Update core ZFS code from build 121 to build 141.
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88
89         for (int c = 0; c < vd->vdev_children; c++) {
90                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91                 asize = MAX(asize, csize);
92         }
93
94         return (asize);
95 }
96
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106         vdev_t *pvd = vd->vdev_parent;
107
108         /*
109          * The our parent is NULL (inactive spare or cache) or is the root,
110          * just return our own asize.
111          */
112         if (pvd == NULL)
113                 return (vd->vdev_asize);
114
115         /*
116          * The top-level vdev just returns the allocatable size rounded
117          * to the nearest metaslab.
118          */
119         if (vd == vd->vdev_top)
120                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121
122         /*
123          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124          * so each child must provide at least 1/Nth of its asize.
125          */
126         if (pvd->vdev_ops == &vdev_raidz_ops)
127                 return (pvd->vdev_min_asize / pvd->vdev_children);
128
129         return (pvd->vdev_min_asize);
130 }
131
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135         vd->vdev_min_asize = vdev_get_min_asize(vd);
136
137         for (int c = 0; c < vd->vdev_children; c++)
138                 vdev_set_min_asize(vd->vdev_child[c]);
139 }
140
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144         vdev_t *rvd = spa->spa_root_vdev;
145
146         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147
148         if (vdev < rvd->vdev_children) {
149                 ASSERT(rvd->vdev_child[vdev] != NULL);
150                 return (rvd->vdev_child[vdev]);
151         }
152
153         return (NULL);
154 }
155
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159         vdev_t *mvd;
160
161         if (vd->vdev_guid == guid)
162                 return (vd);
163
164         for (int c = 0; c < vd->vdev_children; c++)
165                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166                     NULL)
167                         return (mvd);
168
169         return (NULL);
170 }
171
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175         size_t oldsize, newsize;
176         uint64_t id = cvd->vdev_id;
177         vdev_t **newchild;
178
179         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180         ASSERT(cvd->vdev_parent == NULL);
181
182         cvd->vdev_parent = pvd;
183
184         if (pvd == NULL)
185                 return;
186
187         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189         oldsize = pvd->vdev_children * sizeof (vdev_t *);
190         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191         newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193         newchild = kmem_zalloc(newsize, KM_SLEEP);
194         if (pvd->vdev_child != NULL) {
195                 bcopy(pvd->vdev_child, newchild, oldsize);
196                 kmem_free(pvd->vdev_child, oldsize);
197         }
198
199         pvd->vdev_child = newchild;
200         pvd->vdev_child[id] = cvd;
201
202         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205         /*
206          * Walk up all ancestors to update guid sum.
207          */
208         for (; pvd != NULL; pvd = pvd->vdev_parent)
209                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210
211         if (cvd->vdev_ops->vdev_op_leaf)
212                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247
248         if (cvd->vdev_ops->vdev_op_leaf)
249                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251
252 /*
253  * Remove any holes in the child array.
254  */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258         vdev_t **newchild, *cvd;
259         int oldc = pvd->vdev_children;
260         int newc;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (int c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269
270         for (int c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289
290         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291
292         if (spa->spa_root_vdev == NULL) {
293                 ASSERT(ops == &vdev_root_ops);
294                 spa->spa_root_vdev = vd;
295         }
296
297         if (guid == 0 && ops != &vdev_hole_ops) {
298                 if (spa->spa_root_vdev == vd) {
299                         /*
300                          * The root vdev's guid will also be the pool guid,
301                          * which must be unique among all pools.
302                          */
303                         guid = spa_generate_guid(NULL);
304                 } else {
305                         /*
306                          * Any other vdev's guid must be unique within the pool.
307                          */
308                         guid = spa_generate_guid(spa);
309                 }
310                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311         }
312
313         vd->vdev_spa = spa;
314         vd->vdev_id = id;
315         vd->vdev_guid = guid;
316         vd->vdev_guid_sum = guid;
317         vd->vdev_ops = ops;
318         vd->vdev_state = VDEV_STATE_CLOSED;
319         vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
322         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
324         for (int t = 0; t < DTL_TYPES; t++) {
325                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
326                     &vd->vdev_dtl_lock);
327         }
328         txg_list_create(&vd->vdev_ms_list,
329             offsetof(struct metaslab, ms_txg_node));
330         txg_list_create(&vd->vdev_dtl_list,
331             offsetof(struct vdev, vdev_dtl_node));
332         vd->vdev_stat.vs_timestamp = gethrtime();
333         vdev_queue_init(vd);
334         vdev_cache_init(vd);
335
336         return (vd);
337 }
338
339 /*
340  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
341  * creating a new vdev or loading an existing one - the behavior is slightly
342  * different for each case.
343  */
344 int
345 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
346     int alloctype)
347 {
348         vdev_ops_t *ops;
349         char *type;
350         uint64_t guid = 0, islog, nparity;
351         vdev_t *vd;
352
353         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
354
355         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
356                 return (EINVAL);
357
358         if ((ops = vdev_getops(type)) == NULL)
359                 return (EINVAL);
360
361         /*
362          * If this is a load, get the vdev guid from the nvlist.
363          * Otherwise, vdev_alloc_common() will generate one for us.
364          */
365         if (alloctype == VDEV_ALLOC_LOAD) {
366                 uint64_t label_id;
367
368                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
369                     label_id != id)
370                         return (EINVAL);
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373                         return (EINVAL);
374         } else if (alloctype == VDEV_ALLOC_SPARE) {
375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376                         return (EINVAL);
377         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
378                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379                         return (EINVAL);
380         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
381                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382                         return (EINVAL);
383         }
384
385         /*
386          * The first allocated vdev must be of type 'root'.
387          */
388         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
389                 return (EINVAL);
390
391         /*
392          * Determine whether we're a log vdev.
393          */
394         islog = 0;
395         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
396         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
397                 return (ENOTSUP);
398
399         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
400                 return (ENOTSUP);
401
402         /*
403          * Set the nparity property for RAID-Z vdevs.
404          */
405         nparity = -1ULL;
406         if (ops == &vdev_raidz_ops) {
407                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408                     &nparity) == 0) {
409                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
410                                 return (EINVAL);
411                         /*
412                          * Previous versions could only support 1 or 2 parity
413                          * device.
414                          */
415                         if (nparity > 1 &&
416                             spa_version(spa) < SPA_VERSION_RAIDZ2)
417                                 return (ENOTSUP);
418                         if (nparity > 2 &&
419                             spa_version(spa) < SPA_VERSION_RAIDZ3)
420                                 return (ENOTSUP);
421                 } else {
422                         /*
423                          * We require the parity to be specified for SPAs that
424                          * support multiple parity levels.
425                          */
426                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
427                                 return (EINVAL);
428                         /*
429                          * Otherwise, we default to 1 parity device for RAID-Z.
430                          */
431                         nparity = 1;
432                 }
433         } else {
434                 nparity = 0;
435         }
436         ASSERT(nparity != -1ULL);
437
438         vd = vdev_alloc_common(spa, id, guid, ops);
439
440         vd->vdev_islog = islog;
441         vd->vdev_nparity = nparity;
442
443         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444                 vd->vdev_path = spa_strdup(vd->vdev_path);
445         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448             &vd->vdev_physpath) == 0)
449                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
452
453         /*
454          * Set the whole_disk property.  If it's not specified, leave the value
455          * as -1.
456          */
457         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458             &vd->vdev_wholedisk) != 0)
459                 vd->vdev_wholedisk = -1ULL;
460
461         /*
462          * Look for the 'not present' flag.  This will only be set if the device
463          * was not present at the time of import.
464          */
465         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466             &vd->vdev_not_present);
467
468         /*
469          * Get the alignment requirement.
470          */
471         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472
473         /*
474          * Retrieve the vdev creation time.
475          */
476         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
477             &vd->vdev_crtxg);
478
479         /*
480          * If we're a top-level vdev, try to load the allocation parameters.
481          */
482         if (parent && !parent->vdev_parent &&
483             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
484                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
485                     &vd->vdev_ms_array);
486                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
487                     &vd->vdev_ms_shift);
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
489                     &vd->vdev_asize);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
491                     &vd->vdev_removing);
492         }
493
494         if (parent && !parent->vdev_parent) {
495                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
496                     alloctype == VDEV_ALLOC_ADD ||
497                     alloctype == VDEV_ALLOC_SPLIT ||
498                     alloctype == VDEV_ALLOC_ROOTPOOL);
499                 vd->vdev_mg = metaslab_group_create(islog ?
500                     spa_log_class(spa) : spa_normal_class(spa), vd);
501         }
502
503         /*
504          * If we're a leaf vdev, try to load the DTL object and other state.
505          */
506         if (vd->vdev_ops->vdev_op_leaf &&
507             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
508             alloctype == VDEV_ALLOC_ROOTPOOL)) {
509                 if (alloctype == VDEV_ALLOC_LOAD) {
510                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
511                             &vd->vdev_dtl_smo.smo_object);
512                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
513                             &vd->vdev_unspare);
514                 }
515
516                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
517                         uint64_t spare = 0;
518
519                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
520                             &spare) == 0 && spare)
521                                 spa_spare_add(vd);
522                 }
523
524                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
525                     &vd->vdev_offline);
526
527                 /*
528                  * When importing a pool, we want to ignore the persistent fault
529                  * state, as the diagnosis made on another system may not be
530                  * valid in the current context.  Local vdevs will
531                  * remain in the faulted state.
532                  */
533                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535                             &vd->vdev_faulted);
536                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537                             &vd->vdev_degraded);
538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539                             &vd->vdev_removed);
540
541                         if (vd->vdev_faulted || vd->vdev_degraded) {
542                                 char *aux;
543
544                                 vd->vdev_label_aux =
545                                     VDEV_AUX_ERR_EXCEEDED;
546                                 if (nvlist_lookup_string(nv,
547                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548                                     strcmp(aux, "external") == 0)
549                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550                         }
551                 }
552         }
553
554         /*
555          * Add ourselves to the parent's list of children.
556          */
557         vdev_add_child(parent, vd);
558
559         *vdp = vd;
560
561         return (0);
562 }
563
564 void
565 vdev_free(vdev_t *vd)
566 {
567         spa_t *spa = vd->vdev_spa;
568
569         /*
570          * vdev_free() implies closing the vdev first.  This is simpler than
571          * trying to ensure complicated semantics for all callers.
572          */
573         vdev_close(vd);
574
575         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577
578         /*
579          * Free all children.
580          */
581         for (int c = 0; c < vd->vdev_children; c++)
582                 vdev_free(vd->vdev_child[c]);
583
584         ASSERT(vd->vdev_child == NULL);
585         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586
587         /*
588          * Discard allocation state.
589          */
590         if (vd->vdev_mg != NULL) {
591                 vdev_metaslab_fini(vd);
592                 metaslab_group_destroy(vd->vdev_mg);
593         }
594
595         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
598
599         /*
600          * Remove this vdev from its parent's child list.
601          */
602         vdev_remove_child(vd->vdev_parent, vd);
603
604         ASSERT(vd->vdev_parent == NULL);
605
606         /*
607          * Clean up vdev structure.
608          */
609         vdev_queue_fini(vd);
610         vdev_cache_fini(vd);
611
612         if (vd->vdev_path)
613                 spa_strfree(vd->vdev_path);
614         if (vd->vdev_devid)
615                 spa_strfree(vd->vdev_devid);
616         if (vd->vdev_physpath)
617                 spa_strfree(vd->vdev_physpath);
618         if (vd->vdev_fru)
619                 spa_strfree(vd->vdev_fru);
620
621         if (vd->vdev_isspare)
622                 spa_spare_remove(vd);
623         if (vd->vdev_isl2cache)
624                 spa_l2cache_remove(vd);
625
626         txg_list_destroy(&vd->vdev_ms_list);
627         txg_list_destroy(&vd->vdev_dtl_list);
628
629         mutex_enter(&vd->vdev_dtl_lock);
630         for (int t = 0; t < DTL_TYPES; t++) {
631                 space_map_unload(&vd->vdev_dtl[t]);
632                 space_map_destroy(&vd->vdev_dtl[t]);
633         }
634         mutex_exit(&vd->vdev_dtl_lock);
635
636         mutex_destroy(&vd->vdev_dtl_lock);
637         mutex_destroy(&vd->vdev_stat_lock);
638         mutex_destroy(&vd->vdev_probe_lock);
639
640         if (vd == spa->spa_root_vdev)
641                 spa->spa_root_vdev = NULL;
642
643         kmem_free(vd, sizeof (vdev_t));
644 }
645
646 /*
647  * Transfer top-level vdev state from svd to tvd.
648  */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652         spa_t *spa = svd->vdev_spa;
653         metaslab_t *msp;
654         vdev_t *vd;
655         int t;
656
657         ASSERT(tvd == tvd->vdev_top);
658
659         tvd->vdev_ms_array = svd->vdev_ms_array;
660         tvd->vdev_ms_shift = svd->vdev_ms_shift;
661         tvd->vdev_ms_count = svd->vdev_ms_count;
662
663         svd->vdev_ms_array = 0;
664         svd->vdev_ms_shift = 0;
665         svd->vdev_ms_count = 0;
666
667         tvd->vdev_mg = svd->vdev_mg;
668         tvd->vdev_ms = svd->vdev_ms;
669
670         svd->vdev_mg = NULL;
671         svd->vdev_ms = NULL;
672
673         if (tvd->vdev_mg != NULL)
674                 tvd->vdev_mg->mg_vd = tvd;
675
676         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
677         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
678         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
679
680         svd->vdev_stat.vs_alloc = 0;
681         svd->vdev_stat.vs_space = 0;
682         svd->vdev_stat.vs_dspace = 0;
683
684         for (t = 0; t < TXG_SIZE; t++) {
685                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
686                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
687                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
688                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
689                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
690                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
691         }
692
693         if (list_link_active(&svd->vdev_config_dirty_node)) {
694                 vdev_config_clean(svd);
695                 vdev_config_dirty(tvd);
696         }
697
698         if (list_link_active(&svd->vdev_state_dirty_node)) {
699                 vdev_state_clean(svd);
700                 vdev_state_dirty(tvd);
701         }
702
703         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
704         svd->vdev_deflate_ratio = 0;
705
706         tvd->vdev_islog = svd->vdev_islog;
707         svd->vdev_islog = 0;
708 }
709
710 static void
711 vdev_top_update(vdev_t *tvd, vdev_t *vd)
712 {
713         if (vd == NULL)
714                 return;
715
716         vd->vdev_top = tvd;
717
718         for (int c = 0; c < vd->vdev_children; c++)
719                 vdev_top_update(tvd, vd->vdev_child[c]);
720 }
721
722 /*
723  * Add a mirror/replacing vdev above an existing vdev.
724  */
725 vdev_t *
726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
727 {
728         spa_t *spa = cvd->vdev_spa;
729         vdev_t *pvd = cvd->vdev_parent;
730         vdev_t *mvd;
731
732         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
733
734         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
735
736         mvd->vdev_asize = cvd->vdev_asize;
737         mvd->vdev_min_asize = cvd->vdev_min_asize;
738         mvd->vdev_ashift = cvd->vdev_ashift;
739         mvd->vdev_state = cvd->vdev_state;
740         mvd->vdev_crtxg = cvd->vdev_crtxg;
741
742         vdev_remove_child(pvd, cvd);
743         vdev_add_child(pvd, mvd);
744         cvd->vdev_id = mvd->vdev_children;
745         vdev_add_child(mvd, cvd);
746         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
747
748         if (mvd == mvd->vdev_top)
749                 vdev_top_transfer(cvd, mvd);
750
751         return (mvd);
752 }
753
754 /*
755  * Remove a 1-way mirror/replacing vdev from the tree.
756  */
757 void
758 vdev_remove_parent(vdev_t *cvd)
759 {
760         vdev_t *mvd = cvd->vdev_parent;
761         vdev_t *pvd = mvd->vdev_parent;
762
763         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
764
765         ASSERT(mvd->vdev_children == 1);
766         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
767             mvd->vdev_ops == &vdev_replacing_ops ||
768             mvd->vdev_ops == &vdev_spare_ops);
769         cvd->vdev_ashift = mvd->vdev_ashift;
770
771         vdev_remove_child(mvd, cvd);
772         vdev_remove_child(pvd, mvd);
773
774         /*
775          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
776          * Otherwise, we could have detached an offline device, and when we
777          * go to import the pool we'll think we have two top-level vdevs,
778          * instead of a different version of the same top-level vdev.
779          */
780         if (mvd->vdev_top == mvd) {
781                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
782                 cvd->vdev_orig_guid = cvd->vdev_guid;
783                 cvd->vdev_guid += guid_delta;
784                 cvd->vdev_guid_sum += guid_delta;
785         }
786         cvd->vdev_id = mvd->vdev_id;
787         vdev_add_child(pvd, cvd);
788         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
789
790         if (cvd == cvd->vdev_top)
791                 vdev_top_transfer(mvd, cvd);
792
793         ASSERT(mvd->vdev_children == 0);
794         vdev_free(mvd);
795 }
796
797 int
798 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
799 {
800         spa_t *spa = vd->vdev_spa;
801         objset_t *mos = spa->spa_meta_objset;
802         uint64_t m;
803         uint64_t oldc = vd->vdev_ms_count;
804         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
805         metaslab_t **mspp;
806         int error;
807
808         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
809
810         /*
811          * This vdev is not being allocated from yet or is a hole.
812          */
813         if (vd->vdev_ms_shift == 0)
814                 return (0);
815
816         ASSERT(!vd->vdev_ishole);
817
818         /*
819          * Compute the raidz-deflation ratio.  Note, we hard-code
820          * in 128k (1 << 17) because it is the current "typical" blocksize.
821          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
822          * or we will inconsistently account for existing bp's.
823          */
824         vd->vdev_deflate_ratio = (1 << 17) /
825             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
826
827         ASSERT(oldc <= newc);
828
829         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
830
831         if (oldc != 0) {
832                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
833                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
834         }
835
836         vd->vdev_ms = mspp;
837         vd->vdev_ms_count = newc;
838
839         for (m = oldc; m < newc; m++) {
840                 space_map_obj_t smo = { 0, 0, 0 };
841                 if (txg == 0) {
842                         uint64_t object = 0;
843                         error = dmu_read(mos, vd->vdev_ms_array,
844                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
845                             DMU_READ_PREFETCH);
846                         if (error)
847                                 return (error);
848                         if (object != 0) {
849                                 dmu_buf_t *db;
850                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
851                                 if (error)
852                                         return (error);
853                                 ASSERT3U(db->db_size, >=, sizeof (smo));
854                                 bcopy(db->db_data, &smo, sizeof (smo));
855                                 ASSERT3U(smo.smo_object, ==, object);
856                                 dmu_buf_rele(db, FTAG);
857                         }
858                 }
859                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
860                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
861         }
862
863         if (txg == 0)
864                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
865
866         /*
867          * If the vdev is being removed we don't activate
868          * the metaslabs since we want to ensure that no new
869          * allocations are performed on this device.
870          */
871         if (oldc == 0 && !vd->vdev_removing)
872                 metaslab_group_activate(vd->vdev_mg);
873
874         if (txg == 0)
875                 spa_config_exit(spa, SCL_ALLOC, FTAG);
876
877         return (0);
878 }
879
880 void
881 vdev_metaslab_fini(vdev_t *vd)
882 {
883         uint64_t m;
884         uint64_t count = vd->vdev_ms_count;
885
886         if (vd->vdev_ms != NULL) {
887                 metaslab_group_passivate(vd->vdev_mg);
888                 for (m = 0; m < count; m++)
889                         if (vd->vdev_ms[m] != NULL)
890                                 metaslab_fini(vd->vdev_ms[m]);
891                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
892                 vd->vdev_ms = NULL;
893         }
894 }
895
896 typedef struct vdev_probe_stats {
897         boolean_t       vps_readable;
898         boolean_t       vps_writeable;
899         int             vps_flags;
900 } vdev_probe_stats_t;
901
902 static void
903 vdev_probe_done(zio_t *zio)
904 {
905         spa_t *spa = zio->io_spa;
906         vdev_t *vd = zio->io_vd;
907         vdev_probe_stats_t *vps = zio->io_private;
908
909         ASSERT(vd->vdev_probe_zio != NULL);
910
911         if (zio->io_type == ZIO_TYPE_READ) {
912                 if (zio->io_error == 0)
913                         vps->vps_readable = 1;
914                 if (zio->io_error == 0 && spa_writeable(spa)) {
915                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
916                             zio->io_offset, zio->io_size, zio->io_data,
917                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
918                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
919                 } else {
920                         zio_buf_free(zio->io_data, zio->io_size);
921                 }
922         } else if (zio->io_type == ZIO_TYPE_WRITE) {
923                 if (zio->io_error == 0)
924                         vps->vps_writeable = 1;
925                 zio_buf_free(zio->io_data, zio->io_size);
926         } else if (zio->io_type == ZIO_TYPE_NULL) {
927                 zio_t *pio;
928
929                 vd->vdev_cant_read |= !vps->vps_readable;
930                 vd->vdev_cant_write |= !vps->vps_writeable;
931
932                 if (vdev_readable(vd) &&
933                     (vdev_writeable(vd) || !spa_writeable(spa))) {
934                         zio->io_error = 0;
935                 } else {
936                         ASSERT(zio->io_error != 0);
937                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
938                             spa, vd, NULL, 0, 0);
939                         zio->io_error = ENXIO;
940                 }
941
942                 mutex_enter(&vd->vdev_probe_lock);
943                 ASSERT(vd->vdev_probe_zio == zio);
944                 vd->vdev_probe_zio = NULL;
945                 mutex_exit(&vd->vdev_probe_lock);
946
947                 while ((pio = zio_walk_parents(zio)) != NULL)
948                         if (!vdev_accessible(vd, pio))
949                                 pio->io_error = ENXIO;
950
951                 kmem_free(vps, sizeof (*vps));
952         }
953 }
954
955 /*
956  * Determine whether this device is accessible by reading and writing
957  * to several known locations: the pad regions of each vdev label
958  * but the first (which we leave alone in case it contains a VTOC).
959  */
960 zio_t *
961 vdev_probe(vdev_t *vd, zio_t *zio)
962 {
963         spa_t *spa = vd->vdev_spa;
964         vdev_probe_stats_t *vps = NULL;
965         zio_t *pio;
966
967         ASSERT(vd->vdev_ops->vdev_op_leaf);
968
969         /*
970          * Don't probe the probe.
971          */
972         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
973                 return (NULL);
974
975         /*
976          * To prevent 'probe storms' when a device fails, we create
977          * just one probe i/o at a time.  All zios that want to probe
978          * this vdev will become parents of the probe io.
979          */
980         mutex_enter(&vd->vdev_probe_lock);
981
982         if ((pio = vd->vdev_probe_zio) == NULL) {
983                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
984
985                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
986                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
987                     ZIO_FLAG_TRYHARD;
988
989                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
990                         /*
991                          * vdev_cant_read and vdev_cant_write can only
992                          * transition from TRUE to FALSE when we have the
993                          * SCL_ZIO lock as writer; otherwise they can only
994                          * transition from FALSE to TRUE.  This ensures that
995                          * any zio looking at these values can assume that
996                          * failures persist for the life of the I/O.  That's
997                          * important because when a device has intermittent
998                          * connectivity problems, we want to ensure that
999                          * they're ascribed to the device (ENXIO) and not
1000                          * the zio (EIO).
1001                          *
1002                          * Since we hold SCL_ZIO as writer here, clear both
1003                          * values so the probe can reevaluate from first
1004                          * principles.
1005                          */
1006                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1007                         vd->vdev_cant_read = B_FALSE;
1008                         vd->vdev_cant_write = B_FALSE;
1009                 }
1010
1011                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1012                     vdev_probe_done, vps,
1013                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1014
1015                 /*
1016                  * We can't change the vdev state in this context, so we
1017                  * kick off an async task to do it on our behalf.
1018                  */
1019                 if (zio != NULL) {
1020                         vd->vdev_probe_wanted = B_TRUE;
1021                         spa_async_request(spa, SPA_ASYNC_PROBE);
1022                 }
1023         }
1024
1025         if (zio != NULL)
1026                 zio_add_child(zio, pio);
1027
1028         mutex_exit(&vd->vdev_probe_lock);
1029
1030         if (vps == NULL) {
1031                 ASSERT(zio != NULL);
1032                 return (NULL);
1033         }
1034
1035         for (int l = 1; l < VDEV_LABELS; l++) {
1036                 zio_nowait(zio_read_phys(pio, vd,
1037                     vdev_label_offset(vd->vdev_psize, l,
1038                     offsetof(vdev_label_t, vl_pad2)),
1039                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1040                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1041                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1042         }
1043
1044         if (zio == NULL)
1045                 return (pio);
1046
1047         zio_nowait(pio);
1048         return (NULL);
1049 }
1050
1051 static void
1052 vdev_open_child(void *arg)
1053 {
1054         vdev_t *vd = arg;
1055
1056         vd->vdev_open_thread = curthread;
1057         vd->vdev_open_error = vdev_open(vd);
1058         vd->vdev_open_thread = NULL;
1059 }
1060
1061 boolean_t
1062 vdev_uses_zvols(vdev_t *vd)
1063 {
1064         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1065             strlen(ZVOL_DIR)) == 0)
1066                 return (B_TRUE);
1067         for (int c = 0; c < vd->vdev_children; c++)
1068                 if (vdev_uses_zvols(vd->vdev_child[c]))
1069                         return (B_TRUE);
1070         return (B_FALSE);
1071 }
1072
1073 void
1074 vdev_open_children(vdev_t *vd)
1075 {
1076         taskq_t *tq;
1077         int children = vd->vdev_children;
1078
1079         /*
1080          * in order to handle pools on top of zvols, do the opens
1081          * in a single thread so that the same thread holds the
1082          * spa_namespace_lock
1083          */
1084         if (vdev_uses_zvols(vd)) {
1085                 for (int c = 0; c < children; c++)
1086                         vd->vdev_child[c]->vdev_open_error =
1087                             vdev_open(vd->vdev_child[c]);
1088                 return;
1089         }
1090         tq = taskq_create("vdev_open", children, minclsyspri,
1091             children, children, TASKQ_PREPOPULATE);
1092
1093         for (int c = 0; c < children; c++)
1094                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1095                     TQ_SLEEP) != NULL);
1096
1097         taskq_destroy(tq);
1098 }
1099
1100 /*
1101  * Prepare a virtual device for access.
1102  */
1103 int
1104 vdev_open(vdev_t *vd)
1105 {
1106         spa_t *spa = vd->vdev_spa;
1107         int error;
1108         uint64_t osize = 0;
1109         uint64_t asize, psize;
1110         uint64_t ashift = 0;
1111
1112         ASSERT(vd->vdev_open_thread == curthread ||
1113             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1114         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1115             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1116             vd->vdev_state == VDEV_STATE_OFFLINE);
1117
1118         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1119         vd->vdev_cant_read = B_FALSE;
1120         vd->vdev_cant_write = B_FALSE;
1121         vd->vdev_min_asize = vdev_get_min_asize(vd);
1122
1123         /*
1124          * If this vdev is not removed, check its fault status.  If it's
1125          * faulted, bail out of the open.
1126          */
1127         if (!vd->vdev_removed && vd->vdev_faulted) {
1128                 ASSERT(vd->vdev_children == 0);
1129                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1130                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1131                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1132                     vd->vdev_label_aux);
1133                 return (ENXIO);
1134         } else if (vd->vdev_offline) {
1135                 ASSERT(vd->vdev_children == 0);
1136                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1137                 return (ENXIO);
1138         }
1139
1140         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1141
1142         /*
1143          * Reset the vdev_reopening flag so that we actually close
1144          * the vdev on error.
1145          */
1146         vd->vdev_reopening = B_FALSE;
1147         if (zio_injection_enabled && error == 0)
1148                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1149
1150         if (error) {
1151                 if (vd->vdev_removed &&
1152                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1153                         vd->vdev_removed = B_FALSE;
1154
1155                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156                     vd->vdev_stat.vs_aux);
1157                 return (error);
1158         }
1159
1160         vd->vdev_removed = B_FALSE;
1161
1162         /*
1163          * Recheck the faulted flag now that we have confirmed that
1164          * the vdev is accessible.  If we're faulted, bail.
1165          */
1166         if (vd->vdev_faulted) {
1167                 ASSERT(vd->vdev_children == 0);
1168                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171                     vd->vdev_label_aux);
1172                 return (ENXIO);
1173         }
1174
1175         if (vd->vdev_degraded) {
1176                 ASSERT(vd->vdev_children == 0);
1177                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1178                     VDEV_AUX_ERR_EXCEEDED);
1179         } else {
1180                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1181         }
1182
1183         /*
1184          * For hole or missing vdevs we just return success.
1185          */
1186         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1187                 return (0);
1188
1189         for (int c = 0; c < vd->vdev_children; c++) {
1190                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1191                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1192                             VDEV_AUX_NONE);
1193                         break;
1194                 }
1195         }
1196
1197         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1198
1199         if (vd->vdev_children == 0) {
1200                 if (osize < SPA_MINDEVSIZE) {
1201                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1202                             VDEV_AUX_TOO_SMALL);
1203                         return (EOVERFLOW);
1204                 }
1205                 psize = osize;
1206                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1207         } else {
1208                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1209                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1210                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1211                             VDEV_AUX_TOO_SMALL);
1212                         return (EOVERFLOW);
1213                 }
1214                 psize = 0;
1215                 asize = osize;
1216         }
1217
1218         vd->vdev_psize = psize;
1219
1220         /*
1221          * Make sure the allocatable size hasn't shrunk.
1222          */
1223         if (asize < vd->vdev_min_asize) {
1224                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225                     VDEV_AUX_BAD_LABEL);
1226                 return (EINVAL);
1227         }
1228
1229         if (vd->vdev_asize == 0) {
1230                 /*
1231                  * This is the first-ever open, so use the computed values.
1232                  * For testing purposes, a higher ashift can be requested.
1233                  */
1234                 vd->vdev_asize = asize;
1235                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1236         } else {
1237                 /*
1238                  * Make sure the alignment requirement hasn't increased.
1239                  */
1240                 if (ashift > vd->vdev_top->vdev_ashift) {
1241                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242                             VDEV_AUX_BAD_LABEL);
1243                         return (EINVAL);
1244                 }
1245         }
1246
1247         /*
1248          * If all children are healthy and the asize has increased,
1249          * then we've experienced dynamic LUN growth.  If automatic
1250          * expansion is enabled then use the additional space.
1251          */
1252         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1253             (vd->vdev_expanding || spa->spa_autoexpand))
1254                 vd->vdev_asize = asize;
1255
1256         vdev_set_min_asize(vd);
1257
1258         /*
1259          * Ensure we can issue some IO before declaring the
1260          * vdev open for business.
1261          */
1262         if (vd->vdev_ops->vdev_op_leaf &&
1263             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1264                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1265                     VDEV_AUX_ERR_EXCEEDED);
1266                 return (error);
1267         }
1268
1269         /*
1270          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1271          * resilver.  But don't do this if we are doing a reopen for a scrub,
1272          * since this would just restart the scrub we are already doing.
1273          */
1274         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1275             vdev_resilver_needed(vd, NULL, NULL))
1276                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1277
1278         return (0);
1279 }
1280
1281 /*
1282  * Called once the vdevs are all opened, this routine validates the label
1283  * contents.  This needs to be done before vdev_load() so that we don't
1284  * inadvertently do repair I/Os to the wrong device.
1285  *
1286  * This function will only return failure if one of the vdevs indicates that it
1287  * has since been destroyed or exported.  This is only possible if
1288  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1289  * will be updated but the function will return 0.
1290  */
1291 int
1292 vdev_validate(vdev_t *vd)
1293 {
1294         spa_t *spa = vd->vdev_spa;
1295         nvlist_t *label;
1296         uint64_t guid = 0, top_guid;
1297         uint64_t state;
1298
1299         for (int c = 0; c < vd->vdev_children; c++)
1300                 if (vdev_validate(vd->vdev_child[c]) != 0)
1301                         return (EBADF);
1302
1303         /*
1304          * If the device has already failed, or was marked offline, don't do
1305          * any further validation.  Otherwise, label I/O will fail and we will
1306          * overwrite the previous state.
1307          */
1308         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1309                 uint64_t aux_guid = 0;
1310                 nvlist_t *nvl;
1311
1312                 if ((label = vdev_label_read_config(vd)) == NULL) {
1313                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314                             VDEV_AUX_BAD_LABEL);
1315                         return (0);
1316                 }
1317
1318                 /*
1319                  * Determine if this vdev has been split off into another
1320                  * pool.  If so, then refuse to open it.
1321                  */
1322                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1323                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1324                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325                             VDEV_AUX_SPLIT_POOL);
1326                         nvlist_free(label);
1327                         return (0);
1328                 }
1329
1330                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1331                     &guid) != 0 || guid != spa_guid(spa)) {
1332                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333                             VDEV_AUX_CORRUPT_DATA);
1334                         nvlist_free(label);
1335                         return (0);
1336                 }
1337
1338                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1339                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1340                     &aux_guid) != 0)
1341                         aux_guid = 0;
1342
1343                 /*
1344                  * If this vdev just became a top-level vdev because its
1345                  * sibling was detached, it will have adopted the parent's
1346                  * vdev guid -- but the label may or may not be on disk yet.
1347                  * Fortunately, either version of the label will have the
1348                  * same top guid, so if we're a top-level vdev, we can
1349                  * safely compare to that instead.
1350                  *
1351                  * If we split this vdev off instead, then we also check the
1352                  * original pool's guid.  We don't want to consider the vdev
1353                  * corrupt if it is partway through a split operation.
1354                  */
1355                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1356                     &guid) != 0 ||
1357                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1358                     &top_guid) != 0 ||
1359                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1360                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1361                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362                             VDEV_AUX_CORRUPT_DATA);
1363                         nvlist_free(label);
1364                         return (0);
1365                 }
1366
1367                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1368                     &state) != 0) {
1369                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370                             VDEV_AUX_CORRUPT_DATA);
1371                         nvlist_free(label);
1372                         return (0);
1373                 }
1374
1375                 nvlist_free(label);
1376
1377                 /*
1378                  * If spa->spa_load_verbatim is true, no need to check the
1379                  * state of the pool.
1380                  */
1381                 if (!spa->spa_load_verbatim &&
1382                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1383                     state != POOL_STATE_ACTIVE)
1384                         return (EBADF);
1385
1386                 /*
1387                  * If we were able to open and validate a vdev that was
1388                  * previously marked permanently unavailable, clear that state
1389                  * now.
1390                  */
1391                 if (vd->vdev_not_present)
1392                         vd->vdev_not_present = 0;
1393         }
1394
1395         return (0);
1396 }
1397
1398 /*
1399  * Close a virtual device.
1400  */
1401 void
1402 vdev_close(vdev_t *vd)
1403 {
1404         spa_t *spa = vd->vdev_spa;
1405         vdev_t *pvd = vd->vdev_parent;
1406
1407         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1408
1409         /*
1410          * If our parent is reopening, then we are as well, unless we are
1411          * going offline.
1412          */
1413         if (pvd != NULL && pvd->vdev_reopening)
1414                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1415
1416         vd->vdev_ops->vdev_op_close(vd);
1417
1418         vdev_cache_purge(vd);
1419
1420         /*
1421          * We record the previous state before we close it, so that if we are
1422          * doing a reopen(), we don't generate FMA ereports if we notice that
1423          * it's still faulted.
1424          */
1425         vd->vdev_prevstate = vd->vdev_state;
1426
1427         if (vd->vdev_offline)
1428                 vd->vdev_state = VDEV_STATE_OFFLINE;
1429         else
1430                 vd->vdev_state = VDEV_STATE_CLOSED;
1431         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1432 }
1433
1434 void
1435 vdev_hold(vdev_t *vd)
1436 {
1437         spa_t *spa = vd->vdev_spa;
1438
1439         ASSERT(spa_is_root(spa));
1440         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1441                 return;
1442
1443         for (int c = 0; c < vd->vdev_children; c++)
1444                 vdev_hold(vd->vdev_child[c]);
1445
1446         if (vd->vdev_ops->vdev_op_leaf)
1447                 vd->vdev_ops->vdev_op_hold(vd);
1448 }
1449
1450 void
1451 vdev_rele(vdev_t *vd)
1452 {
1453         spa_t *spa = vd->vdev_spa;
1454
1455         ASSERT(spa_is_root(spa));
1456         for (int c = 0; c < vd->vdev_children; c++)
1457                 vdev_rele(vd->vdev_child[c]);
1458
1459         if (vd->vdev_ops->vdev_op_leaf)
1460                 vd->vdev_ops->vdev_op_rele(vd);
1461 }
1462
1463 /*
1464  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1465  * reopen leaf vdevs which had previously been opened as they might deadlock
1466  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1467  * If the leaf has never been opened then open it, as usual.
1468  */
1469 void
1470 vdev_reopen(vdev_t *vd)
1471 {
1472         spa_t *spa = vd->vdev_spa;
1473
1474         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1475
1476         /* set the reopening flag unless we're taking the vdev offline */
1477         vd->vdev_reopening = !vd->vdev_offline;
1478         vdev_close(vd);
1479         (void) vdev_open(vd);
1480
1481         /*
1482          * Call vdev_validate() here to make sure we have the same device.
1483          * Otherwise, a device with an invalid label could be successfully
1484          * opened in response to vdev_reopen().
1485          */
1486         if (vd->vdev_aux) {
1487                 (void) vdev_validate_aux(vd);
1488                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1489                     vd->vdev_aux == &spa->spa_l2cache &&
1490                     !l2arc_vdev_present(vd))
1491                         l2arc_add_vdev(spa, vd);
1492         } else {
1493                 (void) vdev_validate(vd);
1494         }
1495
1496         /*
1497          * Reassess parent vdev's health.
1498          */
1499         vdev_propagate_state(vd);
1500 }
1501
1502 int
1503 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1504 {
1505         int error;
1506
1507         /*
1508          * Normally, partial opens (e.g. of a mirror) are allowed.
1509          * For a create, however, we want to fail the request if
1510          * there are any components we can't open.
1511          */
1512         error = vdev_open(vd);
1513
1514         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1515                 vdev_close(vd);
1516                 return (error ? error : ENXIO);
1517         }
1518
1519         /*
1520          * Recursively initialize all labels.
1521          */
1522         if ((error = vdev_label_init(vd, txg, isreplacing ?
1523             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1524                 vdev_close(vd);
1525                 return (error);
1526         }
1527
1528         return (0);
1529 }
1530
1531 void
1532 vdev_metaslab_set_size(vdev_t *vd)
1533 {
1534         /*
1535          * Aim for roughly 200 metaslabs per vdev.
1536          */
1537         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1538         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1539 }
1540
1541 void
1542 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1543 {
1544         ASSERT(vd == vd->vdev_top);
1545         ASSERT(!vd->vdev_ishole);
1546         ASSERT(ISP2(flags));
1547
1548         if (flags & VDD_METASLAB)
1549                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1550
1551         if (flags & VDD_DTL)
1552                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1553
1554         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1555 }
1556
1557 /*
1558  * DTLs.
1559  *
1560  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1561  * the vdev has less than perfect replication.  There are four kinds of DTL:
1562  *
1563  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1564  *
1565  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1566  *
1567  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1568  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1569  *      txgs that was scrubbed.
1570  *
1571  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1572  *      persistent errors or just some device being offline.
1573  *      Unlike the other three, the DTL_OUTAGE map is not generally
1574  *      maintained; it's only computed when needed, typically to
1575  *      determine whether a device can be detached.
1576  *
1577  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1578  * either has the data or it doesn't.
1579  *
1580  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1581  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1582  * if any child is less than fully replicated, then so is its parent.
1583  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1584  * comprising only those txgs which appear in 'maxfaults' or more children;
1585  * those are the txgs we don't have enough replication to read.  For example,
1586  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1587  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1588  * two child DTL_MISSING maps.
1589  *
1590  * It should be clear from the above that to compute the DTLs and outage maps
1591  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1592  * Therefore, that is all we keep on disk.  When loading the pool, or after
1593  * a configuration change, we generate all other DTLs from first principles.
1594  */
1595 void
1596 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1597 {
1598         space_map_t *sm = &vd->vdev_dtl[t];
1599
1600         ASSERT(t < DTL_TYPES);
1601         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1602
1603         mutex_enter(sm->sm_lock);
1604         if (!space_map_contains(sm, txg, size))
1605                 space_map_add(sm, txg, size);
1606         mutex_exit(sm->sm_lock);
1607 }
1608
1609 boolean_t
1610 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1611 {
1612         space_map_t *sm = &vd->vdev_dtl[t];
1613         boolean_t dirty = B_FALSE;
1614
1615         ASSERT(t < DTL_TYPES);
1616         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1617
1618         mutex_enter(sm->sm_lock);
1619         if (sm->sm_space != 0)
1620                 dirty = space_map_contains(sm, txg, size);
1621         mutex_exit(sm->sm_lock);
1622
1623         return (dirty);
1624 }
1625
1626 boolean_t
1627 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1628 {
1629         space_map_t *sm = &vd->vdev_dtl[t];
1630         boolean_t empty;
1631
1632         mutex_enter(sm->sm_lock);
1633         empty = (sm->sm_space == 0);
1634         mutex_exit(sm->sm_lock);
1635
1636         return (empty);
1637 }
1638
1639 /*
1640  * Reassess DTLs after a config change or scrub completion.
1641  */
1642 void
1643 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1644 {
1645         spa_t *spa = vd->vdev_spa;
1646         avl_tree_t reftree;
1647         int minref;
1648
1649         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1650
1651         for (int c = 0; c < vd->vdev_children; c++)
1652                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1653                     scrub_txg, scrub_done);
1654
1655         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1656                 return;
1657
1658         if (vd->vdev_ops->vdev_op_leaf) {
1659                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1660
1661                 mutex_enter(&vd->vdev_dtl_lock);
1662                 if (scrub_txg != 0 &&
1663                     (spa->spa_scrub_started ||
1664                     (scn && scn->scn_phys.scn_errors == 0))) {
1665                         /*
1666                          * We completed a scrub up to scrub_txg.  If we
1667                          * did it without rebooting, then the scrub dtl
1668                          * will be valid, so excise the old region and
1669                          * fold in the scrub dtl.  Otherwise, leave the
1670                          * dtl as-is if there was an error.
1671                          *
1672                          * There's little trick here: to excise the beginning
1673                          * of the DTL_MISSING map, we put it into a reference
1674                          * tree and then add a segment with refcnt -1 that
1675                          * covers the range [0, scrub_txg).  This means
1676                          * that each txg in that range has refcnt -1 or 0.
1677                          * We then add DTL_SCRUB with a refcnt of 2, so that
1678                          * entries in the range [0, scrub_txg) will have a
1679                          * positive refcnt -- either 1 or 2.  We then convert
1680                          * the reference tree into the new DTL_MISSING map.
1681                          */
1682                         space_map_ref_create(&reftree);
1683                         space_map_ref_add_map(&reftree,
1684                             &vd->vdev_dtl[DTL_MISSING], 1);
1685                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1686                         space_map_ref_add_map(&reftree,
1687                             &vd->vdev_dtl[DTL_SCRUB], 2);
1688                         space_map_ref_generate_map(&reftree,
1689                             &vd->vdev_dtl[DTL_MISSING], 1);
1690                         space_map_ref_destroy(&reftree);
1691                 }
1692                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1693                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1694                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1695                 if (scrub_done)
1696                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1697                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1698                 if (!vdev_readable(vd))
1699                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1700                 else
1701                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1702                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1703                 mutex_exit(&vd->vdev_dtl_lock);
1704
1705                 if (txg != 0)
1706                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1707                 return;
1708         }
1709
1710         mutex_enter(&vd->vdev_dtl_lock);
1711         for (int t = 0; t < DTL_TYPES; t++) {
1712                 /* account for child's outage in parent's missing map */
1713                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1714                 if (t == DTL_SCRUB)
1715                         continue;                       /* leaf vdevs only */
1716                 if (t == DTL_PARTIAL)
1717                         minref = 1;                     /* i.e. non-zero */
1718                 else if (vd->vdev_nparity != 0)
1719                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1720                 else
1721                         minref = vd->vdev_children;     /* any kind of mirror */
1722                 space_map_ref_create(&reftree);
1723                 for (int c = 0; c < vd->vdev_children; c++) {
1724                         vdev_t *cvd = vd->vdev_child[c];
1725                         mutex_enter(&cvd->vdev_dtl_lock);
1726                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1727                         mutex_exit(&cvd->vdev_dtl_lock);
1728                 }
1729                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1730                 space_map_ref_destroy(&reftree);
1731         }
1732         mutex_exit(&vd->vdev_dtl_lock);
1733 }
1734
1735 static int
1736 vdev_dtl_load(vdev_t *vd)
1737 {
1738         spa_t *spa = vd->vdev_spa;
1739         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1740         objset_t *mos = spa->spa_meta_objset;
1741         dmu_buf_t *db;
1742         int error;
1743
1744         ASSERT(vd->vdev_children == 0);
1745
1746         if (smo->smo_object == 0)
1747                 return (0);
1748
1749         ASSERT(!vd->vdev_ishole);
1750
1751         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1752                 return (error);
1753
1754         ASSERT3U(db->db_size, >=, sizeof (*smo));
1755         bcopy(db->db_data, smo, sizeof (*smo));
1756         dmu_buf_rele(db, FTAG);
1757
1758         mutex_enter(&vd->vdev_dtl_lock);
1759         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1760             NULL, SM_ALLOC, smo, mos);
1761         mutex_exit(&vd->vdev_dtl_lock);
1762
1763         return (error);
1764 }
1765
1766 void
1767 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1768 {
1769         spa_t *spa = vd->vdev_spa;
1770         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1771         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1772         objset_t *mos = spa->spa_meta_objset;
1773         space_map_t smsync;
1774         kmutex_t smlock;
1775         dmu_buf_t *db;
1776         dmu_tx_t *tx;
1777
1778         ASSERT(!vd->vdev_ishole);
1779
1780         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1781
1782         if (vd->vdev_detached) {
1783                 if (smo->smo_object != 0) {
1784                         int err = dmu_object_free(mos, smo->smo_object, tx);
1785                         ASSERT3U(err, ==, 0);
1786                         smo->smo_object = 0;
1787                 }
1788                 dmu_tx_commit(tx);
1789                 return;
1790         }
1791
1792         if (smo->smo_object == 0) {
1793                 ASSERT(smo->smo_objsize == 0);
1794                 ASSERT(smo->smo_alloc == 0);
1795                 smo->smo_object = dmu_object_alloc(mos,
1796                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1797                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1798                 ASSERT(smo->smo_object != 0);
1799                 vdev_config_dirty(vd->vdev_top);
1800         }
1801
1802         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1803
1804         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1805             &smlock);
1806
1807         mutex_enter(&smlock);
1808
1809         mutex_enter(&vd->vdev_dtl_lock);
1810         space_map_walk(sm, space_map_add, &smsync);
1811         mutex_exit(&vd->vdev_dtl_lock);
1812
1813         space_map_truncate(smo, mos, tx);
1814         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1815
1816         space_map_destroy(&smsync);
1817
1818         mutex_exit(&smlock);
1819         mutex_destroy(&smlock);
1820
1821         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1822         dmu_buf_will_dirty(db, tx);
1823         ASSERT3U(db->db_size, >=, sizeof (*smo));
1824         bcopy(smo, db->db_data, sizeof (*smo));
1825         dmu_buf_rele(db, FTAG);
1826
1827         dmu_tx_commit(tx);
1828 }
1829
1830 /*
1831  * Determine whether the specified vdev can be offlined/detached/removed
1832  * without losing data.
1833  */
1834 boolean_t
1835 vdev_dtl_required(vdev_t *vd)
1836 {
1837         spa_t *spa = vd->vdev_spa;
1838         vdev_t *tvd = vd->vdev_top;
1839         uint8_t cant_read = vd->vdev_cant_read;
1840         boolean_t required;
1841
1842         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1843
1844         if (vd == spa->spa_root_vdev || vd == tvd)
1845                 return (B_TRUE);
1846
1847         /*
1848          * Temporarily mark the device as unreadable, and then determine
1849          * whether this results in any DTL outages in the top-level vdev.
1850          * If not, we can safely offline/detach/remove the device.
1851          */
1852         vd->vdev_cant_read = B_TRUE;
1853         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1854         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1855         vd->vdev_cant_read = cant_read;
1856         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1857
1858         return (required);
1859 }
1860
1861 /*
1862  * Determine if resilver is needed, and if so the txg range.
1863  */
1864 boolean_t
1865 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1866 {
1867         boolean_t needed = B_FALSE;
1868         uint64_t thismin = UINT64_MAX;
1869         uint64_t thismax = 0;
1870
1871         if (vd->vdev_children == 0) {
1872                 mutex_enter(&vd->vdev_dtl_lock);
1873                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1874                     vdev_writeable(vd)) {
1875                         space_seg_t *ss;
1876
1877                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1878                         thismin = ss->ss_start - 1;
1879                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1880                         thismax = ss->ss_end;
1881                         needed = B_TRUE;
1882                 }
1883                 mutex_exit(&vd->vdev_dtl_lock);
1884         } else {
1885                 for (int c = 0; c < vd->vdev_children; c++) {
1886                         vdev_t *cvd = vd->vdev_child[c];
1887                         uint64_t cmin, cmax;
1888
1889                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1890                                 thismin = MIN(thismin, cmin);
1891                                 thismax = MAX(thismax, cmax);
1892                                 needed = B_TRUE;
1893                         }
1894                 }
1895         }
1896
1897         if (needed && minp) {
1898                 *minp = thismin;
1899                 *maxp = thismax;
1900         }
1901         return (needed);
1902 }
1903
1904 void
1905 vdev_load(vdev_t *vd)
1906 {
1907         /*
1908          * Recursively load all children.
1909          */
1910         for (int c = 0; c < vd->vdev_children; c++)
1911                 vdev_load(vd->vdev_child[c]);
1912
1913         /*
1914          * If this is a top-level vdev, initialize its metaslabs.
1915          */
1916         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1917             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1918             vdev_metaslab_init(vd, 0) != 0))
1919                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1920                     VDEV_AUX_CORRUPT_DATA);
1921
1922         /*
1923          * If this is a leaf vdev, load its DTL.
1924          */
1925         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1926                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1927                     VDEV_AUX_CORRUPT_DATA);
1928 }
1929
1930 /*
1931  * The special vdev case is used for hot spares and l2cache devices.  Its
1932  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1933  * we make sure that we can open the underlying device, then try to read the
1934  * label, and make sure that the label is sane and that it hasn't been
1935  * repurposed to another pool.
1936  */
1937 int
1938 vdev_validate_aux(vdev_t *vd)
1939 {
1940         nvlist_t *label;
1941         uint64_t guid, version;
1942         uint64_t state;
1943
1944         if (!vdev_readable(vd))
1945                 return (0);
1946
1947         if ((label = vdev_label_read_config(vd)) == NULL) {
1948                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1949                     VDEV_AUX_CORRUPT_DATA);
1950                 return (-1);
1951         }
1952
1953         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1954             version > SPA_VERSION ||
1955             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1956             guid != vd->vdev_guid ||
1957             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1958                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1959                     VDEV_AUX_CORRUPT_DATA);
1960                 nvlist_free(label);
1961                 return (-1);
1962         }
1963
1964         /*
1965          * We don't actually check the pool state here.  If it's in fact in
1966          * use by another pool, we update this fact on the fly when requested.
1967          */
1968         nvlist_free(label);
1969         return (0);
1970 }
1971
1972 void
1973 vdev_remove(vdev_t *vd, uint64_t txg)
1974 {
1975         spa_t *spa = vd->vdev_spa;
1976         objset_t *mos = spa->spa_meta_objset;
1977         dmu_tx_t *tx;
1978
1979         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1980
1981         if (vd->vdev_dtl_smo.smo_object) {
1982                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1983                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1984                 vd->vdev_dtl_smo.smo_object = 0;
1985         }
1986
1987         if (vd->vdev_ms != NULL) {
1988                 for (int m = 0; m < vd->vdev_ms_count; m++) {
1989                         metaslab_t *msp = vd->vdev_ms[m];
1990
1991                         if (msp == NULL || msp->ms_smo.smo_object == 0)
1992                                 continue;
1993
1994                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1995                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1996                         msp->ms_smo.smo_object = 0;
1997                 }
1998         }
1999
2000         if (vd->vdev_ms_array) {
2001                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2002                 vd->vdev_ms_array = 0;
2003                 vd->vdev_ms_shift = 0;
2004         }
2005         dmu_tx_commit(tx);
2006 }
2007
2008 void
2009 vdev_sync_done(vdev_t *vd, uint64_t txg)
2010 {
2011         metaslab_t *msp;
2012         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2013
2014         ASSERT(!vd->vdev_ishole);
2015
2016         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2017                 metaslab_sync_done(msp, txg);
2018
2019         if (reassess)
2020                 metaslab_sync_reassess(vd->vdev_mg);
2021 }
2022
2023 void
2024 vdev_sync(vdev_t *vd, uint64_t txg)
2025 {
2026         spa_t *spa = vd->vdev_spa;
2027         vdev_t *lvd;
2028         metaslab_t *msp;
2029         dmu_tx_t *tx;
2030
2031         ASSERT(!vd->vdev_ishole);
2032
2033         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2034                 ASSERT(vd == vd->vdev_top);
2035                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2036                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2037                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2038                 ASSERT(vd->vdev_ms_array != 0);
2039                 vdev_config_dirty(vd);
2040                 dmu_tx_commit(tx);
2041         }
2042
2043         /*
2044          * Remove the metadata associated with this vdev once it's empty.
2045          */
2046         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2047                 vdev_remove(vd, txg);
2048
2049         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2050                 metaslab_sync(msp, txg);
2051                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2052         }
2053
2054         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2055                 vdev_dtl_sync(lvd, txg);
2056
2057         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2058 }
2059
2060 uint64_t
2061 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2062 {
2063         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2064 }
2065
2066 /*
2067  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2068  * not be opened, and no I/O is attempted.
2069  */
2070 int
2071 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2072 {
2073         vdev_t *vd;
2074
2075         spa_vdev_state_enter(spa, SCL_NONE);
2076
2077         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2078                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2079
2080         if (!vd->vdev_ops->vdev_op_leaf)
2081                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2082
2083         /*
2084          * We don't directly use the aux state here, but if we do a
2085          * vdev_reopen(), we need this value to be present to remember why we
2086          * were faulted.
2087          */
2088         vd->vdev_label_aux = aux;
2089
2090         /*
2091          * Faulted state takes precedence over degraded.
2092          */
2093         vd->vdev_delayed_close = B_FALSE;
2094         vd->vdev_faulted = 1ULL;
2095         vd->vdev_degraded = 0ULL;
2096         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2097
2098         /*
2099          * If this device has the only valid copy of the data, then
2100          * back off and simply mark the vdev as degraded instead.
2101          */
2102         if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2103                 vd->vdev_degraded = 1ULL;
2104                 vd->vdev_faulted = 0ULL;
2105
2106                 /*
2107                  * If we reopen the device and it's not dead, only then do we
2108                  * mark it degraded.
2109                  */
2110                 vdev_reopen(vd);
2111
2112                 if (vdev_readable(vd))
2113                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2114         }
2115
2116         return (spa_vdev_state_exit(spa, vd, 0));
2117 }
2118
2119 /*
2120  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2121  * user that something is wrong.  The vdev continues to operate as normal as far
2122  * as I/O is concerned.
2123  */
2124 int
2125 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2126 {
2127         vdev_t *vd;
2128
2129         spa_vdev_state_enter(spa, SCL_NONE);
2130
2131         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2132                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2133
2134         if (!vd->vdev_ops->vdev_op_leaf)
2135                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2136
2137         /*
2138          * If the vdev is already faulted, then don't do anything.
2139          */
2140         if (vd->vdev_faulted || vd->vdev_degraded)
2141                 return (spa_vdev_state_exit(spa, NULL, 0));
2142
2143         vd->vdev_degraded = 1ULL;
2144         if (!vdev_is_dead(vd))
2145                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2146                     aux);
2147
2148         return (spa_vdev_state_exit(spa, vd, 0));
2149 }
2150
2151 /*
2152  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2153  * any attached spare device should be detached when the device finishes
2154  * resilvering.  Second, the online should be treated like a 'test' online case,
2155  * so no FMA events are generated if the device fails to open.
2156  */
2157 int
2158 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2159 {
2160         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2161
2162         spa_vdev_state_enter(spa, SCL_NONE);
2163
2164         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2165                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2166
2167         if (!vd->vdev_ops->vdev_op_leaf)
2168                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2169
2170         tvd = vd->vdev_top;
2171         vd->vdev_offline = B_FALSE;
2172         vd->vdev_tmpoffline = B_FALSE;
2173         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2174         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2175
2176         /* XXX - L2ARC 1.0 does not support expansion */
2177         if (!vd->vdev_aux) {
2178                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2179                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2180         }
2181
2182         vdev_reopen(tvd);
2183         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2184
2185         if (!vd->vdev_aux) {
2186                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2187                         pvd->vdev_expanding = B_FALSE;
2188         }
2189
2190         if (newstate)
2191                 *newstate = vd->vdev_state;
2192         if ((flags & ZFS_ONLINE_UNSPARE) &&
2193             !vdev_is_dead(vd) && vd->vdev_parent &&
2194             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2195             vd->vdev_parent->vdev_child[0] == vd)
2196                 vd->vdev_unspare = B_TRUE;
2197
2198         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2199
2200                 /* XXX - L2ARC 1.0 does not support expansion */
2201                 if (vd->vdev_aux)
2202                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2203                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2204         }
2205         return (spa_vdev_state_exit(spa, vd, 0));
2206 }
2207
2208 static int
2209 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2210 {
2211         vdev_t *vd, *tvd;
2212         int error = 0;
2213         uint64_t generation;
2214         metaslab_group_t *mg;
2215
2216 top:
2217         spa_vdev_state_enter(spa, SCL_ALLOC);
2218
2219         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2220                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2221
2222         if (!vd->vdev_ops->vdev_op_leaf)
2223                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2224
2225         tvd = vd->vdev_top;
2226         mg = tvd->vdev_mg;
2227         generation = spa->spa_config_generation + 1;
2228
2229         /*
2230          * If the device isn't already offline, try to offline it.
2231          */
2232         if (!vd->vdev_offline) {
2233                 /*
2234                  * If this device has the only valid copy of some data,
2235                  * don't allow it to be offlined. Log devices are always
2236                  * expendable.
2237                  */
2238                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2239                     vdev_dtl_required(vd))
2240                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2241
2242                 /*
2243                  * If the top-level is a slog and it has had allocations
2244                  * then proceed.  We check that the vdev's metaslab group
2245                  * is not NULL since it's possible that we may have just
2246                  * added this vdev but not yet initialized its metaslabs.
2247                  */
2248                 if (tvd->vdev_islog && mg != NULL) {
2249                         /*
2250                          * Prevent any future allocations.
2251                          */
2252                         metaslab_group_passivate(mg);
2253                         (void) spa_vdev_state_exit(spa, vd, 0);
2254
2255                         error = spa_offline_log(spa);
2256
2257                         spa_vdev_state_enter(spa, SCL_ALLOC);
2258
2259                         /*
2260                          * Check to see if the config has changed.
2261                          */
2262                         if (error || generation != spa->spa_config_generation) {
2263                                 metaslab_group_activate(mg);
2264                                 if (error)
2265                                         return (spa_vdev_state_exit(spa,
2266                                             vd, error));
2267                                 (void) spa_vdev_state_exit(spa, vd, 0);
2268                                 goto top;
2269                         }
2270                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2271                 }
2272
2273                 /*
2274                  * Offline this device and reopen its top-level vdev.
2275                  * If the top-level vdev is a log device then just offline
2276                  * it. Otherwise, if this action results in the top-level
2277                  * vdev becoming unusable, undo it and fail the request.
2278                  */
2279                 vd->vdev_offline = B_TRUE;
2280                 vdev_reopen(tvd);
2281
2282                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2283                     vdev_is_dead(tvd)) {
2284                         vd->vdev_offline = B_FALSE;
2285                         vdev_reopen(tvd);
2286                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2287                 }
2288
2289                 /*
2290                  * Add the device back into the metaslab rotor so that
2291                  * once we online the device it's open for business.
2292                  */
2293                 if (tvd->vdev_islog && mg != NULL)
2294                         metaslab_group_activate(mg);
2295         }
2296
2297         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2298
2299         return (spa_vdev_state_exit(spa, vd, 0));
2300 }
2301
2302 int
2303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2304 {
2305         int error;
2306
2307         mutex_enter(&spa->spa_vdev_top_lock);
2308         error = vdev_offline_locked(spa, guid, flags);
2309         mutex_exit(&spa->spa_vdev_top_lock);
2310
2311         return (error);
2312 }
2313
2314 /*
2315  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2316  * vdev_offline(), we assume the spa config is locked.  We also clear all
2317  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2318  */
2319 void
2320 vdev_clear(spa_t *spa, vdev_t *vd)
2321 {
2322         vdev_t *rvd = spa->spa_root_vdev;
2323
2324         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2325
2326         if (vd == NULL)
2327                 vd = rvd;
2328
2329         vd->vdev_stat.vs_read_errors = 0;
2330         vd->vdev_stat.vs_write_errors = 0;
2331         vd->vdev_stat.vs_checksum_errors = 0;
2332
2333         for (int c = 0; c < vd->vdev_children; c++)
2334                 vdev_clear(spa, vd->vdev_child[c]);
2335
2336         /*
2337          * If we're in the FAULTED state or have experienced failed I/O, then
2338          * clear the persistent state and attempt to reopen the device.  We
2339          * also mark the vdev config dirty, so that the new faulted state is
2340          * written out to disk.
2341          */
2342         if (vd->vdev_faulted || vd->vdev_degraded ||
2343             !vdev_readable(vd) || !vdev_writeable(vd)) {
2344
2345                 /*
2346                  * When reopening in reponse to a clear event, it may be due to
2347                  * a fmadm repair request.  In this case, if the device is
2348                  * still broken, we want to still post the ereport again.
2349                  */
2350                 vd->vdev_forcefault = B_TRUE;
2351
2352                 vd->vdev_faulted = vd->vdev_degraded = 0;
2353                 vd->vdev_cant_read = B_FALSE;
2354                 vd->vdev_cant_write = B_FALSE;
2355
2356                 vdev_reopen(vd);
2357
2358                 vd->vdev_forcefault = B_FALSE;
2359
2360                 if (vd != rvd)
2361                         vdev_state_dirty(vd->vdev_top);
2362
2363                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2364                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2365
2366                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2367         }
2368
2369         /*
2370          * When clearing a FMA-diagnosed fault, we always want to
2371          * unspare the device, as we assume that the original spare was
2372          * done in response to the FMA fault.
2373          */
2374         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2375             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2376             vd->vdev_parent->vdev_child[0] == vd)
2377                 vd->vdev_unspare = B_TRUE;
2378 }
2379
2380 boolean_t
2381 vdev_is_dead(vdev_t *vd)
2382 {
2383         /*
2384          * Holes and missing devices are always considered "dead".
2385          * This simplifies the code since we don't have to check for
2386          * these types of devices in the various code paths.
2387          * Instead we rely on the fact that we skip over dead devices
2388          * before issuing I/O to them.
2389          */
2390         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2391             vd->vdev_ops == &vdev_missing_ops);
2392 }
2393
2394 boolean_t
2395 vdev_readable(vdev_t *vd)
2396 {
2397         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2398 }
2399
2400 boolean_t
2401 vdev_writeable(vdev_t *vd)
2402 {
2403         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2404 }
2405
2406 boolean_t
2407 vdev_allocatable(vdev_t *vd)
2408 {
2409         uint64_t state = vd->vdev_state;
2410
2411         /*
2412          * We currently allow allocations from vdevs which may be in the
2413          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2414          * fails to reopen then we'll catch it later when we're holding
2415          * the proper locks.  Note that we have to get the vdev state
2416          * in a local variable because although it changes atomically,
2417          * we're asking two separate questions about it.
2418          */
2419         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2420             !vd->vdev_cant_write && !vd->vdev_ishole);
2421 }
2422
2423 boolean_t
2424 vdev_accessible(vdev_t *vd, zio_t *zio)
2425 {
2426         ASSERT(zio->io_vd == vd);
2427
2428         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2429                 return (B_FALSE);
2430
2431         if (zio->io_type == ZIO_TYPE_READ)
2432                 return (!vd->vdev_cant_read);
2433
2434         if (zio->io_type == ZIO_TYPE_WRITE)
2435                 return (!vd->vdev_cant_write);
2436
2437         return (B_TRUE);
2438 }
2439
2440 /*
2441  * Get statistics for the given vdev.
2442  */
2443 void
2444 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2445 {
2446         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2447
2448         mutex_enter(&vd->vdev_stat_lock);
2449         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2450         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2451         vs->vs_state = vd->vdev_state;
2452         vs->vs_rsize = vdev_get_min_asize(vd);
2453         if (vd->vdev_ops->vdev_op_leaf)
2454                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2455         mutex_exit(&vd->vdev_stat_lock);
2456
2457         /*
2458          * If we're getting stats on the root vdev, aggregate the I/O counts
2459          * over all top-level vdevs (i.e. the direct children of the root).
2460          */
2461         if (vd == rvd) {
2462                 for (int c = 0; c < rvd->vdev_children; c++) {
2463                         vdev_t *cvd = rvd->vdev_child[c];
2464                         vdev_stat_t *cvs = &cvd->vdev_stat;
2465
2466                         mutex_enter(&vd->vdev_stat_lock);
2467                         for (int t = 0; t < ZIO_TYPES; t++) {
2468                                 vs->vs_ops[t] += cvs->vs_ops[t];
2469                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2470                         }
2471                         cvs->vs_scan_removing = cvd->vdev_removing;
2472                         mutex_exit(&vd->vdev_stat_lock);
2473                 }
2474         }
2475 }
2476
2477 void
2478 vdev_clear_stats(vdev_t *vd)
2479 {
2480         mutex_enter(&vd->vdev_stat_lock);
2481         vd->vdev_stat.vs_space = 0;
2482         vd->vdev_stat.vs_dspace = 0;
2483         vd->vdev_stat.vs_alloc = 0;
2484         mutex_exit(&vd->vdev_stat_lock);
2485 }
2486
2487 void
2488 vdev_scan_stat_init(vdev_t *vd)
2489 {
2490         vdev_stat_t *vs = &vd->vdev_stat;
2491
2492         for (int c = 0; c < vd->vdev_children; c++)
2493                 vdev_scan_stat_init(vd->vdev_child[c]);
2494
2495         mutex_enter(&vd->vdev_stat_lock);
2496         vs->vs_scan_processed = 0;
2497         mutex_exit(&vd->vdev_stat_lock);
2498 }
2499
2500 void
2501 vdev_stat_update(zio_t *zio, uint64_t psize)
2502 {
2503         spa_t *spa = zio->io_spa;
2504         vdev_t *rvd = spa->spa_root_vdev;
2505         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2506         vdev_t *pvd;
2507         uint64_t txg = zio->io_txg;
2508         vdev_stat_t *vs = &vd->vdev_stat;
2509         zio_type_t type = zio->io_type;
2510         int flags = zio->io_flags;
2511
2512         /*
2513          * If this i/o is a gang leader, it didn't do any actual work.
2514          */
2515         if (zio->io_gang_tree)
2516                 return;
2517
2518         if (zio->io_error == 0) {
2519                 /*
2520                  * If this is a root i/o, don't count it -- we've already
2521                  * counted the top-level vdevs, and vdev_get_stats() will
2522                  * aggregate them when asked.  This reduces contention on
2523                  * the root vdev_stat_lock and implicitly handles blocks
2524                  * that compress away to holes, for which there is no i/o.
2525                  * (Holes never create vdev children, so all the counters
2526                  * remain zero, which is what we want.)
2527                  *
2528                  * Note: this only applies to successful i/o (io_error == 0)
2529                  * because unlike i/o counts, errors are not additive.
2530                  * When reading a ditto block, for example, failure of
2531                  * one top-level vdev does not imply a root-level error.
2532                  */
2533                 if (vd == rvd)
2534                         return;
2535
2536                 ASSERT(vd == zio->io_vd);
2537
2538                 if (flags & ZIO_FLAG_IO_BYPASS)
2539                         return;
2540
2541                 mutex_enter(&vd->vdev_stat_lock);
2542
2543                 if (flags & ZIO_FLAG_IO_REPAIR) {
2544                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2545                                 dsl_scan_phys_t *scn_phys =
2546                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2547                                 uint64_t *processed = &scn_phys->scn_processed;
2548
2549                                 /* XXX cleanup? */
2550                                 if (vd->vdev_ops->vdev_op_leaf)
2551                                         atomic_add_64(processed, psize);
2552                                 vs->vs_scan_processed += psize;
2553                         }
2554
2555                         if (flags & ZIO_FLAG_SELF_HEAL)
2556                                 vs->vs_self_healed += psize;
2557                 }
2558
2559                 vs->vs_ops[type]++;
2560                 vs->vs_bytes[type] += psize;
2561
2562                 mutex_exit(&vd->vdev_stat_lock);
2563                 return;
2564         }
2565
2566         if (flags & ZIO_FLAG_SPECULATIVE)
2567                 return;
2568
2569         /*
2570          * If this is an I/O error that is going to be retried, then ignore the
2571          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2572          * hard errors, when in reality they can happen for any number of
2573          * innocuous reasons (bus resets, MPxIO link failure, etc).
2574          */
2575         if (zio->io_error == EIO &&
2576             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2577                 return;
2578
2579         /*
2580          * Intent logs writes won't propagate their error to the root
2581          * I/O so don't mark these types of failures as pool-level
2582          * errors.
2583          */
2584         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2585                 return;
2586
2587         mutex_enter(&vd->vdev_stat_lock);
2588         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2589                 if (zio->io_error == ECKSUM)
2590                         vs->vs_checksum_errors++;
2591                 else
2592                         vs->vs_read_errors++;
2593         }
2594         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2595                 vs->vs_write_errors++;
2596         mutex_exit(&vd->vdev_stat_lock);
2597
2598         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2599             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2600             (flags & ZIO_FLAG_SCRUB_THREAD) ||
2601             spa->spa_claiming)) {
2602                 /*
2603                  * This is either a normal write (not a repair), or it's
2604                  * a repair induced by the scrub thread, or it's a repair
2605                  * made by zil_claim() during spa_load() in the first txg.
2606                  * In the normal case, we commit the DTL change in the same
2607                  * txg as the block was born.  In the scrub-induced repair
2608                  * case, we know that scrubs run in first-pass syncing context,
2609                  * so we commit the DTL change in spa_syncing_txg(spa).
2610                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2611                  *
2612                  * We currently do not make DTL entries for failed spontaneous
2613                  * self-healing writes triggered by normal (non-scrubbing)
2614                  * reads, because we have no transactional context in which to
2615                  * do so -- and it's not clear that it'd be desirable anyway.
2616                  */
2617                 if (vd->vdev_ops->vdev_op_leaf) {
2618                         uint64_t commit_txg = txg;
2619                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2620                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2621                                 ASSERT(spa_sync_pass(spa) == 1);
2622                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2623                                 commit_txg = spa_syncing_txg(spa);
2624                         } else if (spa->spa_claiming) {
2625                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2626                                 commit_txg = spa_first_txg(spa);
2627                         }
2628                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2629                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2630                                 return;
2631                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2632                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2633                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2634                 }
2635                 if (vd != rvd)
2636                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2637         }
2638 }
2639
2640 /*
2641  * Update the in-core space usage stats for this vdev, its metaslab class,
2642  * and the root vdev.
2643  */
2644 void
2645 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2646     int64_t space_delta)
2647 {
2648         int64_t dspace_delta = space_delta;
2649         spa_t *spa = vd->vdev_spa;
2650         vdev_t *rvd = spa->spa_root_vdev;
2651         metaslab_group_t *mg = vd->vdev_mg;
2652         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2653
2654         ASSERT(vd == vd->vdev_top);
2655
2656         /*
2657          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2658          * factor.  We must calculate this here and not at the root vdev
2659          * because the root vdev's psize-to-asize is simply the max of its
2660          * childrens', thus not accurate enough for us.
2661          */
2662         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2663         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2664         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2665             vd->vdev_deflate_ratio;
2666
2667         mutex_enter(&vd->vdev_stat_lock);
2668         vd->vdev_stat.vs_alloc += alloc_delta;
2669         vd->vdev_stat.vs_space += space_delta;
2670         vd->vdev_stat.vs_dspace += dspace_delta;
2671         mutex_exit(&vd->vdev_stat_lock);
2672
2673         if (mc == spa_normal_class(spa)) {
2674                 mutex_enter(&rvd->vdev_stat_lock);
2675                 rvd->vdev_stat.vs_alloc += alloc_delta;
2676                 rvd->vdev_stat.vs_space += space_delta;
2677                 rvd->vdev_stat.vs_dspace += dspace_delta;
2678                 mutex_exit(&rvd->vdev_stat_lock);
2679         }
2680
2681         if (mc != NULL) {
2682                 ASSERT(rvd == vd->vdev_parent);
2683                 ASSERT(vd->vdev_ms_count != 0);
2684
2685                 metaslab_class_space_update(mc,
2686                     alloc_delta, defer_delta, space_delta, dspace_delta);
2687         }
2688 }
2689
2690 /*
2691  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2692  * so that it will be written out next time the vdev configuration is synced.
2693  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2694  */
2695 void
2696 vdev_config_dirty(vdev_t *vd)
2697 {
2698         spa_t *spa = vd->vdev_spa;
2699         vdev_t *rvd = spa->spa_root_vdev;
2700         int c;
2701
2702         /*
2703          * If this is an aux vdev (as with l2cache and spare devices), then we
2704          * update the vdev config manually and set the sync flag.
2705          */
2706         if (vd->vdev_aux != NULL) {
2707                 spa_aux_vdev_t *sav = vd->vdev_aux;
2708                 nvlist_t **aux;
2709                 uint_t naux;
2710
2711                 for (c = 0; c < sav->sav_count; c++) {
2712                         if (sav->sav_vdevs[c] == vd)
2713                                 break;
2714                 }
2715
2716                 if (c == sav->sav_count) {
2717                         /*
2718                          * We're being removed.  There's nothing more to do.
2719                          */
2720                         ASSERT(sav->sav_sync == B_TRUE);
2721                         return;
2722                 }
2723
2724                 sav->sav_sync = B_TRUE;
2725
2726                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2727                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2728                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2729                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2730                 }
2731
2732                 ASSERT(c < naux);
2733
2734                 /*
2735                  * Setting the nvlist in the middle if the array is a little
2736                  * sketchy, but it will work.
2737                  */
2738                 nvlist_free(aux[c]);
2739                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2740
2741                 return;
2742         }
2743
2744         /*
2745          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2746          * must either hold SCL_CONFIG as writer, or must be the sync thread
2747          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2748          * so this is sufficient to ensure mutual exclusion.
2749          */
2750         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2751             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2752             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2753
2754         if (vd == rvd) {
2755                 for (c = 0; c < rvd->vdev_children; c++)
2756                         vdev_config_dirty(rvd->vdev_child[c]);
2757         } else {
2758                 ASSERT(vd == vd->vdev_top);
2759
2760                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2761                     !vd->vdev_ishole)
2762                         list_insert_head(&spa->spa_config_dirty_list, vd);
2763         }
2764 }
2765
2766 void
2767 vdev_config_clean(vdev_t *vd)
2768 {
2769         spa_t *spa = vd->vdev_spa;
2770
2771         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2772             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2773             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2774
2775         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2776         list_remove(&spa->spa_config_dirty_list, vd);
2777 }
2778
2779 /*
2780  * Mark a top-level vdev's state as dirty, so that the next pass of
2781  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2782  * the state changes from larger config changes because they require
2783  * much less locking, and are often needed for administrative actions.
2784  */
2785 void
2786 vdev_state_dirty(vdev_t *vd)
2787 {
2788         spa_t *spa = vd->vdev_spa;
2789
2790         ASSERT(vd == vd->vdev_top);
2791
2792         /*
2793          * The state list is protected by the SCL_STATE lock.  The caller
2794          * must either hold SCL_STATE as writer, or must be the sync thread
2795          * (which holds SCL_STATE as reader).  There's only one sync thread,
2796          * so this is sufficient to ensure mutual exclusion.
2797          */
2798         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2799             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2800             spa_config_held(spa, SCL_STATE, RW_READER)));
2801
2802         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2803                 list_insert_head(&spa->spa_state_dirty_list, vd);
2804 }
2805
2806 void
2807 vdev_state_clean(vdev_t *vd)
2808 {
2809         spa_t *spa = vd->vdev_spa;
2810
2811         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2812             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813             spa_config_held(spa, SCL_STATE, RW_READER)));
2814
2815         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2816         list_remove(&spa->spa_state_dirty_list, vd);
2817 }
2818
2819 /*
2820  * Propagate vdev state up from children to parent.
2821  */
2822 void
2823 vdev_propagate_state(vdev_t *vd)
2824 {
2825         spa_t *spa = vd->vdev_spa;
2826         vdev_t *rvd = spa->spa_root_vdev;
2827         int degraded = 0, faulted = 0;
2828         int corrupted = 0;
2829         vdev_t *child;
2830
2831         if (vd->vdev_children > 0) {
2832                 for (int c = 0; c < vd->vdev_children; c++) {
2833                         child = vd->vdev_child[c];
2834
2835                         /*
2836                          * Don't factor holes into the decision.
2837                          */
2838                         if (child->vdev_ishole)
2839                                 continue;
2840
2841                         if (!vdev_readable(child) ||
2842                             (!vdev_writeable(child) && spa_writeable(spa))) {
2843                                 /*
2844                                  * Root special: if there is a top-level log
2845                                  * device, treat the root vdev as if it were
2846                                  * degraded.
2847                                  */
2848                                 if (child->vdev_islog && vd == rvd)
2849                                         degraded++;
2850                                 else
2851                                         faulted++;
2852                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2853                                 degraded++;
2854                         }
2855
2856                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2857                                 corrupted++;
2858                 }
2859
2860                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2861
2862                 /*
2863                  * Root special: if there is a top-level vdev that cannot be
2864                  * opened due to corrupted metadata, then propagate the root
2865                  * vdev's aux state as 'corrupt' rather than 'insufficient
2866                  * replicas'.
2867                  */
2868                 if (corrupted && vd == rvd &&
2869                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2870                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2871                             VDEV_AUX_CORRUPT_DATA);
2872         }
2873
2874         if (vd->vdev_parent)
2875                 vdev_propagate_state(vd->vdev_parent);
2876 }
2877
2878 /*
2879  * Set a vdev's state.  If this is during an open, we don't update the parent
2880  * state, because we're in the process of opening children depth-first.
2881  * Otherwise, we propagate the change to the parent.
2882  *
2883  * If this routine places a device in a faulted state, an appropriate ereport is
2884  * generated.
2885  */
2886 void
2887 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2888 {
2889         uint64_t save_state;
2890         spa_t *spa = vd->vdev_spa;
2891
2892         if (state == vd->vdev_state) {
2893                 vd->vdev_stat.vs_aux = aux;
2894                 return;
2895         }
2896
2897         save_state = vd->vdev_state;
2898
2899         vd->vdev_state = state;
2900         vd->vdev_stat.vs_aux = aux;
2901
2902         /*
2903          * If we are setting the vdev state to anything but an open state, then
2904          * always close the underlying device unless the device has requested
2905          * a delayed close (i.e. we're about to remove or fault the device).
2906          * Otherwise, we keep accessible but invalid devices open forever.
2907          * We don't call vdev_close() itself, because that implies some extra
2908          * checks (offline, etc) that we don't want here.  This is limited to
2909          * leaf devices, because otherwise closing the device will affect other
2910          * children.
2911          */
2912         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2913             vd->vdev_ops->vdev_op_leaf)
2914                 vd->vdev_ops->vdev_op_close(vd);
2915
2916         /*
2917          * If we have brought this vdev back into service, we need
2918          * to notify fmd so that it can gracefully repair any outstanding
2919          * cases due to a missing device.  We do this in all cases, even those
2920          * that probably don't correlate to a repaired fault.  This is sure to
2921          * catch all cases, and we let the zfs-retire agent sort it out.  If
2922          * this is a transient state it's OK, as the retire agent will
2923          * double-check the state of the vdev before repairing it.
2924          */
2925         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2926             vd->vdev_prevstate != state)
2927                 zfs_post_state_change(spa, vd);
2928
2929         if (vd->vdev_removed &&
2930             state == VDEV_STATE_CANT_OPEN &&
2931             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2932                 /*
2933                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2934                  * device was previously marked removed and someone attempted to
2935                  * reopen it.  If this failed due to a nonexistent device, then
2936                  * keep the device in the REMOVED state.  We also let this be if
2937                  * it is one of our special test online cases, which is only
2938                  * attempting to online the device and shouldn't generate an FMA
2939                  * fault.
2940                  */
2941                 vd->vdev_state = VDEV_STATE_REMOVED;
2942                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2943         } else if (state == VDEV_STATE_REMOVED) {
2944                 vd->vdev_removed = B_TRUE;
2945         } else if (state == VDEV_STATE_CANT_OPEN) {
2946                 /*
2947                  * If we fail to open a vdev during an import, we mark it as
2948                  * "not available", which signifies that it was never there to
2949                  * begin with.  Failure to open such a device is not considered
2950                  * an error.
2951                  */
2952                 if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2953                     vd->vdev_ops->vdev_op_leaf)
2954                         vd->vdev_not_present = 1;
2955
2956                 /*
2957                  * Post the appropriate ereport.  If the 'prevstate' field is
2958                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2959                  * that this is part of a vdev_reopen().  In this case, we don't
2960                  * want to post the ereport if the device was already in the
2961                  * CANT_OPEN state beforehand.
2962                  *
2963                  * If the 'checkremove' flag is set, then this is an attempt to
2964                  * online the device in response to an insertion event.  If we
2965                  * hit this case, then we have detected an insertion event for a
2966                  * faulted or offline device that wasn't in the removed state.
2967                  * In this scenario, we don't post an ereport because we are
2968                  * about to replace the device, or attempt an online with
2969                  * vdev_forcefault, which will generate the fault for us.
2970                  */
2971                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2972                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2973                     vd != spa->spa_root_vdev) {
2974                         const char *class;
2975
2976                         switch (aux) {
2977                         case VDEV_AUX_OPEN_FAILED:
2978                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2979                                 break;
2980                         case VDEV_AUX_CORRUPT_DATA:
2981                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2982                                 break;
2983                         case VDEV_AUX_NO_REPLICAS:
2984                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2985                                 break;
2986                         case VDEV_AUX_BAD_GUID_SUM:
2987                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2988                                 break;
2989                         case VDEV_AUX_TOO_SMALL:
2990                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2991                                 break;
2992                         case VDEV_AUX_BAD_LABEL:
2993                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2994                                 break;
2995                         default:
2996                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2997                         }
2998
2999                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3000                 }
3001
3002                 /* Erase any notion of persistent removed state */
3003                 vd->vdev_removed = B_FALSE;
3004         } else {
3005                 vd->vdev_removed = B_FALSE;
3006         }
3007
3008         if (!isopen && vd->vdev_parent)
3009                 vdev_propagate_state(vd->vdev_parent);
3010 }
3011
3012 /*
3013  * Check the vdev configuration to ensure that it's capable of supporting
3014  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3015  * In addition, only a single top-level vdev is allowed and none of the leaves
3016  * can be wholedisks.
3017  */
3018 boolean_t
3019 vdev_is_bootable(vdev_t *vd)
3020 {
3021         if (!vd->vdev_ops->vdev_op_leaf) {
3022                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3023
3024                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3025                     vd->vdev_children > 1) {
3026                         return (B_FALSE);
3027                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3028                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3029                         return (B_FALSE);
3030                 }
3031         } else if (vd->vdev_wholedisk == 1) {
3032                 return (B_FALSE);
3033         }
3034
3035         for (int c = 0; c < vd->vdev_children; c++) {
3036                 if (!vdev_is_bootable(vd->vdev_child[c]))
3037                         return (B_FALSE);
3038         }
3039         return (B_TRUE);
3040 }
3041
3042 /*
3043  * Load the state from the original vdev tree (ovd) which
3044  * we've retrieved from the MOS config object. If the original
3045  * vdev was offline then we transfer that state to the device
3046  * in the current vdev tree (nvd).
3047  */
3048 void
3049 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3050 {
3051         spa_t *spa = nvd->vdev_spa;
3052
3053         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3054         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3055
3056         for (int c = 0; c < nvd->vdev_children; c++)
3057                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3058
3059         if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3060                 /*
3061                  * It would be nice to call vdev_offline()
3062                  * directly but the pool isn't fully loaded and
3063                  * the txg threads have not been started yet.
3064                  */
3065                 nvd->vdev_offline = ovd->vdev_offline;
3066                 vdev_reopen(nvd->vdev_top);
3067         }
3068 }
3069
3070 /*
3071  * Expand a vdev if possible.
3072  */
3073 void
3074 vdev_expand(vdev_t *vd, uint64_t txg)
3075 {
3076         ASSERT(vd->vdev_top == vd);
3077         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3078
3079         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3080                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3081                 vdev_config_dirty(vd);
3082         }
3083 }
3084
3085 /*
3086  * Split a vdev.
3087  */
3088 void
3089 vdev_split(vdev_t *vd)
3090 {
3091         vdev_t *cvd, *pvd = vd->vdev_parent;
3092
3093         vdev_remove_child(pvd, vd);
3094         vdev_compact_children(pvd);
3095
3096         cvd = pvd->vdev_child[0];
3097         if (pvd->vdev_children == 1) {
3098                 vdev_remove_parent(cvd);
3099                 cvd->vdev_splitting = B_TRUE;
3100         }
3101         vdev_propagate_state(cvd);
3102 }