Update to onnv_147
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88
89         for (int c = 0; c < vd->vdev_children; c++) {
90                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91                 asize = MAX(asize, csize);
92         }
93
94         return (asize);
95 }
96
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106         vdev_t *pvd = vd->vdev_parent;
107
108         /*
109          * The our parent is NULL (inactive spare or cache) or is the root,
110          * just return our own asize.
111          */
112         if (pvd == NULL)
113                 return (vd->vdev_asize);
114
115         /*
116          * The top-level vdev just returns the allocatable size rounded
117          * to the nearest metaslab.
118          */
119         if (vd == vd->vdev_top)
120                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121
122         /*
123          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124          * so each child must provide at least 1/Nth of its asize.
125          */
126         if (pvd->vdev_ops == &vdev_raidz_ops)
127                 return (pvd->vdev_min_asize / pvd->vdev_children);
128
129         return (pvd->vdev_min_asize);
130 }
131
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135         vd->vdev_min_asize = vdev_get_min_asize(vd);
136
137         for (int c = 0; c < vd->vdev_children; c++)
138                 vdev_set_min_asize(vd->vdev_child[c]);
139 }
140
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144         vdev_t *rvd = spa->spa_root_vdev;
145
146         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147
148         if (vdev < rvd->vdev_children) {
149                 ASSERT(rvd->vdev_child[vdev] != NULL);
150                 return (rvd->vdev_child[vdev]);
151         }
152
153         return (NULL);
154 }
155
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159         vdev_t *mvd;
160
161         if (vd->vdev_guid == guid)
162                 return (vd);
163
164         for (int c = 0; c < vd->vdev_children; c++)
165                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166                     NULL)
167                         return (mvd);
168
169         return (NULL);
170 }
171
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175         size_t oldsize, newsize;
176         uint64_t id = cvd->vdev_id;
177         vdev_t **newchild;
178
179         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180         ASSERT(cvd->vdev_parent == NULL);
181
182         cvd->vdev_parent = pvd;
183
184         if (pvd == NULL)
185                 return;
186
187         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189         oldsize = pvd->vdev_children * sizeof (vdev_t *);
190         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191         newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193         newchild = kmem_zalloc(newsize, KM_SLEEP);
194         if (pvd->vdev_child != NULL) {
195                 bcopy(pvd->vdev_child, newchild, oldsize);
196                 kmem_free(pvd->vdev_child, oldsize);
197         }
198
199         pvd->vdev_child = newchild;
200         pvd->vdev_child[id] = cvd;
201
202         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205         /*
206          * Walk up all ancestors to update guid sum.
207          */
208         for (; pvd != NULL; pvd = pvd->vdev_parent)
209                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 }
211
212 void
213 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
214 {
215         int c;
216         uint_t id = cvd->vdev_id;
217
218         ASSERT(cvd->vdev_parent == pvd);
219
220         if (pvd == NULL)
221                 return;
222
223         ASSERT(id < pvd->vdev_children);
224         ASSERT(pvd->vdev_child[id] == cvd);
225
226         pvd->vdev_child[id] = NULL;
227         cvd->vdev_parent = NULL;
228
229         for (c = 0; c < pvd->vdev_children; c++)
230                 if (pvd->vdev_child[c])
231                         break;
232
233         if (c == pvd->vdev_children) {
234                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
235                 pvd->vdev_child = NULL;
236                 pvd->vdev_children = 0;
237         }
238
239         /*
240          * Walk up all ancestors to update guid sum.
241          */
242         for (; pvd != NULL; pvd = pvd->vdev_parent)
243                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
244 }
245
246 /*
247  * Remove any holes in the child array.
248  */
249 void
250 vdev_compact_children(vdev_t *pvd)
251 {
252         vdev_t **newchild, *cvd;
253         int oldc = pvd->vdev_children;
254         int newc;
255
256         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
257
258         for (int c = newc = 0; c < oldc; c++)
259                 if (pvd->vdev_child[c])
260                         newc++;
261
262         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263
264         for (int c = newc = 0; c < oldc; c++) {
265                 if ((cvd = pvd->vdev_child[c]) != NULL) {
266                         newchild[newc] = cvd;
267                         cvd->vdev_id = newc++;
268                 }
269         }
270
271         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272         pvd->vdev_child = newchild;
273         pvd->vdev_children = newc;
274 }
275
276 /*
277  * Allocate and minimally initialize a vdev_t.
278  */
279 vdev_t *
280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281 {
282         vdev_t *vd;
283
284         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285
286         if (spa->spa_root_vdev == NULL) {
287                 ASSERT(ops == &vdev_root_ops);
288                 spa->spa_root_vdev = vd;
289         }
290
291         if (guid == 0 && ops != &vdev_hole_ops) {
292                 if (spa->spa_root_vdev == vd) {
293                         /*
294                          * The root vdev's guid will also be the pool guid,
295                          * which must be unique among all pools.
296                          */
297                         guid = spa_generate_guid(NULL);
298                 } else {
299                         /*
300                          * Any other vdev's guid must be unique within the pool.
301                          */
302                         guid = spa_generate_guid(spa);
303                 }
304                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
305         }
306
307         vd->vdev_spa = spa;
308         vd->vdev_id = id;
309         vd->vdev_guid = guid;
310         vd->vdev_guid_sum = guid;
311         vd->vdev_ops = ops;
312         vd->vdev_state = VDEV_STATE_CLOSED;
313         vd->vdev_ishole = (ops == &vdev_hole_ops);
314
315         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
316         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
317         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
318         for (int t = 0; t < DTL_TYPES; t++) {
319                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
320                     &vd->vdev_dtl_lock);
321         }
322         txg_list_create(&vd->vdev_ms_list,
323             offsetof(struct metaslab, ms_txg_node));
324         txg_list_create(&vd->vdev_dtl_list,
325             offsetof(struct vdev, vdev_dtl_node));
326         vd->vdev_stat.vs_timestamp = gethrtime();
327         vdev_queue_init(vd);
328         vdev_cache_init(vd);
329
330         return (vd);
331 }
332
333 /*
334  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
335  * creating a new vdev or loading an existing one - the behavior is slightly
336  * different for each case.
337  */
338 int
339 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
340     int alloctype)
341 {
342         vdev_ops_t *ops;
343         char *type;
344         uint64_t guid = 0, islog, nparity;
345         vdev_t *vd;
346
347         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
348
349         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
350                 return (EINVAL);
351
352         if ((ops = vdev_getops(type)) == NULL)
353                 return (EINVAL);
354
355         /*
356          * If this is a load, get the vdev guid from the nvlist.
357          * Otherwise, vdev_alloc_common() will generate one for us.
358          */
359         if (alloctype == VDEV_ALLOC_LOAD) {
360                 uint64_t label_id;
361
362                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363                     label_id != id)
364                         return (EINVAL);
365
366                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
367                         return (EINVAL);
368         } else if (alloctype == VDEV_ALLOC_SPARE) {
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370                         return (EINVAL);
371         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373                         return (EINVAL);
374         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
375                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376                         return (EINVAL);
377         }
378
379         /*
380          * The first allocated vdev must be of type 'root'.
381          */
382         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
383                 return (EINVAL);
384
385         /*
386          * Determine whether we're a log vdev.
387          */
388         islog = 0;
389         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
390         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
391                 return (ENOTSUP);
392
393         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
394                 return (ENOTSUP);
395
396         /*
397          * Set the nparity property for RAID-Z vdevs.
398          */
399         nparity = -1ULL;
400         if (ops == &vdev_raidz_ops) {
401                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
402                     &nparity) == 0) {
403                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
404                                 return (EINVAL);
405                         /*
406                          * Previous versions could only support 1 or 2 parity
407                          * device.
408                          */
409                         if (nparity > 1 &&
410                             spa_version(spa) < SPA_VERSION_RAIDZ2)
411                                 return (ENOTSUP);
412                         if (nparity > 2 &&
413                             spa_version(spa) < SPA_VERSION_RAIDZ3)
414                                 return (ENOTSUP);
415                 } else {
416                         /*
417                          * We require the parity to be specified for SPAs that
418                          * support multiple parity levels.
419                          */
420                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
421                                 return (EINVAL);
422                         /*
423                          * Otherwise, we default to 1 parity device for RAID-Z.
424                          */
425                         nparity = 1;
426                 }
427         } else {
428                 nparity = 0;
429         }
430         ASSERT(nparity != -1ULL);
431
432         vd = vdev_alloc_common(spa, id, guid, ops);
433
434         vd->vdev_islog = islog;
435         vd->vdev_nparity = nparity;
436
437         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
438                 vd->vdev_path = spa_strdup(vd->vdev_path);
439         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
440                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
441         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
442             &vd->vdev_physpath) == 0)
443                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
445                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
446
447         /*
448          * Set the whole_disk property.  If it's not specified, leave the value
449          * as -1.
450          */
451         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
452             &vd->vdev_wholedisk) != 0)
453                 vd->vdev_wholedisk = -1ULL;
454
455         /*
456          * Look for the 'not present' flag.  This will only be set if the device
457          * was not present at the time of import.
458          */
459         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
460             &vd->vdev_not_present);
461
462         /*
463          * Get the alignment requirement.
464          */
465         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
466
467         /*
468          * Retrieve the vdev creation time.
469          */
470         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
471             &vd->vdev_crtxg);
472
473         /*
474          * If we're a top-level vdev, try to load the allocation parameters.
475          */
476         if (parent && !parent->vdev_parent &&
477             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
478                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479                     &vd->vdev_ms_array);
480                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481                     &vd->vdev_ms_shift);
482                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483                     &vd->vdev_asize);
484                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
485                     &vd->vdev_removing);
486         }
487
488         if (parent && !parent->vdev_parent) {
489                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
490                     alloctype == VDEV_ALLOC_ADD ||
491                     alloctype == VDEV_ALLOC_SPLIT ||
492                     alloctype == VDEV_ALLOC_ROOTPOOL);
493                 vd->vdev_mg = metaslab_group_create(islog ?
494                     spa_log_class(spa) : spa_normal_class(spa), vd);
495         }
496
497         /*
498          * If we're a leaf vdev, try to load the DTL object and other state.
499          */
500         if (vd->vdev_ops->vdev_op_leaf &&
501             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502             alloctype == VDEV_ALLOC_ROOTPOOL)) {
503                 if (alloctype == VDEV_ALLOC_LOAD) {
504                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
505                             &vd->vdev_dtl_smo.smo_object);
506                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507                             &vd->vdev_unspare);
508                 }
509
510                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511                         uint64_t spare = 0;
512
513                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514                             &spare) == 0 && spare)
515                                 spa_spare_add(vd);
516                 }
517
518                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519                     &vd->vdev_offline);
520
521                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
522                     &vd->vdev_resilvering);
523
524                 /*
525                  * When importing a pool, we want to ignore the persistent fault
526                  * state, as the diagnosis made on another system may not be
527                  * valid in the current context.  Local vdevs will
528                  * remain in the faulted state.
529                  */
530                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
531                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
532                             &vd->vdev_faulted);
533                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
534                             &vd->vdev_degraded);
535                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
536                             &vd->vdev_removed);
537
538                         if (vd->vdev_faulted || vd->vdev_degraded) {
539                                 char *aux;
540
541                                 vd->vdev_label_aux =
542                                     VDEV_AUX_ERR_EXCEEDED;
543                                 if (nvlist_lookup_string(nv,
544                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
545                                     strcmp(aux, "external") == 0)
546                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
547                         }
548                 }
549         }
550
551         /*
552          * Add ourselves to the parent's list of children.
553          */
554         vdev_add_child(parent, vd);
555
556         *vdp = vd;
557
558         return (0);
559 }
560
561 void
562 vdev_free(vdev_t *vd)
563 {
564         spa_t *spa = vd->vdev_spa;
565
566         /*
567          * vdev_free() implies closing the vdev first.  This is simpler than
568          * trying to ensure complicated semantics for all callers.
569          */
570         vdev_close(vd);
571
572         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
573         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
574
575         /*
576          * Free all children.
577          */
578         for (int c = 0; c < vd->vdev_children; c++)
579                 vdev_free(vd->vdev_child[c]);
580
581         ASSERT(vd->vdev_child == NULL);
582         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
583
584         /*
585          * Discard allocation state.
586          */
587         if (vd->vdev_mg != NULL) {
588                 vdev_metaslab_fini(vd);
589                 metaslab_group_destroy(vd->vdev_mg);
590         }
591
592         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
593         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
594         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
595
596         /*
597          * Remove this vdev from its parent's child list.
598          */
599         vdev_remove_child(vd->vdev_parent, vd);
600
601         ASSERT(vd->vdev_parent == NULL);
602
603         /*
604          * Clean up vdev structure.
605          */
606         vdev_queue_fini(vd);
607         vdev_cache_fini(vd);
608
609         if (vd->vdev_path)
610                 spa_strfree(vd->vdev_path);
611         if (vd->vdev_devid)
612                 spa_strfree(vd->vdev_devid);
613         if (vd->vdev_physpath)
614                 spa_strfree(vd->vdev_physpath);
615         if (vd->vdev_fru)
616                 spa_strfree(vd->vdev_fru);
617
618         if (vd->vdev_isspare)
619                 spa_spare_remove(vd);
620         if (vd->vdev_isl2cache)
621                 spa_l2cache_remove(vd);
622
623         txg_list_destroy(&vd->vdev_ms_list);
624         txg_list_destroy(&vd->vdev_dtl_list);
625
626         mutex_enter(&vd->vdev_dtl_lock);
627         for (int t = 0; t < DTL_TYPES; t++) {
628                 space_map_unload(&vd->vdev_dtl[t]);
629                 space_map_destroy(&vd->vdev_dtl[t]);
630         }
631         mutex_exit(&vd->vdev_dtl_lock);
632
633         mutex_destroy(&vd->vdev_dtl_lock);
634         mutex_destroy(&vd->vdev_stat_lock);
635         mutex_destroy(&vd->vdev_probe_lock);
636
637         if (vd == spa->spa_root_vdev)
638                 spa->spa_root_vdev = NULL;
639
640         kmem_free(vd, sizeof (vdev_t));
641 }
642
643 /*
644  * Transfer top-level vdev state from svd to tvd.
645  */
646 static void
647 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
648 {
649         spa_t *spa = svd->vdev_spa;
650         metaslab_t *msp;
651         vdev_t *vd;
652         int t;
653
654         ASSERT(tvd == tvd->vdev_top);
655
656         tvd->vdev_ms_array = svd->vdev_ms_array;
657         tvd->vdev_ms_shift = svd->vdev_ms_shift;
658         tvd->vdev_ms_count = svd->vdev_ms_count;
659
660         svd->vdev_ms_array = 0;
661         svd->vdev_ms_shift = 0;
662         svd->vdev_ms_count = 0;
663
664         tvd->vdev_mg = svd->vdev_mg;
665         tvd->vdev_ms = svd->vdev_ms;
666
667         svd->vdev_mg = NULL;
668         svd->vdev_ms = NULL;
669
670         if (tvd->vdev_mg != NULL)
671                 tvd->vdev_mg->mg_vd = tvd;
672
673         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
674         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
675         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
676
677         svd->vdev_stat.vs_alloc = 0;
678         svd->vdev_stat.vs_space = 0;
679         svd->vdev_stat.vs_dspace = 0;
680
681         for (t = 0; t < TXG_SIZE; t++) {
682                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
683                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
684                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
685                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
686                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
687                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
688         }
689
690         if (list_link_active(&svd->vdev_config_dirty_node)) {
691                 vdev_config_clean(svd);
692                 vdev_config_dirty(tvd);
693         }
694
695         if (list_link_active(&svd->vdev_state_dirty_node)) {
696                 vdev_state_clean(svd);
697                 vdev_state_dirty(tvd);
698         }
699
700         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
701         svd->vdev_deflate_ratio = 0;
702
703         tvd->vdev_islog = svd->vdev_islog;
704         svd->vdev_islog = 0;
705 }
706
707 static void
708 vdev_top_update(vdev_t *tvd, vdev_t *vd)
709 {
710         if (vd == NULL)
711                 return;
712
713         vd->vdev_top = tvd;
714
715         for (int c = 0; c < vd->vdev_children; c++)
716                 vdev_top_update(tvd, vd->vdev_child[c]);
717 }
718
719 /*
720  * Add a mirror/replacing vdev above an existing vdev.
721  */
722 vdev_t *
723 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
724 {
725         spa_t *spa = cvd->vdev_spa;
726         vdev_t *pvd = cvd->vdev_parent;
727         vdev_t *mvd;
728
729         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
730
731         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
732
733         mvd->vdev_asize = cvd->vdev_asize;
734         mvd->vdev_min_asize = cvd->vdev_min_asize;
735         mvd->vdev_ashift = cvd->vdev_ashift;
736         mvd->vdev_state = cvd->vdev_state;
737         mvd->vdev_crtxg = cvd->vdev_crtxg;
738
739         vdev_remove_child(pvd, cvd);
740         vdev_add_child(pvd, mvd);
741         cvd->vdev_id = mvd->vdev_children;
742         vdev_add_child(mvd, cvd);
743         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
744
745         if (mvd == mvd->vdev_top)
746                 vdev_top_transfer(cvd, mvd);
747
748         return (mvd);
749 }
750
751 /*
752  * Remove a 1-way mirror/replacing vdev from the tree.
753  */
754 void
755 vdev_remove_parent(vdev_t *cvd)
756 {
757         vdev_t *mvd = cvd->vdev_parent;
758         vdev_t *pvd = mvd->vdev_parent;
759
760         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
761
762         ASSERT(mvd->vdev_children == 1);
763         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
764             mvd->vdev_ops == &vdev_replacing_ops ||
765             mvd->vdev_ops == &vdev_spare_ops);
766         cvd->vdev_ashift = mvd->vdev_ashift;
767
768         vdev_remove_child(mvd, cvd);
769         vdev_remove_child(pvd, mvd);
770
771         /*
772          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
773          * Otherwise, we could have detached an offline device, and when we
774          * go to import the pool we'll think we have two top-level vdevs,
775          * instead of a different version of the same top-level vdev.
776          */
777         if (mvd->vdev_top == mvd) {
778                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
779                 cvd->vdev_orig_guid = cvd->vdev_guid;
780                 cvd->vdev_guid += guid_delta;
781                 cvd->vdev_guid_sum += guid_delta;
782         }
783         cvd->vdev_id = mvd->vdev_id;
784         vdev_add_child(pvd, cvd);
785         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
786
787         if (cvd == cvd->vdev_top)
788                 vdev_top_transfer(mvd, cvd);
789
790         ASSERT(mvd->vdev_children == 0);
791         vdev_free(mvd);
792 }
793
794 int
795 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
796 {
797         spa_t *spa = vd->vdev_spa;
798         objset_t *mos = spa->spa_meta_objset;
799         uint64_t m;
800         uint64_t oldc = vd->vdev_ms_count;
801         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
802         metaslab_t **mspp;
803         int error;
804
805         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
806
807         /*
808          * This vdev is not being allocated from yet or is a hole.
809          */
810         if (vd->vdev_ms_shift == 0)
811                 return (0);
812
813         ASSERT(!vd->vdev_ishole);
814
815         /*
816          * Compute the raidz-deflation ratio.  Note, we hard-code
817          * in 128k (1 << 17) because it is the current "typical" blocksize.
818          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
819          * or we will inconsistently account for existing bp's.
820          */
821         vd->vdev_deflate_ratio = (1 << 17) /
822             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
823
824         ASSERT(oldc <= newc);
825
826         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827
828         if (oldc != 0) {
829                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831         }
832
833         vd->vdev_ms = mspp;
834         vd->vdev_ms_count = newc;
835
836         for (m = oldc; m < newc; m++) {
837                 space_map_obj_t smo = { 0, 0, 0 };
838                 if (txg == 0) {
839                         uint64_t object = 0;
840                         error = dmu_read(mos, vd->vdev_ms_array,
841                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
842                             DMU_READ_PREFETCH);
843                         if (error)
844                                 return (error);
845                         if (object != 0) {
846                                 dmu_buf_t *db;
847                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
848                                 if (error)
849                                         return (error);
850                                 ASSERT3U(db->db_size, >=, sizeof (smo));
851                                 bcopy(db->db_data, &smo, sizeof (smo));
852                                 ASSERT3U(smo.smo_object, ==, object);
853                                 dmu_buf_rele(db, FTAG);
854                         }
855                 }
856                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858         }
859
860         if (txg == 0)
861                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
862
863         /*
864          * If the vdev is being removed we don't activate
865          * the metaslabs since we want to ensure that no new
866          * allocations are performed on this device.
867          */
868         if (oldc == 0 && !vd->vdev_removing)
869                 metaslab_group_activate(vd->vdev_mg);
870
871         if (txg == 0)
872                 spa_config_exit(spa, SCL_ALLOC, FTAG);
873
874         return (0);
875 }
876
877 void
878 vdev_metaslab_fini(vdev_t *vd)
879 {
880         uint64_t m;
881         uint64_t count = vd->vdev_ms_count;
882
883         if (vd->vdev_ms != NULL) {
884                 metaslab_group_passivate(vd->vdev_mg);
885                 for (m = 0; m < count; m++)
886                         if (vd->vdev_ms[m] != NULL)
887                                 metaslab_fini(vd->vdev_ms[m]);
888                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
889                 vd->vdev_ms = NULL;
890         }
891 }
892
893 typedef struct vdev_probe_stats {
894         boolean_t       vps_readable;
895         boolean_t       vps_writeable;
896         int             vps_flags;
897 } vdev_probe_stats_t;
898
899 static void
900 vdev_probe_done(zio_t *zio)
901 {
902         spa_t *spa = zio->io_spa;
903         vdev_t *vd = zio->io_vd;
904         vdev_probe_stats_t *vps = zio->io_private;
905
906         ASSERT(vd->vdev_probe_zio != NULL);
907
908         if (zio->io_type == ZIO_TYPE_READ) {
909                 if (zio->io_error == 0)
910                         vps->vps_readable = 1;
911                 if (zio->io_error == 0 && spa_writeable(spa)) {
912                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
913                             zio->io_offset, zio->io_size, zio->io_data,
914                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
915                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
916                 } else {
917                         zio_buf_free(zio->io_data, zio->io_size);
918                 }
919         } else if (zio->io_type == ZIO_TYPE_WRITE) {
920                 if (zio->io_error == 0)
921                         vps->vps_writeable = 1;
922                 zio_buf_free(zio->io_data, zio->io_size);
923         } else if (zio->io_type == ZIO_TYPE_NULL) {
924                 zio_t *pio;
925
926                 vd->vdev_cant_read |= !vps->vps_readable;
927                 vd->vdev_cant_write |= !vps->vps_writeable;
928
929                 if (vdev_readable(vd) &&
930                     (vdev_writeable(vd) || !spa_writeable(spa))) {
931                         zio->io_error = 0;
932                 } else {
933                         ASSERT(zio->io_error != 0);
934                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
935                             spa, vd, NULL, 0, 0);
936                         zio->io_error = ENXIO;
937                 }
938
939                 mutex_enter(&vd->vdev_probe_lock);
940                 ASSERT(vd->vdev_probe_zio == zio);
941                 vd->vdev_probe_zio = NULL;
942                 mutex_exit(&vd->vdev_probe_lock);
943
944                 while ((pio = zio_walk_parents(zio)) != NULL)
945                         if (!vdev_accessible(vd, pio))
946                                 pio->io_error = ENXIO;
947
948                 kmem_free(vps, sizeof (*vps));
949         }
950 }
951
952 /*
953  * Determine whether this device is accessible by reading and writing
954  * to several known locations: the pad regions of each vdev label
955  * but the first (which we leave alone in case it contains a VTOC).
956  */
957 zio_t *
958 vdev_probe(vdev_t *vd, zio_t *zio)
959 {
960         spa_t *spa = vd->vdev_spa;
961         vdev_probe_stats_t *vps = NULL;
962         zio_t *pio;
963
964         ASSERT(vd->vdev_ops->vdev_op_leaf);
965
966         /*
967          * Don't probe the probe.
968          */
969         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
970                 return (NULL);
971
972         /*
973          * To prevent 'probe storms' when a device fails, we create
974          * just one probe i/o at a time.  All zios that want to probe
975          * this vdev will become parents of the probe io.
976          */
977         mutex_enter(&vd->vdev_probe_lock);
978
979         if ((pio = vd->vdev_probe_zio) == NULL) {
980                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
981
982                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
983                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
984                     ZIO_FLAG_TRYHARD;
985
986                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
987                         /*
988                          * vdev_cant_read and vdev_cant_write can only
989                          * transition from TRUE to FALSE when we have the
990                          * SCL_ZIO lock as writer; otherwise they can only
991                          * transition from FALSE to TRUE.  This ensures that
992                          * any zio looking at these values can assume that
993                          * failures persist for the life of the I/O.  That's
994                          * important because when a device has intermittent
995                          * connectivity problems, we want to ensure that
996                          * they're ascribed to the device (ENXIO) and not
997                          * the zio (EIO).
998                          *
999                          * Since we hold SCL_ZIO as writer here, clear both
1000                          * values so the probe can reevaluate from first
1001                          * principles.
1002                          */
1003                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1004                         vd->vdev_cant_read = B_FALSE;
1005                         vd->vdev_cant_write = B_FALSE;
1006                 }
1007
1008                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1009                     vdev_probe_done, vps,
1010                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1011
1012                 /*
1013                  * We can't change the vdev state in this context, so we
1014                  * kick off an async task to do it on our behalf.
1015                  */
1016                 if (zio != NULL) {
1017                         vd->vdev_probe_wanted = B_TRUE;
1018                         spa_async_request(spa, SPA_ASYNC_PROBE);
1019                 }
1020         }
1021
1022         if (zio != NULL)
1023                 zio_add_child(zio, pio);
1024
1025         mutex_exit(&vd->vdev_probe_lock);
1026
1027         if (vps == NULL) {
1028                 ASSERT(zio != NULL);
1029                 return (NULL);
1030         }
1031
1032         for (int l = 1; l < VDEV_LABELS; l++) {
1033                 zio_nowait(zio_read_phys(pio, vd,
1034                     vdev_label_offset(vd->vdev_psize, l,
1035                     offsetof(vdev_label_t, vl_pad2)),
1036                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1037                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1038                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1039         }
1040
1041         if (zio == NULL)
1042                 return (pio);
1043
1044         zio_nowait(pio);
1045         return (NULL);
1046 }
1047
1048 static void
1049 vdev_open_child(void *arg)
1050 {
1051         vdev_t *vd = arg;
1052
1053         vd->vdev_open_thread = curthread;
1054         vd->vdev_open_error = vdev_open(vd);
1055         vd->vdev_open_thread = NULL;
1056 }
1057
1058 boolean_t
1059 vdev_uses_zvols(vdev_t *vd)
1060 {
1061         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1062             strlen(ZVOL_DIR)) == 0)
1063                 return (B_TRUE);
1064         for (int c = 0; c < vd->vdev_children; c++)
1065                 if (vdev_uses_zvols(vd->vdev_child[c]))
1066                         return (B_TRUE);
1067         return (B_FALSE);
1068 }
1069
1070 void
1071 vdev_open_children(vdev_t *vd)
1072 {
1073         taskq_t *tq;
1074         int children = vd->vdev_children;
1075
1076         /*
1077          * in order to handle pools on top of zvols, do the opens
1078          * in a single thread so that the same thread holds the
1079          * spa_namespace_lock
1080          */
1081         if (vdev_uses_zvols(vd)) {
1082                 for (int c = 0; c < children; c++)
1083                         vd->vdev_child[c]->vdev_open_error =
1084                             vdev_open(vd->vdev_child[c]);
1085                 return;
1086         }
1087         tq = taskq_create("vdev_open", children, minclsyspri,
1088             children, children, TASKQ_PREPOPULATE);
1089
1090         for (int c = 0; c < children; c++)
1091                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1092                     TQ_SLEEP) != NULL);
1093
1094         taskq_destroy(tq);
1095 }
1096
1097 /*
1098  * Prepare a virtual device for access.
1099  */
1100 int
1101 vdev_open(vdev_t *vd)
1102 {
1103         spa_t *spa = vd->vdev_spa;
1104         int error;
1105         uint64_t osize = 0;
1106         uint64_t asize, psize;
1107         uint64_t ashift = 0;
1108
1109         ASSERT(vd->vdev_open_thread == curthread ||
1110             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1111         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1112             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1113             vd->vdev_state == VDEV_STATE_OFFLINE);
1114
1115         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1116         vd->vdev_cant_read = B_FALSE;
1117         vd->vdev_cant_write = B_FALSE;
1118         vd->vdev_min_asize = vdev_get_min_asize(vd);
1119
1120         /*
1121          * If this vdev is not removed, check its fault status.  If it's
1122          * faulted, bail out of the open.
1123          */
1124         if (!vd->vdev_removed && vd->vdev_faulted) {
1125                 ASSERT(vd->vdev_children == 0);
1126                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1127                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1128                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1129                     vd->vdev_label_aux);
1130                 return (ENXIO);
1131         } else if (vd->vdev_offline) {
1132                 ASSERT(vd->vdev_children == 0);
1133                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1134                 return (ENXIO);
1135         }
1136
1137         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1138
1139         /*
1140          * Reset the vdev_reopening flag so that we actually close
1141          * the vdev on error.
1142          */
1143         vd->vdev_reopening = B_FALSE;
1144         if (zio_injection_enabled && error == 0)
1145                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1146
1147         if (error) {
1148                 if (vd->vdev_removed &&
1149                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1150                         vd->vdev_removed = B_FALSE;
1151
1152                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1153                     vd->vdev_stat.vs_aux);
1154                 return (error);
1155         }
1156
1157         vd->vdev_removed = B_FALSE;
1158
1159         /*
1160          * Recheck the faulted flag now that we have confirmed that
1161          * the vdev is accessible.  If we're faulted, bail.
1162          */
1163         if (vd->vdev_faulted) {
1164                 ASSERT(vd->vdev_children == 0);
1165                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1166                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1167                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1168                     vd->vdev_label_aux);
1169                 return (ENXIO);
1170         }
1171
1172         if (vd->vdev_degraded) {
1173                 ASSERT(vd->vdev_children == 0);
1174                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1175                     VDEV_AUX_ERR_EXCEEDED);
1176         } else {
1177                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1178         }
1179
1180         /*
1181          * For hole or missing vdevs we just return success.
1182          */
1183         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1184                 return (0);
1185
1186         for (int c = 0; c < vd->vdev_children; c++) {
1187                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1188                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189                             VDEV_AUX_NONE);
1190                         break;
1191                 }
1192         }
1193
1194         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1195
1196         if (vd->vdev_children == 0) {
1197                 if (osize < SPA_MINDEVSIZE) {
1198                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1199                             VDEV_AUX_TOO_SMALL);
1200                         return (EOVERFLOW);
1201                 }
1202                 psize = osize;
1203                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1204         } else {
1205                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1206                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1207                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208                             VDEV_AUX_TOO_SMALL);
1209                         return (EOVERFLOW);
1210                 }
1211                 psize = 0;
1212                 asize = osize;
1213         }
1214
1215         vd->vdev_psize = psize;
1216
1217         /*
1218          * Make sure the allocatable size hasn't shrunk.
1219          */
1220         if (asize < vd->vdev_min_asize) {
1221                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1222                     VDEV_AUX_BAD_LABEL);
1223                 return (EINVAL);
1224         }
1225
1226         if (vd->vdev_asize == 0) {
1227                 /*
1228                  * This is the first-ever open, so use the computed values.
1229                  * For testing purposes, a higher ashift can be requested.
1230                  */
1231                 vd->vdev_asize = asize;
1232                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1233         } else {
1234                 /*
1235                  * Make sure the alignment requirement hasn't increased.
1236                  */
1237                 if (ashift > vd->vdev_top->vdev_ashift) {
1238                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239                             VDEV_AUX_BAD_LABEL);
1240                         return (EINVAL);
1241                 }
1242         }
1243
1244         /*
1245          * If all children are healthy and the asize has increased,
1246          * then we've experienced dynamic LUN growth.  If automatic
1247          * expansion is enabled then use the additional space.
1248          */
1249         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1250             (vd->vdev_expanding || spa->spa_autoexpand))
1251                 vd->vdev_asize = asize;
1252
1253         vdev_set_min_asize(vd);
1254
1255         /*
1256          * Ensure we can issue some IO before declaring the
1257          * vdev open for business.
1258          */
1259         if (vd->vdev_ops->vdev_op_leaf &&
1260             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1261                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1262                     VDEV_AUX_ERR_EXCEEDED);
1263                 return (error);
1264         }
1265
1266         /*
1267          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1268          * resilver.  But don't do this if we are doing a reopen for a scrub,
1269          * since this would just restart the scrub we are already doing.
1270          */
1271         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1272             vdev_resilver_needed(vd, NULL, NULL))
1273                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1274
1275         return (0);
1276 }
1277
1278 /*
1279  * Called once the vdevs are all opened, this routine validates the label
1280  * contents.  This needs to be done before vdev_load() so that we don't
1281  * inadvertently do repair I/Os to the wrong device.
1282  *
1283  * This function will only return failure if one of the vdevs indicates that it
1284  * has since been destroyed or exported.  This is only possible if
1285  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1286  * will be updated but the function will return 0.
1287  */
1288 int
1289 vdev_validate(vdev_t *vd)
1290 {
1291         spa_t *spa = vd->vdev_spa;
1292         nvlist_t *label;
1293         uint64_t guid = 0, top_guid;
1294         uint64_t state;
1295
1296         for (int c = 0; c < vd->vdev_children; c++)
1297                 if (vdev_validate(vd->vdev_child[c]) != 0)
1298                         return (EBADF);
1299
1300         /*
1301          * If the device has already failed, or was marked offline, don't do
1302          * any further validation.  Otherwise, label I/O will fail and we will
1303          * overwrite the previous state.
1304          */
1305         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1306                 uint64_t aux_guid = 0;
1307                 nvlist_t *nvl;
1308
1309                 if ((label = vdev_label_read_config(vd)) == NULL) {
1310                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311                             VDEV_AUX_BAD_LABEL);
1312                         return (0);
1313                 }
1314
1315                 /*
1316                  * Determine if this vdev has been split off into another
1317                  * pool.  If so, then refuse to open it.
1318                  */
1319                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1320                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1321                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1322                             VDEV_AUX_SPLIT_POOL);
1323                         nvlist_free(label);
1324                         return (0);
1325                 }
1326
1327                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1328                     &guid) != 0 || guid != spa_guid(spa)) {
1329                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1330                             VDEV_AUX_CORRUPT_DATA);
1331                         nvlist_free(label);
1332                         return (0);
1333                 }
1334
1335                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1336                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1337                     &aux_guid) != 0)
1338                         aux_guid = 0;
1339
1340                 /*
1341                  * If this vdev just became a top-level vdev because its
1342                  * sibling was detached, it will have adopted the parent's
1343                  * vdev guid -- but the label may or may not be on disk yet.
1344                  * Fortunately, either version of the label will have the
1345                  * same top guid, so if we're a top-level vdev, we can
1346                  * safely compare to that instead.
1347                  *
1348                  * If we split this vdev off instead, then we also check the
1349                  * original pool's guid.  We don't want to consider the vdev
1350                  * corrupt if it is partway through a split operation.
1351                  */
1352                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1353                     &guid) != 0 ||
1354                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1355                     &top_guid) != 0 ||
1356                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1357                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1358                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1359                             VDEV_AUX_CORRUPT_DATA);
1360                         nvlist_free(label);
1361                         return (0);
1362                 }
1363
1364                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1365                     &state) != 0) {
1366                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367                             VDEV_AUX_CORRUPT_DATA);
1368                         nvlist_free(label);
1369                         return (0);
1370                 }
1371
1372                 nvlist_free(label);
1373
1374                 /*
1375                  * If this is a verbatim import, no need to check the
1376                  * state of the pool.
1377                  */
1378                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1379                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1380                     state != POOL_STATE_ACTIVE)
1381                         return (EBADF);
1382
1383                 /*
1384                  * If we were able to open and validate a vdev that was
1385                  * previously marked permanently unavailable, clear that state
1386                  * now.
1387                  */
1388                 if (vd->vdev_not_present)
1389                         vd->vdev_not_present = 0;
1390         }
1391
1392         return (0);
1393 }
1394
1395 /*
1396  * Close a virtual device.
1397  */
1398 void
1399 vdev_close(vdev_t *vd)
1400 {
1401         spa_t *spa = vd->vdev_spa;
1402         vdev_t *pvd = vd->vdev_parent;
1403
1404         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1405
1406         /*
1407          * If our parent is reopening, then we are as well, unless we are
1408          * going offline.
1409          */
1410         if (pvd != NULL && pvd->vdev_reopening)
1411                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1412
1413         vd->vdev_ops->vdev_op_close(vd);
1414
1415         vdev_cache_purge(vd);
1416
1417         /*
1418          * We record the previous state before we close it, so that if we are
1419          * doing a reopen(), we don't generate FMA ereports if we notice that
1420          * it's still faulted.
1421          */
1422         vd->vdev_prevstate = vd->vdev_state;
1423
1424         if (vd->vdev_offline)
1425                 vd->vdev_state = VDEV_STATE_OFFLINE;
1426         else
1427                 vd->vdev_state = VDEV_STATE_CLOSED;
1428         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1429 }
1430
1431 void
1432 vdev_hold(vdev_t *vd)
1433 {
1434         spa_t *spa = vd->vdev_spa;
1435
1436         ASSERT(spa_is_root(spa));
1437         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1438                 return;
1439
1440         for (int c = 0; c < vd->vdev_children; c++)
1441                 vdev_hold(vd->vdev_child[c]);
1442
1443         if (vd->vdev_ops->vdev_op_leaf)
1444                 vd->vdev_ops->vdev_op_hold(vd);
1445 }
1446
1447 void
1448 vdev_rele(vdev_t *vd)
1449 {
1450         spa_t *spa = vd->vdev_spa;
1451
1452         ASSERT(spa_is_root(spa));
1453         for (int c = 0; c < vd->vdev_children; c++)
1454                 vdev_rele(vd->vdev_child[c]);
1455
1456         if (vd->vdev_ops->vdev_op_leaf)
1457                 vd->vdev_ops->vdev_op_rele(vd);
1458 }
1459
1460 /*
1461  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1462  * reopen leaf vdevs which had previously been opened as they might deadlock
1463  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1464  * If the leaf has never been opened then open it, as usual.
1465  */
1466 void
1467 vdev_reopen(vdev_t *vd)
1468 {
1469         spa_t *spa = vd->vdev_spa;
1470
1471         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1472
1473         /* set the reopening flag unless we're taking the vdev offline */
1474         vd->vdev_reopening = !vd->vdev_offline;
1475         vdev_close(vd);
1476         (void) vdev_open(vd);
1477
1478         /*
1479          * Call vdev_validate() here to make sure we have the same device.
1480          * Otherwise, a device with an invalid label could be successfully
1481          * opened in response to vdev_reopen().
1482          */
1483         if (vd->vdev_aux) {
1484                 (void) vdev_validate_aux(vd);
1485                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1486                     vd->vdev_aux == &spa->spa_l2cache &&
1487                     !l2arc_vdev_present(vd))
1488                         l2arc_add_vdev(spa, vd);
1489         } else {
1490                 (void) vdev_validate(vd);
1491         }
1492
1493         /*
1494          * Reassess parent vdev's health.
1495          */
1496         vdev_propagate_state(vd);
1497 }
1498
1499 int
1500 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1501 {
1502         int error;
1503
1504         /*
1505          * Normally, partial opens (e.g. of a mirror) are allowed.
1506          * For a create, however, we want to fail the request if
1507          * there are any components we can't open.
1508          */
1509         error = vdev_open(vd);
1510
1511         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1512                 vdev_close(vd);
1513                 return (error ? error : ENXIO);
1514         }
1515
1516         /*
1517          * Recursively initialize all labels.
1518          */
1519         if ((error = vdev_label_init(vd, txg, isreplacing ?
1520             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1521                 vdev_close(vd);
1522                 return (error);
1523         }
1524
1525         return (0);
1526 }
1527
1528 void
1529 vdev_metaslab_set_size(vdev_t *vd)
1530 {
1531         /*
1532          * Aim for roughly 200 metaslabs per vdev.
1533          */
1534         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1535         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1536 }
1537
1538 void
1539 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1540 {
1541         ASSERT(vd == vd->vdev_top);
1542         ASSERT(!vd->vdev_ishole);
1543         ASSERT(ISP2(flags));
1544         ASSERT(spa_writeable(vd->vdev_spa));
1545
1546         if (flags & VDD_METASLAB)
1547                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1548
1549         if (flags & VDD_DTL)
1550                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1551
1552         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1553 }
1554
1555 /*
1556  * DTLs.
1557  *
1558  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1559  * the vdev has less than perfect replication.  There are four kinds of DTL:
1560  *
1561  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1562  *
1563  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1564  *
1565  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1566  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1567  *      txgs that was scrubbed.
1568  *
1569  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1570  *      persistent errors or just some device being offline.
1571  *      Unlike the other three, the DTL_OUTAGE map is not generally
1572  *      maintained; it's only computed when needed, typically to
1573  *      determine whether a device can be detached.
1574  *
1575  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1576  * either has the data or it doesn't.
1577  *
1578  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1579  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1580  * if any child is less than fully replicated, then so is its parent.
1581  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1582  * comprising only those txgs which appear in 'maxfaults' or more children;
1583  * those are the txgs we don't have enough replication to read.  For example,
1584  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1585  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1586  * two child DTL_MISSING maps.
1587  *
1588  * It should be clear from the above that to compute the DTLs and outage maps
1589  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1590  * Therefore, that is all we keep on disk.  When loading the pool, or after
1591  * a configuration change, we generate all other DTLs from first principles.
1592  */
1593 void
1594 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1595 {
1596         space_map_t *sm = &vd->vdev_dtl[t];
1597
1598         ASSERT(t < DTL_TYPES);
1599         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1600         ASSERT(spa_writeable(vd->vdev_spa));
1601
1602         mutex_enter(sm->sm_lock);
1603         if (!space_map_contains(sm, txg, size))
1604                 space_map_add(sm, txg, size);
1605         mutex_exit(sm->sm_lock);
1606 }
1607
1608 boolean_t
1609 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1610 {
1611         space_map_t *sm = &vd->vdev_dtl[t];
1612         boolean_t dirty = B_FALSE;
1613
1614         ASSERT(t < DTL_TYPES);
1615         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1616
1617         mutex_enter(sm->sm_lock);
1618         if (sm->sm_space != 0)
1619                 dirty = space_map_contains(sm, txg, size);
1620         mutex_exit(sm->sm_lock);
1621
1622         return (dirty);
1623 }
1624
1625 boolean_t
1626 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1627 {
1628         space_map_t *sm = &vd->vdev_dtl[t];
1629         boolean_t empty;
1630
1631         mutex_enter(sm->sm_lock);
1632         empty = (sm->sm_space == 0);
1633         mutex_exit(sm->sm_lock);
1634
1635         return (empty);
1636 }
1637
1638 /*
1639  * Reassess DTLs after a config change or scrub completion.
1640  */
1641 void
1642 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1643 {
1644         spa_t *spa = vd->vdev_spa;
1645         avl_tree_t reftree;
1646         int minref;
1647
1648         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1649
1650         for (int c = 0; c < vd->vdev_children; c++)
1651                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1652                     scrub_txg, scrub_done);
1653
1654         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1655                 return;
1656
1657         if (vd->vdev_ops->vdev_op_leaf) {
1658                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1659
1660                 mutex_enter(&vd->vdev_dtl_lock);
1661                 if (scrub_txg != 0 &&
1662                     (spa->spa_scrub_started ||
1663                     (scn && scn->scn_phys.scn_errors == 0))) {
1664                         /*
1665                          * We completed a scrub up to scrub_txg.  If we
1666                          * did it without rebooting, then the scrub dtl
1667                          * will be valid, so excise the old region and
1668                          * fold in the scrub dtl.  Otherwise, leave the
1669                          * dtl as-is if there was an error.
1670                          *
1671                          * There's little trick here: to excise the beginning
1672                          * of the DTL_MISSING map, we put it into a reference
1673                          * tree and then add a segment with refcnt -1 that
1674                          * covers the range [0, scrub_txg).  This means
1675                          * that each txg in that range has refcnt -1 or 0.
1676                          * We then add DTL_SCRUB with a refcnt of 2, so that
1677                          * entries in the range [0, scrub_txg) will have a
1678                          * positive refcnt -- either 1 or 2.  We then convert
1679                          * the reference tree into the new DTL_MISSING map.
1680                          */
1681                         space_map_ref_create(&reftree);
1682                         space_map_ref_add_map(&reftree,
1683                             &vd->vdev_dtl[DTL_MISSING], 1);
1684                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1685                         space_map_ref_add_map(&reftree,
1686                             &vd->vdev_dtl[DTL_SCRUB], 2);
1687                         space_map_ref_generate_map(&reftree,
1688                             &vd->vdev_dtl[DTL_MISSING], 1);
1689                         space_map_ref_destroy(&reftree);
1690                 }
1691                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1692                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1693                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1694                 if (scrub_done)
1695                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1696                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1697                 if (!vdev_readable(vd))
1698                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1699                 else
1700                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1701                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1702                 mutex_exit(&vd->vdev_dtl_lock);
1703
1704                 if (txg != 0)
1705                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1706                 return;
1707         }
1708
1709         mutex_enter(&vd->vdev_dtl_lock);
1710         for (int t = 0; t < DTL_TYPES; t++) {
1711                 /* account for child's outage in parent's missing map */
1712                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1713                 if (t == DTL_SCRUB)
1714                         continue;                       /* leaf vdevs only */
1715                 if (t == DTL_PARTIAL)
1716                         minref = 1;                     /* i.e. non-zero */
1717                 else if (vd->vdev_nparity != 0)
1718                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1719                 else
1720                         minref = vd->vdev_children;     /* any kind of mirror */
1721                 space_map_ref_create(&reftree);
1722                 for (int c = 0; c < vd->vdev_children; c++) {
1723                         vdev_t *cvd = vd->vdev_child[c];
1724                         mutex_enter(&cvd->vdev_dtl_lock);
1725                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1726                         mutex_exit(&cvd->vdev_dtl_lock);
1727                 }
1728                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1729                 space_map_ref_destroy(&reftree);
1730         }
1731         mutex_exit(&vd->vdev_dtl_lock);
1732 }
1733
1734 static int
1735 vdev_dtl_load(vdev_t *vd)
1736 {
1737         spa_t *spa = vd->vdev_spa;
1738         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1739         objset_t *mos = spa->spa_meta_objset;
1740         dmu_buf_t *db;
1741         int error;
1742
1743         ASSERT(vd->vdev_children == 0);
1744
1745         if (smo->smo_object == 0)
1746                 return (0);
1747
1748         ASSERT(!vd->vdev_ishole);
1749
1750         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1751                 return (error);
1752
1753         ASSERT3U(db->db_size, >=, sizeof (*smo));
1754         bcopy(db->db_data, smo, sizeof (*smo));
1755         dmu_buf_rele(db, FTAG);
1756
1757         mutex_enter(&vd->vdev_dtl_lock);
1758         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1759             NULL, SM_ALLOC, smo, mos);
1760         mutex_exit(&vd->vdev_dtl_lock);
1761
1762         return (error);
1763 }
1764
1765 void
1766 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1767 {
1768         spa_t *spa = vd->vdev_spa;
1769         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1770         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1771         objset_t *mos = spa->spa_meta_objset;
1772         space_map_t smsync;
1773         kmutex_t smlock;
1774         dmu_buf_t *db;
1775         dmu_tx_t *tx;
1776
1777         ASSERT(!vd->vdev_ishole);
1778
1779         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1780
1781         if (vd->vdev_detached) {
1782                 if (smo->smo_object != 0) {
1783                         int err = dmu_object_free(mos, smo->smo_object, tx);
1784                         ASSERT3U(err, ==, 0);
1785                         smo->smo_object = 0;
1786                 }
1787                 dmu_tx_commit(tx);
1788                 return;
1789         }
1790
1791         if (smo->smo_object == 0) {
1792                 ASSERT(smo->smo_objsize == 0);
1793                 ASSERT(smo->smo_alloc == 0);
1794                 smo->smo_object = dmu_object_alloc(mos,
1795                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1796                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1797                 ASSERT(smo->smo_object != 0);
1798                 vdev_config_dirty(vd->vdev_top);
1799         }
1800
1801         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1802
1803         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1804             &smlock);
1805
1806         mutex_enter(&smlock);
1807
1808         mutex_enter(&vd->vdev_dtl_lock);
1809         space_map_walk(sm, space_map_add, &smsync);
1810         mutex_exit(&vd->vdev_dtl_lock);
1811
1812         space_map_truncate(smo, mos, tx);
1813         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1814
1815         space_map_destroy(&smsync);
1816
1817         mutex_exit(&smlock);
1818         mutex_destroy(&smlock);
1819
1820         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1821         dmu_buf_will_dirty(db, tx);
1822         ASSERT3U(db->db_size, >=, sizeof (*smo));
1823         bcopy(smo, db->db_data, sizeof (*smo));
1824         dmu_buf_rele(db, FTAG);
1825
1826         dmu_tx_commit(tx);
1827 }
1828
1829 /*
1830  * Determine whether the specified vdev can be offlined/detached/removed
1831  * without losing data.
1832  */
1833 boolean_t
1834 vdev_dtl_required(vdev_t *vd)
1835 {
1836         spa_t *spa = vd->vdev_spa;
1837         vdev_t *tvd = vd->vdev_top;
1838         uint8_t cant_read = vd->vdev_cant_read;
1839         boolean_t required;
1840
1841         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1842
1843         if (vd == spa->spa_root_vdev || vd == tvd)
1844                 return (B_TRUE);
1845
1846         /*
1847          * Temporarily mark the device as unreadable, and then determine
1848          * whether this results in any DTL outages in the top-level vdev.
1849          * If not, we can safely offline/detach/remove the device.
1850          */
1851         vd->vdev_cant_read = B_TRUE;
1852         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1853         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1854         vd->vdev_cant_read = cant_read;
1855         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1856
1857         if (!required && zio_injection_enabled)
1858                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1859
1860         return (required);
1861 }
1862
1863 /*
1864  * Determine if resilver is needed, and if so the txg range.
1865  */
1866 boolean_t
1867 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1868 {
1869         boolean_t needed = B_FALSE;
1870         uint64_t thismin = UINT64_MAX;
1871         uint64_t thismax = 0;
1872
1873         if (vd->vdev_children == 0) {
1874                 mutex_enter(&vd->vdev_dtl_lock);
1875                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1876                     vdev_writeable(vd)) {
1877                         space_seg_t *ss;
1878
1879                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1880                         thismin = ss->ss_start - 1;
1881                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1882                         thismax = ss->ss_end;
1883                         needed = B_TRUE;
1884                 }
1885                 mutex_exit(&vd->vdev_dtl_lock);
1886         } else {
1887                 for (int c = 0; c < vd->vdev_children; c++) {
1888                         vdev_t *cvd = vd->vdev_child[c];
1889                         uint64_t cmin, cmax;
1890
1891                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1892                                 thismin = MIN(thismin, cmin);
1893                                 thismax = MAX(thismax, cmax);
1894                                 needed = B_TRUE;
1895                         }
1896                 }
1897         }
1898
1899         if (needed && minp) {
1900                 *minp = thismin;
1901                 *maxp = thismax;
1902         }
1903         return (needed);
1904 }
1905
1906 void
1907 vdev_load(vdev_t *vd)
1908 {
1909         /*
1910          * Recursively load all children.
1911          */
1912         for (int c = 0; c < vd->vdev_children; c++)
1913                 vdev_load(vd->vdev_child[c]);
1914
1915         /*
1916          * If this is a top-level vdev, initialize its metaslabs.
1917          */
1918         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1919             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1920             vdev_metaslab_init(vd, 0) != 0))
1921                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1922                     VDEV_AUX_CORRUPT_DATA);
1923
1924         /*
1925          * If this is a leaf vdev, load its DTL.
1926          */
1927         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1928                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1929                     VDEV_AUX_CORRUPT_DATA);
1930 }
1931
1932 /*
1933  * The special vdev case is used for hot spares and l2cache devices.  Its
1934  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1935  * we make sure that we can open the underlying device, then try to read the
1936  * label, and make sure that the label is sane and that it hasn't been
1937  * repurposed to another pool.
1938  */
1939 int
1940 vdev_validate_aux(vdev_t *vd)
1941 {
1942         nvlist_t *label;
1943         uint64_t guid, version;
1944         uint64_t state;
1945
1946         if (!vdev_readable(vd))
1947                 return (0);
1948
1949         if ((label = vdev_label_read_config(vd)) == NULL) {
1950                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1951                     VDEV_AUX_CORRUPT_DATA);
1952                 return (-1);
1953         }
1954
1955         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1956             version > SPA_VERSION ||
1957             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1958             guid != vd->vdev_guid ||
1959             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1960                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1961                     VDEV_AUX_CORRUPT_DATA);
1962                 nvlist_free(label);
1963                 return (-1);
1964         }
1965
1966         /*
1967          * We don't actually check the pool state here.  If it's in fact in
1968          * use by another pool, we update this fact on the fly when requested.
1969          */
1970         nvlist_free(label);
1971         return (0);
1972 }
1973
1974 void
1975 vdev_remove(vdev_t *vd, uint64_t txg)
1976 {
1977         spa_t *spa = vd->vdev_spa;
1978         objset_t *mos = spa->spa_meta_objset;
1979         dmu_tx_t *tx;
1980
1981         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1982
1983         if (vd->vdev_dtl_smo.smo_object) {
1984                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1985                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1986                 vd->vdev_dtl_smo.smo_object = 0;
1987         }
1988
1989         if (vd->vdev_ms != NULL) {
1990                 for (int m = 0; m < vd->vdev_ms_count; m++) {
1991                         metaslab_t *msp = vd->vdev_ms[m];
1992
1993                         if (msp == NULL || msp->ms_smo.smo_object == 0)
1994                                 continue;
1995
1996                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1997                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1998                         msp->ms_smo.smo_object = 0;
1999                 }
2000         }
2001
2002         if (vd->vdev_ms_array) {
2003                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2004                 vd->vdev_ms_array = 0;
2005                 vd->vdev_ms_shift = 0;
2006         }
2007         dmu_tx_commit(tx);
2008 }
2009
2010 void
2011 vdev_sync_done(vdev_t *vd, uint64_t txg)
2012 {
2013         metaslab_t *msp;
2014         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2015
2016         ASSERT(!vd->vdev_ishole);
2017
2018         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2019                 metaslab_sync_done(msp, txg);
2020
2021         if (reassess)
2022                 metaslab_sync_reassess(vd->vdev_mg);
2023 }
2024
2025 void
2026 vdev_sync(vdev_t *vd, uint64_t txg)
2027 {
2028         spa_t *spa = vd->vdev_spa;
2029         vdev_t *lvd;
2030         metaslab_t *msp;
2031         dmu_tx_t *tx;
2032
2033         ASSERT(!vd->vdev_ishole);
2034
2035         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2036                 ASSERT(vd == vd->vdev_top);
2037                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2038                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2039                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2040                 ASSERT(vd->vdev_ms_array != 0);
2041                 vdev_config_dirty(vd);
2042                 dmu_tx_commit(tx);
2043         }
2044
2045         /*
2046          * Remove the metadata associated with this vdev once it's empty.
2047          */
2048         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2049                 vdev_remove(vd, txg);
2050
2051         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2052                 metaslab_sync(msp, txg);
2053                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2054         }
2055
2056         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2057                 vdev_dtl_sync(lvd, txg);
2058
2059         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2060 }
2061
2062 uint64_t
2063 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2064 {
2065         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2066 }
2067
2068 /*
2069  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2070  * not be opened, and no I/O is attempted.
2071  */
2072 int
2073 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2074 {
2075         vdev_t *vd, *tvd;
2076
2077         spa_vdev_state_enter(spa, SCL_NONE);
2078
2079         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2080                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2081
2082         if (!vd->vdev_ops->vdev_op_leaf)
2083                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2084
2085         tvd = vd->vdev_top;
2086
2087         /*
2088          * We don't directly use the aux state here, but if we do a
2089          * vdev_reopen(), we need this value to be present to remember why we
2090          * were faulted.
2091          */
2092         vd->vdev_label_aux = aux;
2093
2094         /*
2095          * Faulted state takes precedence over degraded.
2096          */
2097         vd->vdev_delayed_close = B_FALSE;
2098         vd->vdev_faulted = 1ULL;
2099         vd->vdev_degraded = 0ULL;
2100         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2101
2102         /*
2103          * If this device has the only valid copy of the data, then
2104          * back off and simply mark the vdev as degraded instead.
2105          */
2106         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2107                 vd->vdev_degraded = 1ULL;
2108                 vd->vdev_faulted = 0ULL;
2109
2110                 /*
2111                  * If we reopen the device and it's not dead, only then do we
2112                  * mark it degraded.
2113                  */
2114                 vdev_reopen(tvd);
2115
2116                 if (vdev_readable(vd))
2117                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2118         }
2119
2120         return (spa_vdev_state_exit(spa, vd, 0));
2121 }
2122
2123 /*
2124  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2125  * user that something is wrong.  The vdev continues to operate as normal as far
2126  * as I/O is concerned.
2127  */
2128 int
2129 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2130 {
2131         vdev_t *vd;
2132
2133         spa_vdev_state_enter(spa, SCL_NONE);
2134
2135         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2136                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2137
2138         if (!vd->vdev_ops->vdev_op_leaf)
2139                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2140
2141         /*
2142          * If the vdev is already faulted, then don't do anything.
2143          */
2144         if (vd->vdev_faulted || vd->vdev_degraded)
2145                 return (spa_vdev_state_exit(spa, NULL, 0));
2146
2147         vd->vdev_degraded = 1ULL;
2148         if (!vdev_is_dead(vd))
2149                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2150                     aux);
2151
2152         return (spa_vdev_state_exit(spa, vd, 0));
2153 }
2154
2155 /*
2156  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2157  * any attached spare device should be detached when the device finishes
2158  * resilvering.  Second, the online should be treated like a 'test' online case,
2159  * so no FMA events are generated if the device fails to open.
2160  */
2161 int
2162 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2163 {
2164         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2165
2166         spa_vdev_state_enter(spa, SCL_NONE);
2167
2168         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2169                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2170
2171         if (!vd->vdev_ops->vdev_op_leaf)
2172                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2173
2174         tvd = vd->vdev_top;
2175         vd->vdev_offline = B_FALSE;
2176         vd->vdev_tmpoffline = B_FALSE;
2177         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2178         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2179
2180         /* XXX - L2ARC 1.0 does not support expansion */
2181         if (!vd->vdev_aux) {
2182                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2183                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2184         }
2185
2186         vdev_reopen(tvd);
2187         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2188
2189         if (!vd->vdev_aux) {
2190                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2191                         pvd->vdev_expanding = B_FALSE;
2192         }
2193
2194         if (newstate)
2195                 *newstate = vd->vdev_state;
2196         if ((flags & ZFS_ONLINE_UNSPARE) &&
2197             !vdev_is_dead(vd) && vd->vdev_parent &&
2198             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2199             vd->vdev_parent->vdev_child[0] == vd)
2200                 vd->vdev_unspare = B_TRUE;
2201
2202         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2203
2204                 /* XXX - L2ARC 1.0 does not support expansion */
2205                 if (vd->vdev_aux)
2206                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2207                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2208         }
2209         return (spa_vdev_state_exit(spa, vd, 0));
2210 }
2211
2212 static int
2213 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2214 {
2215         vdev_t *vd, *tvd;
2216         int error = 0;
2217         uint64_t generation;
2218         metaslab_group_t *mg;
2219
2220 top:
2221         spa_vdev_state_enter(spa, SCL_ALLOC);
2222
2223         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2224                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2225
2226         if (!vd->vdev_ops->vdev_op_leaf)
2227                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2228
2229         tvd = vd->vdev_top;
2230         mg = tvd->vdev_mg;
2231         generation = spa->spa_config_generation + 1;
2232
2233         /*
2234          * If the device isn't already offline, try to offline it.
2235          */
2236         if (!vd->vdev_offline) {
2237                 /*
2238                  * If this device has the only valid copy of some data,
2239                  * don't allow it to be offlined. Log devices are always
2240                  * expendable.
2241                  */
2242                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2243                     vdev_dtl_required(vd))
2244                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2245
2246                 /*
2247                  * If the top-level is a slog and it has had allocations
2248                  * then proceed.  We check that the vdev's metaslab group
2249                  * is not NULL since it's possible that we may have just
2250                  * added this vdev but not yet initialized its metaslabs.
2251                  */
2252                 if (tvd->vdev_islog && mg != NULL) {
2253                         /*
2254                          * Prevent any future allocations.
2255                          */
2256                         metaslab_group_passivate(mg);
2257                         (void) spa_vdev_state_exit(spa, vd, 0);
2258
2259                         error = spa_offline_log(spa);
2260
2261                         spa_vdev_state_enter(spa, SCL_ALLOC);
2262
2263                         /*
2264                          * Check to see if the config has changed.
2265                          */
2266                         if (error || generation != spa->spa_config_generation) {
2267                                 metaslab_group_activate(mg);
2268                                 if (error)
2269                                         return (spa_vdev_state_exit(spa,
2270                                             vd, error));
2271                                 (void) spa_vdev_state_exit(spa, vd, 0);
2272                                 goto top;
2273                         }
2274                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2275                 }
2276
2277                 /*
2278                  * Offline this device and reopen its top-level vdev.
2279                  * If the top-level vdev is a log device then just offline
2280                  * it. Otherwise, if this action results in the top-level
2281                  * vdev becoming unusable, undo it and fail the request.
2282                  */
2283                 vd->vdev_offline = B_TRUE;
2284                 vdev_reopen(tvd);
2285
2286                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2287                     vdev_is_dead(tvd)) {
2288                         vd->vdev_offline = B_FALSE;
2289                         vdev_reopen(tvd);
2290                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2291                 }
2292
2293                 /*
2294                  * Add the device back into the metaslab rotor so that
2295                  * once we online the device it's open for business.
2296                  */
2297                 if (tvd->vdev_islog && mg != NULL)
2298                         metaslab_group_activate(mg);
2299         }
2300
2301         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2302
2303         return (spa_vdev_state_exit(spa, vd, 0));
2304 }
2305
2306 int
2307 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2308 {
2309         int error;
2310
2311         mutex_enter(&spa->spa_vdev_top_lock);
2312         error = vdev_offline_locked(spa, guid, flags);
2313         mutex_exit(&spa->spa_vdev_top_lock);
2314
2315         return (error);
2316 }
2317
2318 /*
2319  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2320  * vdev_offline(), we assume the spa config is locked.  We also clear all
2321  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2322  */
2323 void
2324 vdev_clear(spa_t *spa, vdev_t *vd)
2325 {
2326         vdev_t *rvd = spa->spa_root_vdev;
2327
2328         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2329
2330         if (vd == NULL)
2331                 vd = rvd;
2332
2333         vd->vdev_stat.vs_read_errors = 0;
2334         vd->vdev_stat.vs_write_errors = 0;
2335         vd->vdev_stat.vs_checksum_errors = 0;
2336
2337         for (int c = 0; c < vd->vdev_children; c++)
2338                 vdev_clear(spa, vd->vdev_child[c]);
2339
2340         /*
2341          * If we're in the FAULTED state or have experienced failed I/O, then
2342          * clear the persistent state and attempt to reopen the device.  We
2343          * also mark the vdev config dirty, so that the new faulted state is
2344          * written out to disk.
2345          */
2346         if (vd->vdev_faulted || vd->vdev_degraded ||
2347             !vdev_readable(vd) || !vdev_writeable(vd)) {
2348
2349                 /*
2350                  * When reopening in reponse to a clear event, it may be due to
2351                  * a fmadm repair request.  In this case, if the device is
2352                  * still broken, we want to still post the ereport again.
2353                  */
2354                 vd->vdev_forcefault = B_TRUE;
2355
2356                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2357                 vd->vdev_cant_read = B_FALSE;
2358                 vd->vdev_cant_write = B_FALSE;
2359
2360                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2361
2362                 vd->vdev_forcefault = B_FALSE;
2363
2364                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2365                         vdev_state_dirty(vd->vdev_top);
2366
2367                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2368                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2369
2370                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2371         }
2372
2373         /*
2374          * When clearing a FMA-diagnosed fault, we always want to
2375          * unspare the device, as we assume that the original spare was
2376          * done in response to the FMA fault.
2377          */
2378         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2379             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2380             vd->vdev_parent->vdev_child[0] == vd)
2381                 vd->vdev_unspare = B_TRUE;
2382 }
2383
2384 boolean_t
2385 vdev_is_dead(vdev_t *vd)
2386 {
2387         /*
2388          * Holes and missing devices are always considered "dead".
2389          * This simplifies the code since we don't have to check for
2390          * these types of devices in the various code paths.
2391          * Instead we rely on the fact that we skip over dead devices
2392          * before issuing I/O to them.
2393          */
2394         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2395             vd->vdev_ops == &vdev_missing_ops);
2396 }
2397
2398 boolean_t
2399 vdev_readable(vdev_t *vd)
2400 {
2401         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2402 }
2403
2404 boolean_t
2405 vdev_writeable(vdev_t *vd)
2406 {
2407         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2408 }
2409
2410 boolean_t
2411 vdev_allocatable(vdev_t *vd)
2412 {
2413         uint64_t state = vd->vdev_state;
2414
2415         /*
2416          * We currently allow allocations from vdevs which may be in the
2417          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2418          * fails to reopen then we'll catch it later when we're holding
2419          * the proper locks.  Note that we have to get the vdev state
2420          * in a local variable because although it changes atomically,
2421          * we're asking two separate questions about it.
2422          */
2423         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2424             !vd->vdev_cant_write && !vd->vdev_ishole);
2425 }
2426
2427 boolean_t
2428 vdev_accessible(vdev_t *vd, zio_t *zio)
2429 {
2430         ASSERT(zio->io_vd == vd);
2431
2432         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2433                 return (B_FALSE);
2434
2435         if (zio->io_type == ZIO_TYPE_READ)
2436                 return (!vd->vdev_cant_read);
2437
2438         if (zio->io_type == ZIO_TYPE_WRITE)
2439                 return (!vd->vdev_cant_write);
2440
2441         return (B_TRUE);
2442 }
2443
2444 /*
2445  * Get statistics for the given vdev.
2446  */
2447 void
2448 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2449 {
2450         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2451
2452         mutex_enter(&vd->vdev_stat_lock);
2453         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2454         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2455         vs->vs_state = vd->vdev_state;
2456         vs->vs_rsize = vdev_get_min_asize(vd);
2457         if (vd->vdev_ops->vdev_op_leaf)
2458                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2459         mutex_exit(&vd->vdev_stat_lock);
2460
2461         /*
2462          * If we're getting stats on the root vdev, aggregate the I/O counts
2463          * over all top-level vdevs (i.e. the direct children of the root).
2464          */
2465         if (vd == rvd) {
2466                 for (int c = 0; c < rvd->vdev_children; c++) {
2467                         vdev_t *cvd = rvd->vdev_child[c];
2468                         vdev_stat_t *cvs = &cvd->vdev_stat;
2469
2470                         mutex_enter(&vd->vdev_stat_lock);
2471                         for (int t = 0; t < ZIO_TYPES; t++) {
2472                                 vs->vs_ops[t] += cvs->vs_ops[t];
2473                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2474                         }
2475                         cvs->vs_scan_removing = cvd->vdev_removing;
2476                         mutex_exit(&vd->vdev_stat_lock);
2477                 }
2478         }
2479 }
2480
2481 void
2482 vdev_clear_stats(vdev_t *vd)
2483 {
2484         mutex_enter(&vd->vdev_stat_lock);
2485         vd->vdev_stat.vs_space = 0;
2486         vd->vdev_stat.vs_dspace = 0;
2487         vd->vdev_stat.vs_alloc = 0;
2488         mutex_exit(&vd->vdev_stat_lock);
2489 }
2490
2491 void
2492 vdev_scan_stat_init(vdev_t *vd)
2493 {
2494         vdev_stat_t *vs = &vd->vdev_stat;
2495
2496         for (int c = 0; c < vd->vdev_children; c++)
2497                 vdev_scan_stat_init(vd->vdev_child[c]);
2498
2499         mutex_enter(&vd->vdev_stat_lock);
2500         vs->vs_scan_processed = 0;
2501         mutex_exit(&vd->vdev_stat_lock);
2502 }
2503
2504 void
2505 vdev_stat_update(zio_t *zio, uint64_t psize)
2506 {
2507         spa_t *spa = zio->io_spa;
2508         vdev_t *rvd = spa->spa_root_vdev;
2509         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2510         vdev_t *pvd;
2511         uint64_t txg = zio->io_txg;
2512         vdev_stat_t *vs = &vd->vdev_stat;
2513         zio_type_t type = zio->io_type;
2514         int flags = zio->io_flags;
2515
2516         /*
2517          * If this i/o is a gang leader, it didn't do any actual work.
2518          */
2519         if (zio->io_gang_tree)
2520                 return;
2521
2522         if (zio->io_error == 0) {
2523                 /*
2524                  * If this is a root i/o, don't count it -- we've already
2525                  * counted the top-level vdevs, and vdev_get_stats() will
2526                  * aggregate them when asked.  This reduces contention on
2527                  * the root vdev_stat_lock and implicitly handles blocks
2528                  * that compress away to holes, for which there is no i/o.
2529                  * (Holes never create vdev children, so all the counters
2530                  * remain zero, which is what we want.)
2531                  *
2532                  * Note: this only applies to successful i/o (io_error == 0)
2533                  * because unlike i/o counts, errors are not additive.
2534                  * When reading a ditto block, for example, failure of
2535                  * one top-level vdev does not imply a root-level error.
2536                  */
2537                 if (vd == rvd)
2538                         return;
2539
2540                 ASSERT(vd == zio->io_vd);
2541
2542                 if (flags & ZIO_FLAG_IO_BYPASS)
2543                         return;
2544
2545                 mutex_enter(&vd->vdev_stat_lock);
2546
2547                 if (flags & ZIO_FLAG_IO_REPAIR) {
2548                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2549                                 dsl_scan_phys_t *scn_phys =
2550                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2551                                 uint64_t *processed = &scn_phys->scn_processed;
2552
2553                                 /* XXX cleanup? */
2554                                 if (vd->vdev_ops->vdev_op_leaf)
2555                                         atomic_add_64(processed, psize);
2556                                 vs->vs_scan_processed += psize;
2557                         }
2558
2559                         if (flags & ZIO_FLAG_SELF_HEAL)
2560                                 vs->vs_self_healed += psize;
2561                 }
2562
2563                 vs->vs_ops[type]++;
2564                 vs->vs_bytes[type] += psize;
2565
2566                 mutex_exit(&vd->vdev_stat_lock);
2567                 return;
2568         }
2569
2570         if (flags & ZIO_FLAG_SPECULATIVE)
2571                 return;
2572
2573         /*
2574          * If this is an I/O error that is going to be retried, then ignore the
2575          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2576          * hard errors, when in reality they can happen for any number of
2577          * innocuous reasons (bus resets, MPxIO link failure, etc).
2578          */
2579         if (zio->io_error == EIO &&
2580             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2581                 return;
2582
2583         /*
2584          * Intent logs writes won't propagate their error to the root
2585          * I/O so don't mark these types of failures as pool-level
2586          * errors.
2587          */
2588         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2589                 return;
2590
2591         mutex_enter(&vd->vdev_stat_lock);
2592         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2593                 if (zio->io_error == ECKSUM)
2594                         vs->vs_checksum_errors++;
2595                 else
2596                         vs->vs_read_errors++;
2597         }
2598         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2599                 vs->vs_write_errors++;
2600         mutex_exit(&vd->vdev_stat_lock);
2601
2602         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2603             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2604             (flags & ZIO_FLAG_SCAN_THREAD) ||
2605             spa->spa_claiming)) {
2606                 /*
2607                  * This is either a normal write (not a repair), or it's
2608                  * a repair induced by the scrub thread, or it's a repair
2609                  * made by zil_claim() during spa_load() in the first txg.
2610                  * In the normal case, we commit the DTL change in the same
2611                  * txg as the block was born.  In the scrub-induced repair
2612                  * case, we know that scrubs run in first-pass syncing context,
2613                  * so we commit the DTL change in spa_syncing_txg(spa).
2614                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2615                  *
2616                  * We currently do not make DTL entries for failed spontaneous
2617                  * self-healing writes triggered by normal (non-scrubbing)
2618                  * reads, because we have no transactional context in which to
2619                  * do so -- and it's not clear that it'd be desirable anyway.
2620                  */
2621                 if (vd->vdev_ops->vdev_op_leaf) {
2622                         uint64_t commit_txg = txg;
2623                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2624                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2625                                 ASSERT(spa_sync_pass(spa) == 1);
2626                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2627                                 commit_txg = spa_syncing_txg(spa);
2628                         } else if (spa->spa_claiming) {
2629                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2630                                 commit_txg = spa_first_txg(spa);
2631                         }
2632                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2633                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2634                                 return;
2635                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2636                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2637                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2638                 }
2639                 if (vd != rvd)
2640                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2641         }
2642 }
2643
2644 /*
2645  * Update the in-core space usage stats for this vdev, its metaslab class,
2646  * and the root vdev.
2647  */
2648 void
2649 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2650     int64_t space_delta)
2651 {
2652         int64_t dspace_delta = space_delta;
2653         spa_t *spa = vd->vdev_spa;
2654         vdev_t *rvd = spa->spa_root_vdev;
2655         metaslab_group_t *mg = vd->vdev_mg;
2656         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2657
2658         ASSERT(vd == vd->vdev_top);
2659
2660         /*
2661          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2662          * factor.  We must calculate this here and not at the root vdev
2663          * because the root vdev's psize-to-asize is simply the max of its
2664          * childrens', thus not accurate enough for us.
2665          */
2666         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2667         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2668         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2669             vd->vdev_deflate_ratio;
2670
2671         mutex_enter(&vd->vdev_stat_lock);
2672         vd->vdev_stat.vs_alloc += alloc_delta;
2673         vd->vdev_stat.vs_space += space_delta;
2674         vd->vdev_stat.vs_dspace += dspace_delta;
2675         mutex_exit(&vd->vdev_stat_lock);
2676
2677         if (mc == spa_normal_class(spa)) {
2678                 mutex_enter(&rvd->vdev_stat_lock);
2679                 rvd->vdev_stat.vs_alloc += alloc_delta;
2680                 rvd->vdev_stat.vs_space += space_delta;
2681                 rvd->vdev_stat.vs_dspace += dspace_delta;
2682                 mutex_exit(&rvd->vdev_stat_lock);
2683         }
2684
2685         if (mc != NULL) {
2686                 ASSERT(rvd == vd->vdev_parent);
2687                 ASSERT(vd->vdev_ms_count != 0);
2688
2689                 metaslab_class_space_update(mc,
2690                     alloc_delta, defer_delta, space_delta, dspace_delta);
2691         }
2692 }
2693
2694 /*
2695  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2696  * so that it will be written out next time the vdev configuration is synced.
2697  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2698  */
2699 void
2700 vdev_config_dirty(vdev_t *vd)
2701 {
2702         spa_t *spa = vd->vdev_spa;
2703         vdev_t *rvd = spa->spa_root_vdev;
2704         int c;
2705
2706         ASSERT(spa_writeable(spa));
2707
2708         /*
2709          * If this is an aux vdev (as with l2cache and spare devices), then we
2710          * update the vdev config manually and set the sync flag.
2711          */
2712         if (vd->vdev_aux != NULL) {
2713                 spa_aux_vdev_t *sav = vd->vdev_aux;
2714                 nvlist_t **aux;
2715                 uint_t naux;
2716
2717                 for (c = 0; c < sav->sav_count; c++) {
2718                         if (sav->sav_vdevs[c] == vd)
2719                                 break;
2720                 }
2721
2722                 if (c == sav->sav_count) {
2723                         /*
2724                          * We're being removed.  There's nothing more to do.
2725                          */
2726                         ASSERT(sav->sav_sync == B_TRUE);
2727                         return;
2728                 }
2729
2730                 sav->sav_sync = B_TRUE;
2731
2732                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2733                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2734                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2735                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2736                 }
2737
2738                 ASSERT(c < naux);
2739
2740                 /*
2741                  * Setting the nvlist in the middle if the array is a little
2742                  * sketchy, but it will work.
2743                  */
2744                 nvlist_free(aux[c]);
2745                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2746
2747                 return;
2748         }
2749
2750         /*
2751          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2752          * must either hold SCL_CONFIG as writer, or must be the sync thread
2753          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2754          * so this is sufficient to ensure mutual exclusion.
2755          */
2756         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2757             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2758             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2759
2760         if (vd == rvd) {
2761                 for (c = 0; c < rvd->vdev_children; c++)
2762                         vdev_config_dirty(rvd->vdev_child[c]);
2763         } else {
2764                 ASSERT(vd == vd->vdev_top);
2765
2766                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2767                     !vd->vdev_ishole)
2768                         list_insert_head(&spa->spa_config_dirty_list, vd);
2769         }
2770 }
2771
2772 void
2773 vdev_config_clean(vdev_t *vd)
2774 {
2775         spa_t *spa = vd->vdev_spa;
2776
2777         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2778             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2779             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2780
2781         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2782         list_remove(&spa->spa_config_dirty_list, vd);
2783 }
2784
2785 /*
2786  * Mark a top-level vdev's state as dirty, so that the next pass of
2787  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2788  * the state changes from larger config changes because they require
2789  * much less locking, and are often needed for administrative actions.
2790  */
2791 void
2792 vdev_state_dirty(vdev_t *vd)
2793 {
2794         spa_t *spa = vd->vdev_spa;
2795
2796         ASSERT(spa_writeable(spa));
2797         ASSERT(vd == vd->vdev_top);
2798
2799         /*
2800          * The state list is protected by the SCL_STATE lock.  The caller
2801          * must either hold SCL_STATE as writer, or must be the sync thread
2802          * (which holds SCL_STATE as reader).  There's only one sync thread,
2803          * so this is sufficient to ensure mutual exclusion.
2804          */
2805         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807             spa_config_held(spa, SCL_STATE, RW_READER)));
2808
2809         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2810                 list_insert_head(&spa->spa_state_dirty_list, vd);
2811 }
2812
2813 void
2814 vdev_state_clean(vdev_t *vd)
2815 {
2816         spa_t *spa = vd->vdev_spa;
2817
2818         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2819             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2820             spa_config_held(spa, SCL_STATE, RW_READER)));
2821
2822         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2823         list_remove(&spa->spa_state_dirty_list, vd);
2824 }
2825
2826 /*
2827  * Propagate vdev state up from children to parent.
2828  */
2829 void
2830 vdev_propagate_state(vdev_t *vd)
2831 {
2832         spa_t *spa = vd->vdev_spa;
2833         vdev_t *rvd = spa->spa_root_vdev;
2834         int degraded = 0, faulted = 0;
2835         int corrupted = 0;
2836         vdev_t *child;
2837
2838         if (vd->vdev_children > 0) {
2839                 for (int c = 0; c < vd->vdev_children; c++) {
2840                         child = vd->vdev_child[c];
2841
2842                         /*
2843                          * Don't factor holes into the decision.
2844                          */
2845                         if (child->vdev_ishole)
2846                                 continue;
2847
2848                         if (!vdev_readable(child) ||
2849                             (!vdev_writeable(child) && spa_writeable(spa))) {
2850                                 /*
2851                                  * Root special: if there is a top-level log
2852                                  * device, treat the root vdev as if it were
2853                                  * degraded.
2854                                  */
2855                                 if (child->vdev_islog && vd == rvd)
2856                                         degraded++;
2857                                 else
2858                                         faulted++;
2859                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2860                                 degraded++;
2861                         }
2862
2863                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2864                                 corrupted++;
2865                 }
2866
2867                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2868
2869                 /*
2870                  * Root special: if there is a top-level vdev that cannot be
2871                  * opened due to corrupted metadata, then propagate the root
2872                  * vdev's aux state as 'corrupt' rather than 'insufficient
2873                  * replicas'.
2874                  */
2875                 if (corrupted && vd == rvd &&
2876                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2877                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2878                             VDEV_AUX_CORRUPT_DATA);
2879         }
2880
2881         if (vd->vdev_parent)
2882                 vdev_propagate_state(vd->vdev_parent);
2883 }
2884
2885 /*
2886  * Set a vdev's state.  If this is during an open, we don't update the parent
2887  * state, because we're in the process of opening children depth-first.
2888  * Otherwise, we propagate the change to the parent.
2889  *
2890  * If this routine places a device in a faulted state, an appropriate ereport is
2891  * generated.
2892  */
2893 void
2894 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2895 {
2896         uint64_t save_state;
2897         spa_t *spa = vd->vdev_spa;
2898
2899         if (state == vd->vdev_state) {
2900                 vd->vdev_stat.vs_aux = aux;
2901                 return;
2902         }
2903
2904         save_state = vd->vdev_state;
2905
2906         vd->vdev_state = state;
2907         vd->vdev_stat.vs_aux = aux;
2908
2909         /*
2910          * If we are setting the vdev state to anything but an open state, then
2911          * always close the underlying device unless the device has requested
2912          * a delayed close (i.e. we're about to remove or fault the device).
2913          * Otherwise, we keep accessible but invalid devices open forever.
2914          * We don't call vdev_close() itself, because that implies some extra
2915          * checks (offline, etc) that we don't want here.  This is limited to
2916          * leaf devices, because otherwise closing the device will affect other
2917          * children.
2918          */
2919         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2920             vd->vdev_ops->vdev_op_leaf)
2921                 vd->vdev_ops->vdev_op_close(vd);
2922
2923         /*
2924          * If we have brought this vdev back into service, we need
2925          * to notify fmd so that it can gracefully repair any outstanding
2926          * cases due to a missing device.  We do this in all cases, even those
2927          * that probably don't correlate to a repaired fault.  This is sure to
2928          * catch all cases, and we let the zfs-retire agent sort it out.  If
2929          * this is a transient state it's OK, as the retire agent will
2930          * double-check the state of the vdev before repairing it.
2931          */
2932         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2933             vd->vdev_prevstate != state)
2934                 zfs_post_state_change(spa, vd);
2935
2936         if (vd->vdev_removed &&
2937             state == VDEV_STATE_CANT_OPEN &&
2938             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2939                 /*
2940                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2941                  * device was previously marked removed and someone attempted to
2942                  * reopen it.  If this failed due to a nonexistent device, then
2943                  * keep the device in the REMOVED state.  We also let this be if
2944                  * it is one of our special test online cases, which is only
2945                  * attempting to online the device and shouldn't generate an FMA
2946                  * fault.
2947                  */
2948                 vd->vdev_state = VDEV_STATE_REMOVED;
2949                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2950         } else if (state == VDEV_STATE_REMOVED) {
2951                 vd->vdev_removed = B_TRUE;
2952         } else if (state == VDEV_STATE_CANT_OPEN) {
2953                 /*
2954                  * If we fail to open a vdev during an import or recovery, we
2955                  * mark it as "not available", which signifies that it was
2956                  * never there to begin with.  Failure to open such a device
2957                  * is not considered an error.
2958                  */
2959                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2960                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2961                     vd->vdev_ops->vdev_op_leaf)
2962                         vd->vdev_not_present = 1;
2963
2964                 /*
2965                  * Post the appropriate ereport.  If the 'prevstate' field is
2966                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2967                  * that this is part of a vdev_reopen().  In this case, we don't
2968                  * want to post the ereport if the device was already in the
2969                  * CANT_OPEN state beforehand.
2970                  *
2971                  * If the 'checkremove' flag is set, then this is an attempt to
2972                  * online the device in response to an insertion event.  If we
2973                  * hit this case, then we have detected an insertion event for a
2974                  * faulted or offline device that wasn't in the removed state.
2975                  * In this scenario, we don't post an ereport because we are
2976                  * about to replace the device, or attempt an online with
2977                  * vdev_forcefault, which will generate the fault for us.
2978                  */
2979                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2980                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2981                     vd != spa->spa_root_vdev) {
2982                         const char *class;
2983
2984                         switch (aux) {
2985                         case VDEV_AUX_OPEN_FAILED:
2986                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2987                                 break;
2988                         case VDEV_AUX_CORRUPT_DATA:
2989                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2990                                 break;
2991                         case VDEV_AUX_NO_REPLICAS:
2992                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2993                                 break;
2994                         case VDEV_AUX_BAD_GUID_SUM:
2995                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2996                                 break;
2997                         case VDEV_AUX_TOO_SMALL:
2998                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2999                                 break;
3000                         case VDEV_AUX_BAD_LABEL:
3001                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3002                                 break;
3003                         default:
3004                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3005                         }
3006
3007                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3008                 }
3009
3010                 /* Erase any notion of persistent removed state */
3011                 vd->vdev_removed = B_FALSE;
3012         } else {
3013                 vd->vdev_removed = B_FALSE;
3014         }
3015
3016         if (!isopen && vd->vdev_parent)
3017                 vdev_propagate_state(vd->vdev_parent);
3018 }
3019
3020 /*
3021  * Check the vdev configuration to ensure that it's capable of supporting
3022  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3023  * In addition, only a single top-level vdev is allowed and none of the leaves
3024  * can be wholedisks.
3025  */
3026 boolean_t
3027 vdev_is_bootable(vdev_t *vd)
3028 {
3029         if (!vd->vdev_ops->vdev_op_leaf) {
3030                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3031
3032                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3033                     vd->vdev_children > 1) {
3034                         return (B_FALSE);
3035                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3036                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3037                         return (B_FALSE);
3038                 }
3039         } else if (vd->vdev_wholedisk == 1) {
3040                 return (B_FALSE);
3041         }
3042
3043         for (int c = 0; c < vd->vdev_children; c++) {
3044                 if (!vdev_is_bootable(vd->vdev_child[c]))
3045                         return (B_FALSE);
3046         }
3047         return (B_TRUE);
3048 }
3049
3050 /*
3051  * Load the state from the original vdev tree (ovd) which
3052  * we've retrieved from the MOS config object. If the original
3053  * vdev was offline or faulted then we transfer that state to the
3054  * device in the current vdev tree (nvd).
3055  */
3056 void
3057 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3058 {
3059         spa_t *spa = nvd->vdev_spa;
3060
3061         ASSERT(nvd->vdev_top->vdev_islog);
3062         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3063         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3064
3065         for (int c = 0; c < nvd->vdev_children; c++)
3066                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3067
3068         if (nvd->vdev_ops->vdev_op_leaf) {
3069                 /*
3070                  * Restore the persistent vdev state
3071                  */
3072                 nvd->vdev_offline = ovd->vdev_offline;
3073                 nvd->vdev_faulted = ovd->vdev_faulted;
3074                 nvd->vdev_degraded = ovd->vdev_degraded;
3075                 nvd->vdev_removed = ovd->vdev_removed;
3076         }
3077 }
3078
3079 /*
3080  * Determine if a log device has valid content.  If the vdev was
3081  * removed or faulted in the MOS config then we know that
3082  * the content on the log device has already been written to the pool.
3083  */
3084 boolean_t
3085 vdev_log_state_valid(vdev_t *vd)
3086 {
3087         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3088             !vd->vdev_removed)
3089                 return (B_TRUE);
3090
3091         for (int c = 0; c < vd->vdev_children; c++)
3092                 if (vdev_log_state_valid(vd->vdev_child[c]))
3093                         return (B_TRUE);
3094
3095         return (B_FALSE);
3096 }
3097
3098 /*
3099  * Expand a vdev if possible.
3100  */
3101 void
3102 vdev_expand(vdev_t *vd, uint64_t txg)
3103 {
3104         ASSERT(vd->vdev_top == vd);
3105         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3106
3107         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3108                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3109                 vdev_config_dirty(vd);
3110         }
3111 }
3112
3113 /*
3114  * Split a vdev.
3115  */
3116 void
3117 vdev_split(vdev_t *vd)
3118 {
3119         vdev_t *cvd, *pvd = vd->vdev_parent;
3120
3121         vdev_remove_child(pvd, vd);
3122         vdev_compact_children(pvd);
3123
3124         cvd = pvd->vdev_child[0];
3125         if (pvd->vdev_children == 1) {
3126                 vdev_remove_parent(cvd);
3127                 cvd->vdev_splitting = B_TRUE;
3128         }
3129         vdev_propagate_state(cvd);
3130 }