vdev_stat.vs_dspace = 0;
2524         vd->vdev_stat.vs_alloc = 0;
2525         mutex_exit(&vd->vdev_stat_lock);
2526 }
2527
2528 void
2529 vdev_scan_stat_init(vdev_t *vd)
2530 {
2531         vdev_stat_t *vs = &vd->vdev_stat;
2532         int c;
2533
2534         for (c = 0; c < vd->vdev_children; c++)
2535                 vdev_scan_stat_init(vd->vdev_child[c]);
2536
2537         mutex_enter(&vd->vdev_stat_lock);
2538         vs->vs_scan_processed = 0;
2539         mutex_exit(&vd->vdev_stat_lock);
2540 }
2541
2542 void
2543 vdev_stat_update(zio_t *zio, uint64_t psize)
2544 {
2545         spa_t *spa = zio->io_spa;
2546         vdev_t *rvd = spa->spa_root_vdev;
2547         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2548         vdev_t *pvd;
2549         uint64_t txg = zio->io_txg;
2550         vdev_stat_t *vs = &vd->vdev_stat;
2551         zio_type_t type = zio->io_type;
2552         int flags = zio->io_flags;
2553
2554         /*
2555          * If this i/o is a gang leader, it didn't do any actual work.
2556          */
2557         if (zio->io_gang_tree)
2558                 return;
2559
2560         if (zio->io_error == 0) {
2561                 /*
2562                  * If this is a root i/o, don't count it -- we've already
2563                  * counted the top-level vdevs, and vdev_get_stats() will
2564                  * aggregate them when asked.  This reduces contention on
2565                  * the root vdev_stat_lock and implicitly handles blocks
2566                  * that compress away to holes, for which there is no i/o.
2567                  * (Holes never create vdev children, so all the counters
2568                  * remain zero, which is what we want.)
2569                  *
2570                  * Note: this only applies to successful i/o (io_error == 0)
2571                  * because unlike i/o counts, errors are not additive.
2572                  * When reading a ditto block, for example, failure of
2573                  * one top-level vdev does not imply a root-level error.
2574                  */
2575                 if (vd == rvd)
2576                         return;
2577
2578                 ASSERT(vd == zio->io_vd);
2579
2580                 if (flags & ZIO_FLAG_IO_BYPASS)
2581                         return;
2582
2583                 mutex_enter(&vd->vdev_stat_lock);
2584
2585                 if (flags & ZIO_FLAG_IO_REPAIR) {
2586                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2587                                 dsl_scan_phys_t *scn_phys =
2588                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2589                                 uint64_t *processed = &scn_phys->scn_processed;
2590
2591                                 /* XXX cleanup? */
2592                                 if (vd->vdev_ops->vdev_op_leaf)
2593                                         atomic_add_64(processed, psize);
2594                                 vs->vs_scan_processed += psize;
2595                         }
2596
2597                         if (flags & ZIO_FLAG_SELF_HEAL)
2598                                 vs->vs_self_healed += psize;
2599                 }
2600
2601                 vs->vs_ops[type]++;
2602                 vs->vs_bytes[type] += psize;
2603
2604                 mutex_exit(&vd->vdev_stat_lock);
2605                 return;
2606         }
2607
2608         if (flags & ZIO_FLAG_SPECULATIVE)
2609                 return;
2610
2611         /*
2612          * If this is an I/O error that is going to be retried, then ignore the
2613          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2614          * hard errors, when in reality they can happen for any number of
2615          * innocuous reasons (bus resets, MPxIO link failure, etc).
2616          */
2617         if (zio->io_error == EIO &&
2618             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2619                 return;
2620
2621         /*
2622          * Intent logs writes won't propagate their error to the root
2623          * I/O so don't mark these types of failures as pool-level
2624          * errors.
2625          */
2626         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2627                 return;
2628
2629         mutex_enter(&vd->vdev_stat_lock);
2630         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2631                 if (zio->io_error == ECKSUM)
2632                         vs->vs_checksum_errors++;
2633                 else
2634                         vs->vs_read_errors++;
2635         }
2636         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2637                 vs->vs_write_errors++;
2638         mutex_exit(&vd->vdev_stat_lock);
2639
2640         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2641             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2642             (flags & ZIO_FLAG_SCAN_THREAD) ||
2643             spa->spa_claiming)) {
2644                 /*
2645                  * This is either a normal write (not a repair), or it's
2646                  * a repair induced by the scrub thread, or it's a repair
2647                  * made by zil_claim() during spa_load() in the first txg.
2648                  * In the normal case, we commit the DTL change in the same
2649                  * txg as the block was born.  In the scrub-induced repair
2650                  * case, we know that scrubs run in first-pass syncing context,
2651                  * so we commit the DTL change in spa_syncing_txg(spa).
2652                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2653                  *
2654                  * We currently do not make DTL entries for failed spontaneous
2655                  * self-healing writes triggered by normal (non-scrubbing)
2656                  * reads, because we have no transactional context in which to
2657                  * do so -- and it's not clear that it'd be desirable anyway.
2658                  */
2659                 if (vd->vdev_ops->vdev_op_leaf) {
2660                         uint64_t commit_txg = txg;
2661                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2662                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2663                                 ASSERT(spa_sync_pass(spa) == 1);
2664                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2665                                 commit_txg = spa_syncing_txg(spa);
2666                         } else if (spa->spa_claiming) {
2667                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2668                                 commit_txg = spa_first_txg(spa);
2669                         }
2670                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2671                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2672                                 return;
2673                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2674                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2675                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2676                 }
2677                 if (vd != rvd)
2678                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2679         }
2680 }
2681
2682 /*
2683  * Update the in-core space usage stats for this vdev, its metaslab class,
2684  * and the root vdev.
2685  */
2686 void
2687 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2688     int64_t space_delta)
2689 {
2690         int64_t dspace_delta = space_delta;
2691         spa_t *spa = vd->vdev_spa;
2692         vdev_t *rvd = spa->spa_root_vdev;
2693         metaslab_group_t *mg = vd->vdev_mg;
2694         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2695
2696         ASSERT(vd == vd->vdev_top);
2697
2698         /*
2699          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2700          * factor.  We must calculate this here and not at the root vdev
2701          * because the root vdev's psize-to-asize is simply the max of its
2702          * childrens', thus not accurate enough for us.
2703          */
2704         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2705         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2706         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2707             vd->vdev_deflate_ratio;
2708
2709         mutex_enter(&vd->vdev_stat_lock);
2710         vd->vdev_stat.vs_alloc += alloc_delta;
2711         vd->vdev_stat.vs_space += space_delta;
2712         vd->vdev_stat.vs_dspace += dspace_delta;
2713         mutex_exit(&vd->vdev_stat_lock);
2714
2715         if (mc == spa_normal_class(spa)) {
2716                 mutex_enter(&rvd->vdev_stat_lock);
2717                 rvd->vdev_stat.vs_alloc += alloc_delta;
2718                 rvd->vdev_stat.vs_space += space_delta;
2719                 rvd->vdev_stat.vs_dspace += dspace_delta;
2720                 mutex_exit(&rvd->vdev_stat_lock);
2721         }
2722
2723         if (mc != NULL) {
2724                 ASSERT(rvd == vd->vdev_parent);
2725                 ASSERT(vd->vdev_ms_count != 0);
2726
2727                 metaslab_class_space_update(mc,
2728                     alloc_delta, defer_delta, space_delta, dspace_delta);
2729         }
2730 }
2731
2732 /*
2733  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2734  * so that it will be written out next time the vdev configuration is synced.
2735  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2736  */
2737 void
2738 vdev_config_dirty(vdev_t *vd)
2739 {
2740         spa_t *spa = vd->vdev_spa;
2741         vdev_t *rvd = spa->spa_root_vdev;
2742         int c;
2743
2744         ASSERT(spa_writeable(spa));
2745
2746         /*
2747          * If this is an aux vdev (as with l2cache and spare devices), then we
2748          * update the vdev config manually and set the sync flag.
2749          */
2750         if (vd->vdev_aux != NULL) {
2751                 spa_aux_vdev_t *sav = vd->vdev_aux;
2752                 nvlist_t **aux;
2753                 uint_t naux;
2754
2755                 for (c = 0; c < sav->sav_count; c++) {
2756                         if (sav->sav_vdevs[c] == vd)
2757                                 break;
2758                 }
2759
2760                 if (c == sav->sav_count) {
2761                         /*
2762                          * We're being removed.  There's nothing more to do.
2763                          */
2764                         ASSERT(sav->sav_sync == B_TRUE);
2765                         return;
2766                 }
2767
2768                 sav->sav_sync = B_TRUE;
2769
2770                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2771                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2772                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2773                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2774                 }
2775
2776                 ASSERT(c < naux);
2777
2778                 /*
2779                  * Setting the nvlist in the middle if the array is a little
2780                  * sketchy, but it will work.
2781                  */
2782                 nvlist_free(aux[c]);
2783                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2784
2785                 return;
2786         }
2787
2788         /*
2789          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2790          * must either hold SCL_CONFIG as writer, or must be the sync thread
2791          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2792          * so this is sufficient to ensure mutual exclusion.
2793          */
2794         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2795             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2796             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2797
2798         if (vd == rvd) {
2799                 for (c = 0; c < rvd->vdev_children; c++)
2800                         vdev_config_dirty(rvd->vdev_child[c]);
2801         } else {
2802                 ASSERT(vd == vd->vdev_top);
2803
2804                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2805                     !vd->vdev_ishole)
2806                         list_insert_head(&spa->spa_config_dirty_list, vd);
2807         }
2808 }
2809
2810 void
2811 vdev_config_clean(vdev_t *vd)
2812 {
2813         spa_t *spa = vd->vdev_spa;
2814
2815         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2816             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2817             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2818
2819         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2820         list_remove(&spa->spa_config_dirty_list, vd);
2821 }
2822
2823 /*
2824  * Mark a top-level vdev's state as dirty, so that the next pass of
2825  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2826  * the state changes from larger config changes because they require
2827  * much less locking, and are often needed for administrative actions.
2828  */
2829 void
2830 vdev_state_dirty(vdev_t *vd)
2831 {
2832         spa_t *spa = vd->vdev_spa;
2833
2834         ASSERT(spa_writeable(spa));
2835         ASSERT(vd == vd->vdev_top);
2836
2837         /*
2838          * The state list is protected by the SCL_STATE lock.  The caller
2839          * must either hold SCL_STATE as writer, or must be the sync thread
2840          * (which holds SCL_STATE as reader).  There's only one sync thread,
2841          * so this is sufficient to ensure mutual exclusion.
2842          */
2843         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2844             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2845             spa_config_held(spa, SCL_STATE, RW_READER)));
2846
2847         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2848                 list_insert_head(&spa->spa_state_dirty_list, vd);
2849 }
2850
2851 void
2852 vdev_state_clean(vdev_t *vd)
2853 {
2854         spa_t *spa = vd->vdev_spa;
2855
2856         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2857             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2858             spa_config_held(spa, SCL_STATE, RW_READER)));
2859
2860         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2861         list_remove(&spa->spa_state_dirty_list, vd);
2862 }
2863
2864 /*
2865  * Propagate vdev state up from children to parent.
2866  */
2867 void
2868 vdev_propagate_state(vdev_t *vd)
2869 {
2870         spa_t *spa = vd->vdev_spa;
2871         vdev_t *rvd = spa->spa_root_vdev;
2872         int degraded = 0, faulted = 0;
2873         int corrupted = 0;
2874         vdev_t *child;
2875         int c;
2876
2877         if (vd->vdev_children > 0) {
2878                 for (c = 0; c < vd->vdev_children; c++) {
2879                         child = vd->vdev_child[c];
2880
2881                         /*
2882                          * Don't factor holes into the decision.
2883                          */
2884                         if (child->vdev_ishole)
2885                                 continue;
2886
2887                         if (!vdev_readable(child) ||
2888                             (!vdev_writeable(child) && spa_writeable(spa))) {
2889                                 /*
2890                                  * Root special: if there is a top-level log
2891                                  * device, treat the root vdev as if it were
2892                                  * degraded.
2893                                  */
2894                                 if (child->vdev_islog && vd == rvd)
2895                                         degraded++;
2896                                 else
2897                                         faulted++;
2898                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2899                                 degraded++;
2900                         }
2901
2902                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2903                                 corrupted++;
2904                 }
2905
2906                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2907
2908                 /*
2909                  * Root special: if there is a top-level vdev that cannot be
2910                  * opened due to corrupted metadata, then propagate the root
2911                  * vdev's aux state as 'corrupt' rather than 'insufficient
2912                  * replicas'.
2913                  */
2914                 if (corrupted && vd == rvd &&
2915                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2916                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2917                             VDEV_AUX_CORRUPT_DATA);
2918         }
2919
2920         if (vd->vdev_parent)
2921                 vdev_propagate_state(vd->vdev_parent);
2922 }
2923
2924 /*
2925  * Set a vdev's state.  If this is during an open, we don't update the parent
2926  * state, because we're in the process of opening children depth-first.
2927  * Otherwise, we propagate the change to the parent.
2928  *
2929  * If this routine places a device in a faulted state, an appropriate ereport is
2930  * generated.
2931  */
2932 void
2933 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2934 {
2935         uint64_t save_state;
2936         spa_t *spa = vd->vdev_spa;
2937
2938         if (state == vd->vdev_state) {
2939                 vd->vdev_stat.vs_aux = aux;
2940                 return;
2941         }
2942
2943         save_state = vd->vdev_state;
2944
2945         vd->vdev_state = state;
2946         vd->vdev_stat.vs_aux = aux;
2947
2948         /*
2949          * If we are setting the vdev state to anything but an open state, then
2950          * always close the underlying device unless the device has requested
2951          * a delayed close (i.e. we're about to remove or fault the device).
2952          * Otherwise, we keep accessible but invalid devices open forever.
2953          * We don't call vdev_close() itself, because that implies some extra
2954          * checks (offline, etc) that we don't want here.  This is limited to
2955          * leaf devices, because otherwise closing the device will affect other
2956          * children.
2957          */
2958         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2959             vd->vdev_ops->vdev_op_leaf)
2960                 vd->vdev_ops->vdev_op_close(vd);
2961
2962         /*
2963          * If we have brought this vdev back into service, we need
2964          * to notify fmd so that it can gracefully repair any outstanding
2965          * cases due to a missing device.  We do this in all cases, even those
2966          * that probably don't correlate to a repaired fault.  This is sure to
2967          * catch all cases, and we let the zfs-retire agent sort it out.  If
2968          * this is a transient state it's OK, as the retire agent will
2969          * double-check the state of the vdev before repairing it.
2970          */
2971         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2972             vd->vdev_prevstate != state)
2973                 zfs_post_state_change(spa, vd);
2974
2975         if (vd->vdev_removed &&
2976             state == VDEV_STATE_CANT_OPEN &&
2977             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2978                 /*
2979                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2980                  * device was previously marked removed and someone attempted to
2981                  * reopen it.  If this failed due to a nonexistent device, then
2982                  * keep the device in the REMOVED state.  We also let this be if
2983                  * it is one of our special test online cases, which is only
2984                  * attempting to online the device and shouldn't generate an FMA
2985                  * fault.
2986                  */
2987                 vd->vdev_state = VDEV_STATE_REMOVED;
2988                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2989         } else if (state == VDEV_STATE_REMOVED) {
2990                 vd->vdev_removed = B_TRUE;
2991         } else if (state == VDEV_STATE_CANT_OPEN) {
2992                 /*
2993                  * If we fail to open a vdev during an import or recovery, we
2994                  * mark it as "not available", which signifies that it was
2995                  * never there to begin with.  Failure to open such a device
2996                  * is not considered an error.
2997                  */
2998                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2999                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3000                     vd->vdev_ops->vdev_op_leaf)
3001                         vd->vdev_not_present = 1;
3002
3003                 /*
3004                  * Post the appropriate ereport.  If the 'prevstate' field is
3005                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3006                  * that this is part of a vdev_reopen().  In this case, we don't
3007                  * want to post the ereport if the device was already in the
3008                  * CANT_OPEN state beforehand.
3009                  *
3010                  * If the 'checkremove' flag is set, then this is an attempt to
3011                  * online the device in response to an insertion event.  If we
3012                  * hit this case, then we have detected an insertion event for a
3013                  * faulted or offline device that wasn't in the removed state.
3014                  * In this scenario, we don't post an ereport because we are
3015                  * about to replace the device, or attempt an online with
3016                  * vdev_forcefault, which will generate the fault for us.
3017                  */
3018                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3019                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3020                     vd != spa->spa_root_vdev) {
3021                         const char *class;
3022
3023                         switch (aux) {
3024                         case VDEV_AUX_OPEN_FAILED:
3025                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3026                                 break;
3027                         case VDEV_AUX_CORRUPT_DATA:
3028                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3029                                 break;
3030                         case VDEV_AUX_NO_REPLICAS:
3031                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3032                                 break;
3033                         case VDEV_AUX_BAD_GUID_SUM:
3034                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3035                                 break;
3036                         case VDEV_AUX_TOO_SMALL:
3037                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3038                                 break;
3039                         case VDEV_AUX_BAD_LABEL:
3040                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3041                                 break;
3042                         default:
3043                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3044                         }
3045
3046                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3047                 }
3048
3049                 /* Erase any notion of persistent removed state */
3050                 vd->vdev_removed = B_FALSE;
3051         } else {
3052                 vd->vdev_removed = B_FALSE;
3053         }
3054
3055         if (!isopen && vd->vdev_parent)
3056                 vdev_propagate_state(vd->vdev_parent);
3057 }
3058
3059 /*
3060  * Check the vdev configuration to ensure that it's capable of supporting
3061  * a root pool.
3062  */
3063 boolean_t
3064 vdev_is_bootable(vdev_t *vd)
3065 {
3066 #if defined(__sun__) || defined(__sun)
3067         /*
3068          * Currently, we do not support RAID-Z or partial configuration.
3069          * In addition, only a single top-level vdev is allowed and none of the
3070          * leaves can be wholedisks.
3071          */
3072         int c;
3073
3074         if (!vd->vdev_ops->vdev_op_leaf) {
3075                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3076
3077                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3078                     vd->vdev_children > 1) {
3079                         return (B_FALSE);
3080                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3081                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3082                         return (B_FALSE);
3083                 }
3084         } else if (vd->vdev_wholedisk == 1) {
3085                 return (B_FALSE);
3086         }
3087
3088         for (c = 0; c < vd->vdev_children; c++) {
3089                 if (!vdev_is_bootable(vd->vdev_child[c]))
3090                         return (B_FALSE);
3091         }
3092 #endif /* __sun__ || __sun */
3093         return (B_TRUE);
3094 }
3095
3096 /*
3097  * Load the state from the original vdev tree (ovd) which
3098  * we've retrieved from the MOS config object. If the original
3099  * vdev was offline or faulted then we transfer that state to the
3100  * device in the current vdev tree (nvd).
3101  */
3102 void
3103 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3104 {
3105         int c;
3106
3107         ASSERT(nvd->vdev_top->vdev_islog);
3108         ASSERT(spa_config_held(nvd->vdev_spa,
3109             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3110         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3111
3112         for (c = 0; c < nvd->vdev_children; c++)
3113                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3114
3115         if (nvd->vdev_ops->vdev_op_leaf) {
3116                 /*
3117                  * Restore the persistent vdev state
3118                  */
3119                 nvd->vdev_offline = ovd->vdev_offline;
3120                 nvd->vdev_faulted = ovd->vdev_faulted;
3121                 nvd->vdev_degraded = ovd->vdev_degraded;
3122                 nvd->vdev_removed = ovd->vdev_removed;
3123         }
3124 }
3125
3126 /*
3127  * Determine if a log device has valid content.  If the vdev was
3128  * removed or faulted in the MOS config then we know that
3129  * the content on the log device has already been written to the pool.
3130  */
3131 boolean_t
3132 vdev_log_state_valid(vdev_t *vd)
3133 {
3134         int c;
3135
3136         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3137             !vd->vdev_removed)
3138                 return (B_TRUE);
3139
3140         for (c = 0; c < vd->vdev_children; c++)
3141                 if (vdev_log_state_valid(vd->vdev_child[c]))
3142                         return (B_TRUE);
3143
3144         return (B_FALSE);
3145 }
3146
3147 /*
3148  * Expand a vdev if possible.
3149  */
3150 void
3151 vdev_expand(vdev_t *vd, uint64_t txg)
3152 {
3153         ASSERT(vd->vdev_top == vd);
3154         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3155
3156         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3157                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3158                 vdev_config_dirty(vd);
3159         }
3160 }
3161
3162 /*
3163  * Split a vdev.
3164  */
3165 void
3166 vdev_split(vdev_t *vd)
3167 {
3168         vdev_t *cvd, *pvd = vd->vdev_parent;
3169
3170         vdev_remove_child(pvd, vd);
3171         vdev_compact_children(pvd);
3172
3173         cvd = pvd->vdev_child[0];
3174         if (pvd->vdev_children == 1) {
3175                 vdev_remove_parent(cvd);
3176                 cvd->vdev_splitting = B_TRUE;
3177         }
3178         vdev_propagate_state(cvd);
3179 }
3180
3181 #if defined(_KERNEL) && defined(HAVE_SPL)
3182 EXPORT_SYMBOL(vdev_fault);
3183 EXPORT_SYMBOL(vdev_degrade);
3184 EXPORT_SYMBOL(vdev_online);
3185 EXPORT_SYMBOL(vdev_offline);
3186 EXPORT_SYMBOL(vdev_clear);
3187
3188 module_param(zfs_scrub_limit, int, 0644);
3189 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3190 #endif