Allow setting bootfs on any pool
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88         int c;
89
90         for (c = 0; c < vd->vdev_children; c++) {
91                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92                 asize = MAX(asize, csize);
93         }
94
95         return (asize);
96 }
97
98 /*
99  * Get the minimum allocatable size. We define the allocatable size as
100  * the vdev's asize rounded to the nearest metaslab. This allows us to
101  * replace or attach devices which don't have the same physical size but
102  * can still satisfy the same number of allocations.
103  */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107         vdev_t *pvd = vd->vdev_parent;
108
109         /*
110          * The our parent is NULL (inactive spare or cache) or is the root,
111          * just return our own asize.
112          */
113         if (pvd == NULL)
114                 return (vd->vdev_asize);
115
116         /*
117          * The top-level vdev just returns the allocatable size rounded
118          * to the nearest metaslab.
119          */
120         if (vd == vd->vdev_top)
121                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123         /*
124          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125          * so each child must provide at least 1/Nth of its asize.
126          */
127         if (pvd->vdev_ops == &vdev_raidz_ops)
128                 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130         return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136         int c;
137         vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139         for (c = 0; c < vd->vdev_children; c++)
140                 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146         vdev_t *rvd = spa->spa_root_vdev;
147
148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150         if (vdev < rvd->vdev_children) {
151                 ASSERT(rvd->vdev_child[vdev] != NULL);
152                 return (rvd->vdev_child[vdev]);
153         }
154
155         return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161         vdev_t *mvd;
162         int c;
163
164         if (vd->vdev_guid == guid)
165                 return (vd);
166
167         for (c = 0; c < vd->vdev_children; c++)
168                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169                     NULL)
170                         return (mvd);
171
172         return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178         size_t oldsize, newsize;
179         uint64_t id = cvd->vdev_id;
180         vdev_t **newchild;
181
182         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183         ASSERT(cvd->vdev_parent == NULL);
184
185         cvd->vdev_parent = pvd;
186
187         if (pvd == NULL)
188                 return;
189
190         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192         oldsize = pvd->vdev_children * sizeof (vdev_t *);
193         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194         newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196         newchild = kmem_zalloc(newsize, KM_SLEEP);
197         if (pvd->vdev_child != NULL) {
198                 bcopy(pvd->vdev_child, newchild, oldsize);
199                 kmem_free(pvd->vdev_child, oldsize);
200         }
201
202         pvd->vdev_child = newchild;
203         pvd->vdev_child[id] = cvd;
204
205         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208         /*
209          * Walk up all ancestors to update guid sum.
210          */
211         for (; pvd != NULL; pvd = pvd->vdev_parent)
212                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255         vdev_t **newchild, *cvd;
256         int oldc = pvd->vdev_children;
257         int newc;
258         int c;
259
260         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262         for (c = newc = 0; c < oldc; c++)
263                 if (pvd->vdev_child[c])
264                         newc++;
265
266         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
268         for (c = newc = 0; c < oldc; c++) {
269                 if ((cvd = pvd->vdev_child[c]) != NULL) {
270                         newchild[newc] = cvd;
271                         cvd->vdev_id = newc++;
272                 }
273         }
274
275         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276         pvd->vdev_child = newchild;
277         pvd->vdev_children = newc;
278 }
279
280 /*
281  * Allocate and minimally initialize a vdev_t.
282  */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286         vdev_t *vd;
287         int t;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0 && ops != &vdev_hole_ops) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         guid = spa_generate_guid(NULL);
303                 } else {
304                         /*
305                          * Any other vdev's guid must be unique within the pool.
306                          */
307                         guid = spa_generate_guid(spa);
308                 }
309                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310         }
311
312         vd->vdev_spa = spa;
313         vd->vdev_id = id;
314         vd->vdev_guid = guid;
315         vd->vdev_guid_sum = guid;
316         vd->vdev_ops = ops;
317         vd->vdev_state = VDEV_STATE_CLOSED;
318         vd->vdev_ishole = (ops == &vdev_hole_ops);
319
320         list_link_init(&vd->vdev_config_dirty_node);
321         list_link_init(&vd->vdev_state_dirty_node);
322         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325         for (t = 0; t < DTL_TYPES; t++) {
326                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327                     &vd->vdev_dtl_lock);
328         }
329         txg_list_create(&vd->vdev_ms_list,
330             offsetof(struct metaslab, ms_txg_node));
331         txg_list_create(&vd->vdev_dtl_list,
332             offsetof(struct vdev, vdev_dtl_node));
333         vd->vdev_stat.vs_timestamp = gethrtime();
334         vdev_queue_init(vd);
335         vdev_cache_init(vd);
336
337         return (vd);
338 }
339
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349         vdev_ops_t *ops;
350         char *type;
351         uint64_t guid = 0, islog, nparity;
352         vdev_t *vd;
353
354         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357                 return (EINVAL);
358
359         if ((ops = vdev_getops(type)) == NULL)
360                 return (EINVAL);
361
362         /*
363          * If this is a load, get the vdev guid from the nvlist.
364          * Otherwise, vdev_alloc_common() will generate one for us.
365          */
366         if (alloctype == VDEV_ALLOC_LOAD) {
367                 uint64_t label_id;
368
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370                     label_id != id)
371                         return (EINVAL);
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         } else if (alloctype == VDEV_ALLOC_SPARE) {
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         }
385
386         /*
387          * The first allocated vdev must be of type 'root'.
388          */
389         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390                 return (EINVAL);
391
392         /*
393          * Determine whether we're a log vdev.
394          */
395         islog = 0;
396         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398                 return (ENOTSUP);
399
400         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
401                 return (ENOTSUP);
402
403         /*
404          * Set the nparity property for RAID-Z vdevs.
405          */
406         nparity = -1ULL;
407         if (ops == &vdev_raidz_ops) {
408                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
409                     &nparity) == 0) {
410                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
411                                 return (EINVAL);
412                         /*
413                          * Previous versions could only support 1 or 2 parity
414                          * device.
415                          */
416                         if (nparity > 1 &&
417                             spa_version(spa) < SPA_VERSION_RAIDZ2)
418                                 return (ENOTSUP);
419                         if (nparity > 2 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ3)
421                                 return (ENOTSUP);
422                 } else {
423                         /*
424                          * We require the parity to be specified for SPAs that
425                          * support multiple parity levels.
426                          */
427                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428                                 return (EINVAL);
429                         /*
430                          * Otherwise, we default to 1 parity device for RAID-Z.
431                          */
432                         nparity = 1;
433                 }
434         } else {
435                 nparity = 0;
436         }
437         ASSERT(nparity != -1ULL);
438
439         vd = vdev_alloc_common(spa, id, guid, ops);
440
441         vd->vdev_islog = islog;
442         vd->vdev_nparity = nparity;
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445                 vd->vdev_path = spa_strdup(vd->vdev_path);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449             &vd->vdev_physpath) == 0)
450                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
453
454         /*
455          * Set the whole_disk property.  If it's not specified, leave the value
456          * as -1.
457          */
458         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459             &vd->vdev_wholedisk) != 0)
460                 vd->vdev_wholedisk = -1ULL;
461
462         /*
463          * Look for the 'not present' flag.  This will only be set if the device
464          * was not present at the time of import.
465          */
466         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467             &vd->vdev_not_present);
468
469         /*
470          * Get the alignment requirement.
471          */
472         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474         /*
475          * Retrieve the vdev creation time.
476          */
477         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
478             &vd->vdev_crtxg);
479
480         /*
481          * If we're a top-level vdev, try to load the allocation parameters.
482          */
483         if (parent && !parent->vdev_parent &&
484             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
486                     &vd->vdev_ms_array);
487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
488                     &vd->vdev_ms_shift);
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
490                     &vd->vdev_asize);
491                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
492                     &vd->vdev_removing);
493         }
494
495         if (parent && !parent->vdev_parent) {
496                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
497                     alloctype == VDEV_ALLOC_ADD ||
498                     alloctype == VDEV_ALLOC_SPLIT ||
499                     alloctype == VDEV_ALLOC_ROOTPOOL);
500                 vd->vdev_mg = metaslab_group_create(islog ?
501                     spa_log_class(spa) : spa_normal_class(spa), vd);
502         }
503
504         /*
505          * If we're a leaf vdev, try to load the DTL object and other state.
506          */
507         if (vd->vdev_ops->vdev_op_leaf &&
508             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
509             alloctype == VDEV_ALLOC_ROOTPOOL)) {
510                 if (alloctype == VDEV_ALLOC_LOAD) {
511                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
512                             &vd->vdev_dtl_smo.smo_object);
513                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
514                             &vd->vdev_unspare);
515                 }
516
517                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
518                         uint64_t spare = 0;
519
520                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
521                             &spare) == 0 && spare)
522                                 spa_spare_add(vd);
523                 }
524
525                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
526                     &vd->vdev_offline);
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
529                     &vd->vdev_resilvering);
530
531                 /*
532                  * When importing a pool, we want to ignore the persistent fault
533                  * state, as the diagnosis made on another system may not be
534                  * valid in the current context.  Local vdevs will
535                  * remain in the faulted state.
536                  */
537                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
539                             &vd->vdev_faulted);
540                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
541                             &vd->vdev_degraded);
542                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
543                             &vd->vdev_removed);
544
545                         if (vd->vdev_faulted || vd->vdev_degraded) {
546                                 char *aux;
547
548                                 vd->vdev_label_aux =
549                                     VDEV_AUX_ERR_EXCEEDED;
550                                 if (nvlist_lookup_string(nv,
551                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
552                                     strcmp(aux, "external") == 0)
553                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
554                         }
555                 }
556         }
557
558         /*
559          * Add ourselves to the parent's list of children.
560          */
561         vdev_add_child(parent, vd);
562
563         *vdp = vd;
564
565         return (0);
566 }
567
568 void
569 vdev_free(vdev_t *vd)
570 {
571         int c, t;
572         spa_t *spa = vd->vdev_spa;
573
574         /*
575          * vdev_free() implies closing the vdev first.  This is simpler than
576          * trying to ensure complicated semantics for all callers.
577          */
578         vdev_close(vd);
579
580         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583         /*
584          * Free all children.
585          */
586         for (c = 0; c < vd->vdev_children; c++)
587                 vdev_free(vd->vdev_child[c]);
588
589         ASSERT(vd->vdev_child == NULL);
590         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592         /*
593          * Discard allocation state.
594          */
595         if (vd->vdev_mg != NULL) {
596                 vdev_metaslab_fini(vd);
597                 metaslab_group_destroy(vd->vdev_mg);
598         }
599
600         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
601         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
602         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
603
604         /*
605          * Remove this vdev from its parent's child list.
606          */
607         vdev_remove_child(vd->vdev_parent, vd);
608
609         ASSERT(vd->vdev_parent == NULL);
610
611         /*
612          * Clean up vdev structure.
613          */
614         vdev_queue_fini(vd);
615         vdev_cache_fini(vd);
616
617         if (vd->vdev_path)
618                 spa_strfree(vd->vdev_path);
619         if (vd->vdev_devid)
620                 spa_strfree(vd->vdev_devid);
621         if (vd->vdev_physpath)
622                 spa_strfree(vd->vdev_physpath);
623         if (vd->vdev_fru)
624                 spa_strfree(vd->vdev_fru);
625
626         if (vd->vdev_isspare)
627                 spa_spare_remove(vd);
628         if (vd->vdev_isl2cache)
629                 spa_l2cache_remove(vd);
630
631         txg_list_destroy(&vd->vdev_ms_list);
632         txg_list_destroy(&vd->vdev_dtl_list);
633
634         mutex_enter(&vd->vdev_dtl_lock);
635         for (t = 0; t < DTL_TYPES; t++) {
636                 space_map_unload(&vd->vdev_dtl[t]);
637                 space_map_destroy(&vd->vdev_dtl[t]);
638         }
639         mutex_exit(&vd->vdev_dtl_lock);
640
641         mutex_destroy(&vd->vdev_dtl_lock);
642         mutex_destroy(&vd->vdev_stat_lock);
643         mutex_destroy(&vd->vdev_probe_lock);
644
645         if (vd == spa->spa_root_vdev)
646                 spa->spa_root_vdev = NULL;
647
648         kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652  * Transfer top-level vdev state from svd to tvd.
653  */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657         spa_t *spa = svd->vdev_spa;
658         metaslab_t *msp;
659         vdev_t *vd;
660         int t;
661
662         ASSERT(tvd == tvd->vdev_top);
663
664         tvd->vdev_ms_array = svd->vdev_ms_array;
665         tvd->vdev_ms_shift = svd->vdev_ms_shift;
666         tvd->vdev_ms_count = svd->vdev_ms_count;
667
668         svd->vdev_ms_array = 0;
669         svd->vdev_ms_shift = 0;
670         svd->vdev_ms_count = 0;
671
672         tvd->vdev_mg = svd->vdev_mg;
673         tvd->vdev_ms = svd->vdev_ms;
674
675         svd->vdev_mg = NULL;
676         svd->vdev_ms = NULL;
677
678         if (tvd->vdev_mg != NULL)
679                 tvd->vdev_mg->mg_vd = tvd;
680
681         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
682         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
683         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
684
685         svd->vdev_stat.vs_alloc = 0;
686         svd->vdev_stat.vs_space = 0;
687         svd->vdev_stat.vs_dspace = 0;
688
689         for (t = 0; t < TXG_SIZE; t++) {
690                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
691                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
692                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
693                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
694                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
695                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
696         }
697
698         if (list_link_active(&svd->vdev_config_dirty_node)) {
699                 vdev_config_clean(svd);
700                 vdev_config_dirty(tvd);
701         }
702
703         if (list_link_active(&svd->vdev_state_dirty_node)) {
704                 vdev_state_clean(svd);
705                 vdev_state_dirty(tvd);
706         }
707
708         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
709         svd->vdev_deflate_ratio = 0;
710
711         tvd->vdev_islog = svd->vdev_islog;
712         svd->vdev_islog = 0;
713 }
714
715 static void
716 vdev_top_update(vdev_t *tvd, vdev_t *vd)
717 {
718         int c;
719
720         if (vd == NULL)
721                 return;
722
723         vd->vdev_top = tvd;
724
725         for (c = 0; c < vd->vdev_children; c++)
726                 vdev_top_update(tvd, vd->vdev_child[c]);
727 }
728
729 /*
730  * Add a mirror/replacing vdev above an existing vdev.
731  */
732 vdev_t *
733 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734 {
735         spa_t *spa = cvd->vdev_spa;
736         vdev_t *pvd = cvd->vdev_parent;
737         vdev_t *mvd;
738
739         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743         mvd->vdev_asize = cvd->vdev_asize;
744         mvd->vdev_min_asize = cvd->vdev_min_asize;
745         mvd->vdev_ashift = cvd->vdev_ashift;
746         mvd->vdev_state = cvd->vdev_state;
747         mvd->vdev_crtxg = cvd->vdev_crtxg;
748
749         vdev_remove_child(pvd, cvd);
750         vdev_add_child(pvd, mvd);
751         cvd->vdev_id = mvd->vdev_children;
752         vdev_add_child(mvd, cvd);
753         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
754
755         if (mvd == mvd->vdev_top)
756                 vdev_top_transfer(cvd, mvd);
757
758         return (mvd);
759 }
760
761 /*
762  * Remove a 1-way mirror/replacing vdev from the tree.
763  */
764 void
765 vdev_remove_parent(vdev_t *cvd)
766 {
767         vdev_t *mvd = cvd->vdev_parent;
768         vdev_t *pvd = mvd->vdev_parent;
769
770         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
771
772         ASSERT(mvd->vdev_children == 1);
773         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
774             mvd->vdev_ops == &vdev_replacing_ops ||
775             mvd->vdev_ops == &vdev_spare_ops);
776         cvd->vdev_ashift = mvd->vdev_ashift;
777
778         vdev_remove_child(mvd, cvd);
779         vdev_remove_child(pvd, mvd);
780
781         /*
782          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
783          * Otherwise, we could have detached an offline device, and when we
784          * go to import the pool we'll think we have two top-level vdevs,
785          * instead of a different version of the same top-level vdev.
786          */
787         if (mvd->vdev_top == mvd) {
788                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
789                 cvd->vdev_orig_guid = cvd->vdev_guid;
790                 cvd->vdev_guid += guid_delta;
791                 cvd->vdev_guid_sum += guid_delta;
792         }
793         cvd->vdev_id = mvd->vdev_id;
794         vdev_add_child(pvd, cvd);
795         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
796
797         if (cvd == cvd->vdev_top)
798                 vdev_top_transfer(mvd, cvd);
799
800         ASSERT(mvd->vdev_children == 0);
801         vdev_free(mvd);
802 }
803
804 int
805 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
806 {
807         spa_t *spa = vd->vdev_spa;
808         objset_t *mos = spa->spa_meta_objset;
809         uint64_t m;
810         uint64_t oldc = vd->vdev_ms_count;
811         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
812         metaslab_t **mspp;
813         int error;
814
815         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
816
817         /*
818          * This vdev is not being allocated from yet or is a hole.
819          */
820         if (vd->vdev_ms_shift == 0)
821                 return (0);
822
823         ASSERT(!vd->vdev_ishole);
824
825         /*
826          * Compute the raidz-deflation ratio.  Note, we hard-code
827          * in 128k (1 << 17) because it is the current "typical" blocksize.
828          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
829          * or we will inconsistently account for existing bp's.
830          */
831         vd->vdev_deflate_ratio = (1 << 17) /
832             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
833
834         ASSERT(oldc <= newc);
835
836         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP | KM_NODEBUG);
837
838         if (oldc != 0) {
839                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
840                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
841         }
842
843         vd->vdev_ms = mspp;
844         vd->vdev_ms_count = newc;
845
846         for (m = oldc; m < newc; m++) {
847                 space_map_obj_t smo = { 0, 0, 0 };
848                 if (txg == 0) {
849                         uint64_t object = 0;
850                         error = dmu_read(mos, vd->vdev_ms_array,
851                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
852                             DMU_READ_PREFETCH);
853                         if (error)
854                                 return (error);
855                         if (object != 0) {
856                                 dmu_buf_t *db;
857                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
858                                 if (error)
859                                         return (error);
860                                 ASSERT3U(db->db_size, >=, sizeof (smo));
861                                 bcopy(db->db_data, &smo, sizeof (smo));
862                                 ASSERT3U(smo.smo_object, ==, object);
863                                 dmu_buf_rele(db, FTAG);
864                         }
865                 }
866                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
867                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
868         }
869
870         if (txg == 0)
871                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
872
873         /*
874          * If the vdev is being removed we don't activate
875          * the metaslabs since we want to ensure that no new
876          * allocations are performed on this device.
877          */
878         if (oldc == 0 && !vd->vdev_removing)
879                 metaslab_group_activate(vd->vdev_mg);
880
881         if (txg == 0)
882                 spa_config_exit(spa, SCL_ALLOC, FTAG);
883
884         return (0);
885 }
886
887 void
888 vdev_metaslab_fini(vdev_t *vd)
889 {
890         uint64_t m;
891         uint64_t count = vd->vdev_ms_count;
892
893         if (vd->vdev_ms != NULL) {
894                 metaslab_group_passivate(vd->vdev_mg);
895                 for (m = 0; m < count; m++)
896                         if (vd->vdev_ms[m] != NULL)
897                                 metaslab_fini(vd->vdev_ms[m]);
898                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
899                 vd->vdev_ms = NULL;
900         }
901 }
902
903 typedef struct vdev_probe_stats {
904         boolean_t       vps_readable;
905         boolean_t       vps_writeable;
906         int             vps_flags;
907 } vdev_probe_stats_t;
908
909 static void
910 vdev_probe_done(zio_t *zio)
911 {
912         spa_t *spa = zio->io_spa;
913         vdev_t *vd = zio->io_vd;
914         vdev_probe_stats_t *vps = zio->io_private;
915
916         ASSERT(vd->vdev_probe_zio != NULL);
917
918         if (zio->io_type == ZIO_TYPE_READ) {
919                 if (zio->io_error == 0)
920                         vps->vps_readable = 1;
921                 if (zio->io_error == 0 && spa_writeable(spa)) {
922                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
923                             zio->io_offset, zio->io_size, zio->io_data,
924                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
925                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
926                 } else {
927                         zio_buf_free(zio->io_data, zio->io_size);
928                 }
929         } else if (zio->io_type == ZIO_TYPE_WRITE) {
930                 if (zio->io_error == 0)
931                         vps->vps_writeable = 1;
932                 zio_buf_free(zio->io_data, zio->io_size);
933         } else if (zio->io_type == ZIO_TYPE_NULL) {
934                 zio_t *pio;
935
936                 vd->vdev_cant_read |= !vps->vps_readable;
937                 vd->vdev_cant_write |= !vps->vps_writeable;
938
939                 if (vdev_readable(vd) &&
940                     (vdev_writeable(vd) || !spa_writeable(spa))) {
941                         zio->io_error = 0;
942                 } else {
943                         ASSERT(zio->io_error != 0);
944                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
945                             spa, vd, NULL, 0, 0);
946                         zio->io_error = ENXIO;
947                 }
948
949                 mutex_enter(&vd->vdev_probe_lock);
950                 ASSERT(vd->vdev_probe_zio == zio);
951                 vd->vdev_probe_zio = NULL;
952                 mutex_exit(&vd->vdev_probe_lock);
953
954                 while ((pio = zio_walk_parents(zio)) != NULL)
955                         if (!vdev_accessible(vd, pio))
956                                 pio->io_error = ENXIO;
957
958                 kmem_free(vps, sizeof (*vps));
959         }
960 }
961
962 /*
963  * Determine whether this device is accessible by reading and writing
964  * to several known locations: the pad regions of each vdev label
965  * but the first (which we leave alone in case it contains a VTOC).
966  */
967 zio_t *
968 vdev_probe(vdev_t *vd, zio_t *zio)
969 {
970         spa_t *spa = vd->vdev_spa;
971         vdev_probe_stats_t *vps = NULL;
972         zio_t *pio;
973         int l;
974
975         ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977         /*
978          * Don't probe the probe.
979          */
980         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981                 return (NULL);
982
983         /*
984          * To prevent 'probe storms' when a device fails, we create
985          * just one probe i/o at a time.  All zios that want to probe
986          * this vdev will become parents of the probe io.
987          */
988         mutex_enter(&vd->vdev_probe_lock);
989
990         if ((pio = vd->vdev_probe_zio) == NULL) {
991                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995                     ZIO_FLAG_TRYHARD;
996
997                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998                         /*
999                          * vdev_cant_read and vdev_cant_write can only
1000                          * transition from TRUE to FALSE when we have the
1001                          * SCL_ZIO lock as writer; otherwise they can only
1002                          * transition from FALSE to TRUE.  This ensures that
1003                          * any zio looking at these values can assume that
1004                          * failures persist for the life of the I/O.  That's
1005                          * important because when a device has intermittent
1006                          * connectivity problems, we want to ensure that
1007                          * they're ascribed to the device (ENXIO) and not
1008                          * the zio (EIO).
1009                          *
1010                          * Since we hold SCL_ZIO as writer here, clear both
1011                          * values so the probe can reevaluate from first
1012                          * principles.
1013                          */
1014                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015                         vd->vdev_cant_read = B_FALSE;
1016                         vd->vdev_cant_write = B_FALSE;
1017                 }
1018
1019                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020                     vdev_probe_done, vps,
1021                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023                 /*
1024                  * We can't change the vdev state in this context, so we
1025                  * kick off an async task to do it on our behalf.
1026                  */
1027                 if (zio != NULL) {
1028                         vd->vdev_probe_wanted = B_TRUE;
1029                         spa_async_request(spa, SPA_ASYNC_PROBE);
1030                 }
1031         }
1032
1033         if (zio != NULL)
1034                 zio_add_child(zio, pio);
1035
1036         mutex_exit(&vd->vdev_probe_lock);
1037
1038         if (vps == NULL) {
1039                 ASSERT(zio != NULL);
1040                 return (NULL);
1041         }
1042
1043         for (l = 1; l < VDEV_LABELS; l++) {
1044                 zio_nowait(zio_read_phys(pio, vd,
1045                     vdev_label_offset(vd->vdev_psize, l,
1046                     offsetof(vdev_label_t, vl_pad2)),
1047                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050         }
1051
1052         if (zio == NULL)
1053                 return (pio);
1054
1055         zio_nowait(pio);
1056         return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062         vdev_t *vd = arg;
1063
1064         vd->vdev_open_thread = curthread;
1065         vd->vdev_open_error = vdev_open(vd);
1066         vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072 /*
1073  * Stacking zpools on top of zvols is unsupported until we implement a method
1074  * for determining if an arbitrary block device is a zvol without using the
1075  * path.  Solaris would check the 'zvol' path component but this does not
1076  * exist in the Linux port, so we really should do something like stat the
1077  * file and check the major number.  This is complicated by the fact that
1078  * we need to do this portably in user or kernel space.
1079  */
1080 #if 0
1081         int c;
1082
1083         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1084             strlen(ZVOL_DIR)) == 0)
1085                 return (B_TRUE);
1086         for (c = 0; c < vd->vdev_children; c++)
1087                 if (vdev_uses_zvols(vd->vdev_child[c]))
1088                         return (B_TRUE);
1089 #endif
1090         return (B_FALSE);
1091 }
1092
1093 void
1094 vdev_open_children(vdev_t *vd)
1095 {
1096         taskq_t *tq;
1097         int children = vd->vdev_children;
1098         int c;
1099
1100         /*
1101          * in order to handle pools on top of zvols, do the opens
1102          * in a single thread so that the same thread holds the
1103          * spa_namespace_lock
1104          */
1105         if (vdev_uses_zvols(vd)) {
1106                 for (c = 0; c < children; c++)
1107                         vd->vdev_child[c]->vdev_open_error =
1108                             vdev_open(vd->vdev_child[c]);
1109                 return;
1110         }
1111         tq = taskq_create("vdev_open", children, minclsyspri,
1112             children, children, TASKQ_PREPOPULATE);
1113
1114         for (c = 0; c < children; c++)
1115                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1116                     TQ_SLEEP) != 0);
1117
1118         taskq_destroy(tq);
1119 }
1120
1121 /*
1122  * Prepare a virtual device for access.
1123  */
1124 int
1125 vdev_open(vdev_t *vd)
1126 {
1127         spa_t *spa = vd->vdev_spa;
1128         int error;
1129         uint64_t osize = 0;
1130         uint64_t asize, psize;
1131         uint64_t ashift = 0;
1132         int c;
1133
1134         ASSERT(vd->vdev_open_thread == curthread ||
1135             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1136         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1137             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1138             vd->vdev_state == VDEV_STATE_OFFLINE);
1139
1140         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1141         vd->vdev_cant_read = B_FALSE;
1142         vd->vdev_cant_write = B_FALSE;
1143         vd->vdev_min_asize = vdev_get_min_asize(vd);
1144
1145         /*
1146          * If this vdev is not removed, check its fault status.  If it's
1147          * faulted, bail out of the open.
1148          */
1149         if (!vd->vdev_removed && vd->vdev_faulted) {
1150                 ASSERT(vd->vdev_children == 0);
1151                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1152                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1153                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1154                     vd->vdev_label_aux);
1155                 return (ENXIO);
1156         } else if (vd->vdev_offline) {
1157                 ASSERT(vd->vdev_children == 0);
1158                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1159                 return (ENXIO);
1160         }
1161
1162         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1163
1164         /*
1165          * Reset the vdev_reopening flag so that we actually close
1166          * the vdev on error.
1167          */
1168         vd->vdev_reopening = B_FALSE;
1169         if (zio_injection_enabled && error == 0)
1170                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1171
1172         if (error) {
1173                 if (vd->vdev_removed &&
1174                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1175                         vd->vdev_removed = B_FALSE;
1176
1177                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178                     vd->vdev_stat.vs_aux);
1179                 return (error);
1180         }
1181
1182         vd->vdev_removed = B_FALSE;
1183
1184         /*
1185          * Recheck the faulted flag now that we have confirmed that
1186          * the vdev is accessible.  If we're faulted, bail.
1187          */
1188         if (vd->vdev_faulted) {
1189                 ASSERT(vd->vdev_children == 0);
1190                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193                     vd->vdev_label_aux);
1194                 return (ENXIO);
1195         }
1196
1197         if (vd->vdev_degraded) {
1198                 ASSERT(vd->vdev_children == 0);
1199                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200                     VDEV_AUX_ERR_EXCEEDED);
1201         } else {
1202                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1203         }
1204
1205         /*
1206          * For hole or missing vdevs we just return success.
1207          */
1208         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1209                 return (0);
1210
1211         for (c = 0; c < vd->vdev_children; c++) {
1212                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1213                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1214                             VDEV_AUX_NONE);
1215                         break;
1216                 }
1217         }
1218
1219         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1220
1221         if (vd->vdev_children == 0) {
1222                 if (osize < SPA_MINDEVSIZE) {
1223                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224                             VDEV_AUX_TOO_SMALL);
1225                         return (EOVERFLOW);
1226                 }
1227                 psize = osize;
1228                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1229         } else {
1230                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1231                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1232                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233                             VDEV_AUX_TOO_SMALL);
1234                         return (EOVERFLOW);
1235                 }
1236                 psize = 0;
1237                 asize = osize;
1238         }
1239
1240         vd->vdev_psize = psize;
1241
1242         /*
1243          * Make sure the allocatable size hasn't shrunk.
1244          */
1245         if (asize < vd->vdev_min_asize) {
1246                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247                     VDEV_AUX_BAD_LABEL);
1248                 return (EINVAL);
1249         }
1250
1251         if (vd->vdev_asize == 0) {
1252                 /*
1253                  * This is the first-ever open, so use the computed values.
1254                  * For testing purposes, a higher ashift can be requested.
1255                  */
1256                 vd->vdev_asize = asize;
1257                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1258         } else {
1259                 /*
1260                  * Make sure the alignment requirement hasn't increased.
1261                  */
1262                 if (ashift > vd->vdev_top->vdev_ashift) {
1263                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264                             VDEV_AUX_BAD_LABEL);
1265                         return (EINVAL);
1266                 }
1267         }
1268
1269         /*
1270          * If all children are healthy and the asize has increased,
1271          * then we've experienced dynamic LUN growth.  If automatic
1272          * expansion is enabled then use the additional space.
1273          */
1274         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1275             (vd->vdev_expanding || spa->spa_autoexpand))
1276                 vd->vdev_asize = asize;
1277
1278         vdev_set_min_asize(vd);
1279
1280         /*
1281          * Ensure we can issue some IO before declaring the
1282          * vdev open for business.
1283          */
1284         if (vd->vdev_ops->vdev_op_leaf &&
1285             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1286                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1287                     VDEV_AUX_ERR_EXCEEDED);
1288                 return (error);
1289         }
1290
1291         /*
1292          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1293          * resilver.  But don't do this if we are doing a reopen for a scrub,
1294          * since this would just restart the scrub we are already doing.
1295          */
1296         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1297             vdev_resilver_needed(vd, NULL, NULL))
1298                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1299
1300         return (0);
1301 }
1302
1303 /*
1304  * Called once the vdevs are all opened, this routine validates the label
1305  * contents.  This needs to be done before vdev_load() so that we don't
1306  * inadvertently do repair I/Os to the wrong device.
1307  *
1308  * This function will only return failure if one of the vdevs indicates that it
1309  * has since been destroyed or exported.  This is only possible if
1310  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1311  * will be updated but the function will return 0.
1312  */
1313 int
1314 vdev_validate(vdev_t *vd)
1315 {
1316         spa_t *spa = vd->vdev_spa;
1317         nvlist_t *label;
1318         uint64_t guid = 0, top_guid;
1319         uint64_t state;
1320         int c;
1321
1322         for (c = 0; c < vd->vdev_children; c++)
1323                 if (vdev_validate(vd->vdev_child[c]) != 0)
1324                         return (EBADF);
1325
1326         /*
1327          * If the device has already failed, or was marked offline, don't do
1328          * any further validation.  Otherwise, label I/O will fail and we will
1329          * overwrite the previous state.
1330          */
1331         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1332                 uint64_t aux_guid = 0;
1333                 nvlist_t *nvl;
1334
1335                 if ((label = vdev_label_read_config(vd)) == NULL) {
1336                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337                             VDEV_AUX_BAD_LABEL);
1338                         return (0);
1339                 }
1340
1341                 /*
1342                  * Determine if this vdev has been split off into another
1343                  * pool.  If so, then refuse to open it.
1344                  */
1345                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348                             VDEV_AUX_SPLIT_POOL);
1349                         nvlist_free(label);
1350                         return (0);
1351                 }
1352
1353                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1354                     &guid) != 0 || guid != spa_guid(spa)) {
1355                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1356                             VDEV_AUX_CORRUPT_DATA);
1357                         nvlist_free(label);
1358                         return (0);
1359                 }
1360
1361                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1362                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1363                     &aux_guid) != 0)
1364                         aux_guid = 0;
1365
1366                 /*
1367                  * If this vdev just became a top-level vdev because its
1368                  * sibling was detached, it will have adopted the parent's
1369                  * vdev guid -- but the label may or may not be on disk yet.
1370                  * Fortunately, either version of the label will have the
1371                  * same top guid, so if we're a top-level vdev, we can
1372                  * safely compare to that instead.
1373                  *
1374                  * If we split this vdev off instead, then we also check the
1375                  * original pool's guid.  We don't want to consider the vdev
1376                  * corrupt if it is partway through a split operation.
1377                  */
1378                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1379                     &guid) != 0 ||
1380                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1381                     &top_guid) != 0 ||
1382                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1383                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1384                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1385                             VDEV_AUX_CORRUPT_DATA);
1386                         nvlist_free(label);
1387                         return (0);
1388                 }
1389
1390                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1391                     &state) != 0) {
1392                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1393                             VDEV_AUX_CORRUPT_DATA);
1394                         nvlist_free(label);
1395                         return (0);
1396                 }
1397
1398                 nvlist_free(label);
1399
1400                 /*
1401                  * If this is a verbatim import, no need to check the
1402                  * state of the pool.
1403                  */
1404                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1405                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1406                     state != POOL_STATE_ACTIVE)
1407                         return (EBADF);
1408
1409                 /*
1410                  * If we were able to open and validate a vdev that was
1411                  * previously marked permanently unavailable, clear that state
1412                  * now.
1413                  */
1414                 if (vd->vdev_not_present)
1415                         vd->vdev_not_present = 0;
1416         }
1417
1418         return (0);
1419 }
1420
1421 /*
1422  * Close a virtual device.
1423  */
1424 void
1425 vdev_close(vdev_t *vd)
1426 {
1427         vdev_t *pvd = vd->vdev_parent;
1428         ASSERTV(spa_t *spa = vd->vdev_spa);
1429
1430         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1431
1432         /*
1433          * If our parent is reopening, then we are as well, unless we are
1434          * going offline.
1435          */
1436         if (pvd != NULL && pvd->vdev_reopening)
1437                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1438
1439         vd->vdev_ops->vdev_op_close(vd);
1440
1441         vdev_cache_purge(vd);
1442
1443         /*
1444          * We record the previous state before we close it, so that if we are
1445          * doing a reopen(), we don't generate FMA ereports if we notice that
1446          * it's still faulted.
1447          */
1448         vd->vdev_prevstate = vd->vdev_state;
1449
1450         if (vd->vdev_offline)
1451                 vd->vdev_state = VDEV_STATE_OFFLINE;
1452         else
1453                 vd->vdev_state = VDEV_STATE_CLOSED;
1454         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1455 }
1456
1457 void
1458 vdev_hold(vdev_t *vd)
1459 {
1460         spa_t *spa = vd->vdev_spa;
1461         int c;
1462
1463         ASSERT(spa_is_root(spa));
1464         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465                 return;
1466
1467         for (c = 0; c < vd->vdev_children; c++)
1468                 vdev_hold(vd->vdev_child[c]);
1469
1470         if (vd->vdev_ops->vdev_op_leaf)
1471                 vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477         int c;
1478
1479         ASSERT(spa_is_root(vd->vdev_spa));
1480         for (c = 0; c < vd->vdev_children; c++)
1481                 vdev_rele(vd->vdev_child[c]);
1482
1483         if (vd->vdev_ops->vdev_op_leaf)
1484                 vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486
1487 /*
1488  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1489  * reopen leaf vdevs which had previously been opened as they might deadlock
1490  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1491  * If the leaf has never been opened then open it, as usual.
1492  */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496         spa_t *spa = vd->vdev_spa;
1497
1498         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499
1500         /* set the reopening flag unless we're taking the vdev offline */
1501         vd->vdev_reopening = !vd->vdev_offline;
1502         vdev_close(vd);
1503         (void) vdev_open(vd);
1504
1505         /*
1506          * Call vdev_validate() here to make sure we have the same device.
1507          * Otherwise, a device with an invalid label could be successfully
1508          * opened in response to vdev_reopen().
1509          */
1510         if (vd->vdev_aux) {
1511                 (void) vdev_validate_aux(vd);
1512                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1513                     vd->vdev_aux == &spa->spa_l2cache &&
1514                     !l2arc_vdev_present(vd))
1515                         l2arc_add_vdev(spa, vd);
1516         } else {
1517                 (void) vdev_validate(vd);
1518         }
1519
1520         /*
1521          * Reassess parent vdev's health.
1522          */
1523         vdev_propagate_state(vd);
1524 }
1525
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529         int error;
1530
1531         /*
1532          * Normally, partial opens (e.g. of a mirror) are allowed.
1533          * For a create, however, we want to fail the request if
1534          * there are any components we can't open.
1535          */
1536         error = vdev_open(vd);
1537
1538         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539                 vdev_close(vd);
1540                 return (error ? error : ENXIO);
1541         }
1542
1543         /*
1544          * Recursively initialize all labels.
1545          */
1546         if ((error = vdev_label_init(vd, txg, isreplacing ?
1547             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548                 vdev_close(vd);
1549                 return (error);
1550         }
1551
1552         return (0);
1553 }
1554
1555 void
1556 vdev_metaslab_set_size(vdev_t *vd)
1557 {
1558         /*
1559          * Aim for roughly 200 metaslabs per vdev.
1560          */
1561         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 }
1564
1565 void
1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 {
1568         ASSERT(vd == vd->vdev_top);
1569         ASSERT(!vd->vdev_ishole);
1570         ASSERT(ISP2(flags));
1571         ASSERT(spa_writeable(vd->vdev_spa));
1572
1573         if (flags & VDD_METASLAB)
1574                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575
1576         if (flags & VDD_DTL)
1577                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578
1579         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 }
1581
1582 /*
1583  * DTLs.
1584  *
1585  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586  * the vdev has less than perfect replication.  There are four kinds of DTL:
1587  *
1588  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589  *
1590  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591  *
1592  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594  *      txgs that was scrubbed.
1595  *
1596  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597  *      persistent errors or just some device being offline.
1598  *      Unlike the other three, the DTL_OUTAGE map is not generally
1599  *      maintained; it's only computed when needed, typically to
1600  *      determine whether a device can be detached.
1601  *
1602  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603  * either has the data or it doesn't.
1604  *
1605  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607  * if any child is less than fully replicated, then so is its parent.
1608  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609  * comprising only those txgs which appear in 'maxfaults' or more children;
1610  * those are the txgs we don't have enough replication to read.  For example,
1611  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613  * two child DTL_MISSING maps.
1614  *
1615  * It should be clear from the above that to compute the DTLs and outage maps
1616  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617  * Therefore, that is all we keep on disk.  When loading the pool, or after
1618  * a configuration change, we generate all other DTLs from first principles.
1619  */
1620 void
1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 {
1623         space_map_t *sm = &vd->vdev_dtl[t];
1624
1625         ASSERT(t < DTL_TYPES);
1626         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627         ASSERT(spa_writeable(vd->vdev_spa));
1628
1629         mutex_enter(sm->sm_lock);
1630         if (!space_map_contains(sm, txg, size))
1631                 space_map_add(sm, txg, size);
1632         mutex_exit(sm->sm_lock);
1633 }
1634
1635 boolean_t
1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638         space_map_t *sm = &vd->vdev_dtl[t];
1639         boolean_t dirty = B_FALSE;
1640
1641         ASSERT(t < DTL_TYPES);
1642         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643
1644         mutex_enter(sm->sm_lock);
1645         if (sm->sm_space != 0)
1646                 dirty = space_map_contains(sm, txg, size);
1647         mutex_exit(sm->sm_lock);
1648
1649         return (dirty);
1650 }
1651
1652 boolean_t
1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 {
1655         space_map_t *sm = &vd->vdev_dtl[t];
1656         boolean_t empty;
1657
1658         mutex_enter(sm->sm_lock);
1659         empty = (sm->sm_space == 0);
1660         mutex_exit(sm->sm_lock);
1661
1662         return (empty);
1663 }
1664
1665 /*
1666  * Reassess DTLs after a config change or scrub completion.
1667  */
1668 void
1669 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1670 {
1671         spa_t *spa = vd->vdev_spa;
1672         avl_tree_t reftree;
1673         int c, t, minref;
1674
1675         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1676
1677         for (c = 0; c < vd->vdev_children; c++)
1678                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1679                     scrub_txg, scrub_done);
1680
1681         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1682                 return;
1683
1684         if (vd->vdev_ops->vdev_op_leaf) {
1685                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1686
1687                 mutex_enter(&vd->vdev_dtl_lock);
1688                 if (scrub_txg != 0 &&
1689                     (spa->spa_scrub_started ||
1690                     (scn && scn->scn_phys.scn_errors == 0))) {
1691                         /*
1692                          * We completed a scrub up to scrub_txg.  If we
1693                          * did it without rebooting, then the scrub dtl
1694                          * will be valid, so excise the old region and
1695                          * fold in the scrub dtl.  Otherwise, leave the
1696                          * dtl as-is if there was an error.
1697                          *
1698                          * There's little trick here: to excise the beginning
1699                          * of the DTL_MISSING map, we put it into a reference
1700                          * tree and then add a segment with refcnt -1 that
1701                          * covers the range [0, scrub_txg).  This means
1702                          * that each txg in that range has refcnt -1 or 0.
1703                          * We then add DTL_SCRUB with a refcnt of 2, so that
1704                          * entries in the range [0, scrub_txg) will have a
1705                          * positive refcnt -- either 1 or 2.  We then convert
1706                          * the reference tree into the new DTL_MISSING map.
1707                          */
1708                         space_map_ref_create(&reftree);
1709                         space_map_ref_add_map(&reftree,
1710                             &vd->vdev_dtl[DTL_MISSING], 1);
1711                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1712                         space_map_ref_add_map(&reftree,
1713                             &vd->vdev_dtl[DTL_SCRUB], 2);
1714                         space_map_ref_generate_map(&reftree,
1715                             &vd->vdev_dtl[DTL_MISSING], 1);
1716                         space_map_ref_destroy(&reftree);
1717                 }
1718                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1719                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1720                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1721                 if (scrub_done)
1722                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1723                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1724                 if (!vdev_readable(vd))
1725                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1726                 else
1727                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1728                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1729                 mutex_exit(&vd->vdev_dtl_lock);
1730
1731                 if (txg != 0)
1732                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1733                 return;
1734         }
1735
1736         mutex_enter(&vd->vdev_dtl_lock);
1737         for (t = 0; t < DTL_TYPES; t++) {
1738                 /* account for child's outage in parent's missing map */
1739                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1740                 if (t == DTL_SCRUB)
1741                         continue;                       /* leaf vdevs only */
1742                 if (t == DTL_PARTIAL)
1743                         minref = 1;                     /* i.e. non-zero */
1744                 else if (vd->vdev_nparity != 0)
1745                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1746                 else
1747                         minref = vd->vdev_children;     /* any kind of mirror */
1748                 space_map_ref_create(&reftree);
1749                 for (c = 0; c < vd->vdev_children; c++) {
1750                         vdev_t *cvd = vd->vdev_child[c];
1751                         mutex_enter(&cvd->vdev_dtl_lock);
1752                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1753                         mutex_exit(&cvd->vdev_dtl_lock);
1754                 }
1755                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1756                 space_map_ref_destroy(&reftree);
1757         }
1758         mutex_exit(&vd->vdev_dtl_lock);
1759 }
1760
1761 static int
1762 vdev_dtl_load(vdev_t *vd)
1763 {
1764         spa_t *spa = vd->vdev_spa;
1765         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1766         objset_t *mos = spa->spa_meta_objset;
1767         dmu_buf_t *db;
1768         int error;
1769
1770         ASSERT(vd->vdev_children == 0);
1771
1772         if (smo->smo_object == 0)
1773                 return (0);
1774
1775         ASSERT(!vd->vdev_ishole);
1776
1777         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1778                 return (error);
1779
1780         ASSERT3U(db->db_size, >=, sizeof (*smo));
1781         bcopy(db->db_data, smo, sizeof (*smo));
1782         dmu_buf_rele(db, FTAG);
1783
1784         mutex_enter(&vd->vdev_dtl_lock);
1785         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1786             NULL, SM_ALLOC, smo, mos);
1787         mutex_exit(&vd->vdev_dtl_lock);
1788
1789         return (error);
1790 }
1791
1792 void
1793 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1794 {
1795         spa_t *spa = vd->vdev_spa;
1796         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1797         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1798         objset_t *mos = spa->spa_meta_objset;
1799         space_map_t smsync;
1800         kmutex_t smlock;
1801         dmu_buf_t *db;
1802         dmu_tx_t *tx;
1803
1804         ASSERT(!vd->vdev_ishole);
1805
1806         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1807
1808         if (vd->vdev_detached) {
1809                 if (smo->smo_object != 0) {
1810                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1811                         smo->smo_object = 0;
1812                 }
1813                 dmu_tx_commit(tx);
1814                 return;
1815         }
1816
1817         if (smo->smo_object == 0) {
1818                 ASSERT(smo->smo_objsize == 0);
1819                 ASSERT(smo->smo_alloc == 0);
1820                 smo->smo_object = dmu_object_alloc(mos,
1821                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1822                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1823                 ASSERT(smo->smo_object != 0);
1824                 vdev_config_dirty(vd->vdev_top);
1825         }
1826
1827         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1828
1829         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1830             &smlock);
1831
1832         mutex_enter(&smlock);
1833
1834         mutex_enter(&vd->vdev_dtl_lock);
1835         space_map_walk(sm, space_map_add, &smsync);
1836         mutex_exit(&vd->vdev_dtl_lock);
1837
1838         space_map_truncate(smo, mos, tx);
1839         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1840
1841         space_map_destroy(&smsync);
1842
1843         mutex_exit(&smlock);
1844         mutex_destroy(&smlock);
1845
1846         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1847         dmu_buf_will_dirty(db, tx);
1848         ASSERT3U(db->db_size, >=, sizeof (*smo));
1849         bcopy(smo, db->db_data, sizeof (*smo));
1850         dmu_buf_rele(db, FTAG);
1851
1852         dmu_tx_commit(tx);
1853 }
1854
1855 /*
1856  * Determine whether the specified vdev can be offlined/detached/removed
1857  * without losing data.
1858  */
1859 boolean_t
1860 vdev_dtl_required(vdev_t *vd)
1861 {
1862         spa_t *spa = vd->vdev_spa;
1863         vdev_t *tvd = vd->vdev_top;
1864         uint8_t cant_read = vd->vdev_cant_read;
1865         boolean_t required;
1866
1867         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1868
1869         if (vd == spa->spa_root_vdev || vd == tvd)
1870                 return (B_TRUE);
1871
1872         /*
1873          * Temporarily mark the device as unreadable, and then determine
1874          * whether this results in any DTL outages in the top-level vdev.
1875          * If not, we can safely offline/detach/remove the device.
1876          */
1877         vd->vdev_cant_read = B_TRUE;
1878         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1880         vd->vdev_cant_read = cant_read;
1881         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1882
1883         if (!required && zio_injection_enabled)
1884                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1885
1886         return (required);
1887 }
1888
1889 /*
1890  * Determine if resilver is needed, and if so the txg range.
1891  */
1892 boolean_t
1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1894 {
1895         boolean_t needed = B_FALSE;
1896         uint64_t thismin = UINT64_MAX;
1897         uint64_t thismax = 0;
1898         int c;
1899
1900         if (vd->vdev_children == 0) {
1901                 mutex_enter(&vd->vdev_dtl_lock);
1902                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1903                     vdev_writeable(vd)) {
1904                         space_seg_t *ss;
1905
1906                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1907                         thismin = ss->ss_start - 1;
1908                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1909                         thismax = ss->ss_end;
1910                         needed = B_TRUE;
1911                 }
1912                 mutex_exit(&vd->vdev_dtl_lock);
1913         } else {
1914                 for (c = 0; c < vd->vdev_children; c++) {
1915                         vdev_t *cvd = vd->vdev_child[c];
1916                         uint64_t cmin, cmax;
1917
1918                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1919                                 thismin = MIN(thismin, cmin);
1920                                 thismax = MAX(thismax, cmax);
1921                                 needed = B_TRUE;
1922                         }
1923                 }
1924         }
1925
1926         if (needed && minp) {
1927                 *minp = thismin;
1928                 *maxp = thismax;
1929         }
1930         return (needed);
1931 }
1932
1933 void
1934 vdev_load(vdev_t *vd)
1935 {
1936         int c;
1937
1938         /*
1939          * Recursively load all children.
1940          */
1941         for (c = 0; c < vd->vdev_children; c++)
1942                 vdev_load(vd->vdev_child[c]);
1943
1944         /*
1945          * If this is a top-level vdev, initialize its metaslabs.
1946          */
1947         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1948             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1949             vdev_metaslab_init(vd, 0) != 0))
1950                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1951                     VDEV_AUX_CORRUPT_DATA);
1952
1953         /*
1954          * If this is a leaf vdev, load its DTL.
1955          */
1956         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1957                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1958                     VDEV_AUX_CORRUPT_DATA);
1959 }
1960
1961 /*
1962  * The special vdev case is used for hot spares and l2cache devices.  Its
1963  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1964  * we make sure that we can open the underlying device, then try to read the
1965  * label, and make sure that the label is sane and that it hasn't been
1966  * repurposed to another pool.
1967  */
1968 int
1969 vdev_validate_aux(vdev_t *vd)
1970 {
1971         nvlist_t *label;
1972         uint64_t guid, version;
1973         uint64_t state;
1974
1975         if (!vdev_readable(vd))
1976                 return (0);
1977
1978         if ((label = vdev_label_read_config(vd)) == NULL) {
1979                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1980                     VDEV_AUX_CORRUPT_DATA);
1981                 return (-1);
1982         }
1983
1984         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1985             version > SPA_VERSION ||
1986             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1987             guid != vd->vdev_guid ||
1988             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1989                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1990                     VDEV_AUX_CORRUPT_DATA);
1991                 nvlist_free(label);
1992                 return (-1);
1993         }
1994
1995         /*
1996          * We don't actually check the pool state here.  If it's in fact in
1997          * use by another pool, we update this fact on the fly when requested.
1998          */
1999         nvlist_free(label);
2000         return (0);
2001 }
2002
2003 void
2004 vdev_remove(vdev_t *vd, uint64_t txg)
2005 {
2006         spa_t *spa = vd->vdev_spa;
2007         objset_t *mos = spa->spa_meta_objset;
2008         dmu_tx_t *tx;
2009         int m;
2010
2011         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2012
2013         if (vd->vdev_dtl_smo.smo_object) {
2014                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2015                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2016                 vd->vdev_dtl_smo.smo_object = 0;
2017         }
2018
2019         if (vd->vdev_ms != NULL) {
2020                 for (m = 0; m < vd->vdev_ms_count; m++) {
2021                         metaslab_t *msp = vd->vdev_ms[m];
2022
2023                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2024                                 continue;
2025
2026                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2027                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2028                         msp->ms_smo.smo_object = 0;
2029                 }
2030         }
2031
2032         if (vd->vdev_ms_array) {
2033                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2034                 vd->vdev_ms_array = 0;
2035                 vd->vdev_ms_shift = 0;
2036         }
2037         dmu_tx_commit(tx);
2038 }
2039
2040 void
2041 vdev_sync_done(vdev_t *vd, uint64_t txg)
2042 {
2043         metaslab_t *msp;
2044         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2045
2046         ASSERT(!vd->vdev_ishole);
2047
2048         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2049                 metaslab_sync_done(msp, txg);
2050
2051         if (reassess)
2052                 metaslab_sync_reassess(vd->vdev_mg);
2053 }
2054
2055 void
2056 vdev_sync(vdev_t *vd, uint64_t txg)
2057 {
2058         spa_t *spa = vd->vdev_spa;
2059         vdev_t *lvd;
2060         metaslab_t *msp;
2061         dmu_tx_t *tx;
2062
2063         ASSERT(!vd->vdev_ishole);
2064
2065         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2066                 ASSERT(vd == vd->vdev_top);
2067                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2068                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2069                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2070                 ASSERT(vd->vdev_ms_array != 0);
2071                 vdev_config_dirty(vd);
2072                 dmu_tx_commit(tx);
2073         }
2074
2075         /*
2076          * Remove the metadata associated with this vdev once it's empty.
2077          */
2078         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2079                 vdev_remove(vd, txg);
2080
2081         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2082                 metaslab_sync(msp, txg);
2083                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2084         }
2085
2086         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2087                 vdev_dtl_sync(lvd, txg);
2088
2089         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2090 }
2091
2092 uint64_t
2093 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2094 {
2095         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2096 }
2097
2098 /*
2099  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2100  * not be opened, and no I/O is attempted.
2101  */
2102 int
2103 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2104 {
2105         vdev_t *vd, *tvd;
2106
2107         spa_vdev_state_enter(spa, SCL_NONE);
2108
2109         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2110                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2111
2112         if (!vd->vdev_ops->vdev_op_leaf)
2113                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2114
2115         tvd = vd->vdev_top;
2116
2117         /*
2118          * We don't directly use the aux state here, but if we do a
2119          * vdev_reopen(), we need this value to be present to remember why we
2120          * were faulted.
2121          */
2122         vd->vdev_label_aux = aux;
2123
2124         /*
2125          * Faulted state takes precedence over degraded.
2126          */
2127         vd->vdev_delayed_close = B_FALSE;
2128         vd->vdev_faulted = 1ULL;
2129         vd->vdev_degraded = 0ULL;
2130         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2131
2132         /*
2133          * If this device has the only valid copy of the data, then
2134          * back off and simply mark the vdev as degraded instead.
2135          */
2136         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2137                 vd->vdev_degraded = 1ULL;
2138                 vd->vdev_faulted = 0ULL;
2139
2140                 /*
2141                  * If we reopen the device and it's not dead, only then do we
2142                  * mark it degraded.
2143                  */
2144                 vdev_reopen(tvd);
2145
2146                 if (vdev_readable(vd))
2147                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2148         }
2149
2150         return (spa_vdev_state_exit(spa, vd, 0));
2151 }
2152
2153 /*
2154  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2155  * user that something is wrong.  The vdev continues to operate as normal as far
2156  * as I/O is concerned.
2157  */
2158 int
2159 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2160 {
2161         vdev_t *vd;
2162
2163         spa_vdev_state_enter(spa, SCL_NONE);
2164
2165         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2166                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2167
2168         if (!vd->vdev_ops->vdev_op_leaf)
2169                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2170
2171         /*
2172          * If the vdev is already faulted, then don't do anything.
2173          */
2174         if (vd->vdev_faulted || vd->vdev_degraded)
2175                 return (spa_vdev_state_exit(spa, NULL, 0));
2176
2177         vd->vdev_degraded = 1ULL;
2178         if (!vdev_is_dead(vd))
2179                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2180                     aux);
2181
2182         return (spa_vdev_state_exit(spa, vd, 0));
2183 }
2184
2185 /*
2186  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2187  * any attached spare device should be detached when the device finishes
2188  * resilvering.  Second, the online should be treated like a 'test' online case,
2189  * so no FMA events are generated if the device fails to open.
2190  */
2191 int
2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2193 {
2194         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2195
2196         spa_vdev_state_enter(spa, SCL_NONE);
2197
2198         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2200
2201         if (!vd->vdev_ops->vdev_op_leaf)
2202                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2203
2204         tvd = vd->vdev_top;
2205         vd->vdev_offline = B_FALSE;
2206         vd->vdev_tmpoffline = B_FALSE;
2207         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2208         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2209
2210         /* XXX - L2ARC 1.0 does not support expansion */
2211         if (!vd->vdev_aux) {
2212                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2213                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2214         }
2215
2216         vdev_reopen(tvd);
2217         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2218
2219         if (!vd->vdev_aux) {
2220                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2221                         pvd->vdev_expanding = B_FALSE;
2222         }
2223
2224         if (newstate)
2225                 *newstate = vd->vdev_state;
2226         if ((flags & ZFS_ONLINE_UNSPARE) &&
2227             !vdev_is_dead(vd) && vd->vdev_parent &&
2228             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2229             vd->vdev_parent->vdev_child[0] == vd)
2230                 vd->vdev_unspare = B_TRUE;
2231
2232         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2233
2234                 /* XXX - L2ARC 1.0 does not support expansion */
2235                 if (vd->vdev_aux)
2236                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2237                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2238         }
2239         return (spa_vdev_state_exit(spa, vd, 0));
2240 }
2241
2242 static int
2243 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2244 {
2245         vdev_t *vd, *tvd;
2246         int error = 0;
2247         uint64_t generation;
2248         metaslab_group_t *mg;
2249
2250 top:
2251         spa_vdev_state_enter(spa, SCL_ALLOC);
2252
2253         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2254                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2255
2256         if (!vd->vdev_ops->vdev_op_leaf)
2257                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2258
2259         tvd = vd->vdev_top;
2260         mg = tvd->vdev_mg;
2261         generation = spa->spa_config_generation + 1;
2262
2263         /*
2264          * If the device isn't already offline, try to offline it.
2265          */
2266         if (!vd->vdev_offline) {
2267                 /*
2268                  * If this device has the only valid copy of some data,
2269                  * don't allow it to be offlined. Log devices are always
2270                  * expendable.
2271                  */
2272                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2273                     vdev_dtl_required(vd))
2274                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2275
2276                 /*
2277                  * If the top-level is a slog and it has had allocations
2278                  * then proceed.  We check that the vdev's metaslab group
2279                  * is not NULL since it's possible that we may have just
2280                  * added this vdev but not yet initialized its metaslabs.
2281                  */
2282                 if (tvd->vdev_islog && mg != NULL) {
2283                         /*
2284                          * Prevent any future allocations.
2285                          */
2286                         metaslab_group_passivate(mg);
2287                         (void) spa_vdev_state_exit(spa, vd, 0);
2288
2289                         error = spa_offline_log(spa);
2290
2291                         spa_vdev_state_enter(spa, SCL_ALLOC);
2292
2293                         /*
2294                          * Check to see if the config has changed.
2295                          */
2296                         if (error || generation != spa->spa_config_generation) {
2297                                 metaslab_group_activate(mg);
2298                                 if (error)
2299                                         return (spa_vdev_state_exit(spa,
2300                                             vd, error));
2301                                 (void) spa_vdev_state_exit(spa, vd, 0);
2302                                 goto top;
2303                         }
2304                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2305                 }
2306
2307                 /*
2308                  * Offline this device and reopen its top-level vdev.
2309                  * If the top-level vdev is a log device then just offline
2310                  * it. Otherwise, if this action results in the top-level
2311                  * vdev becoming unusable, undo it and fail the request.
2312                  */
2313                 vd->vdev_offline = B_TRUE;
2314                 vdev_reopen(tvd);
2315
2316                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2317                     vdev_is_dead(tvd)) {
2318                         vd->vdev_offline = B_FALSE;
2319                         vdev_reopen(tvd);
2320                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2321                 }
2322
2323                 /*
2324                  * Add the device back into the metaslab rotor so that
2325                  * once we online the device it's open for business.
2326                  */
2327                 if (tvd->vdev_islog && mg != NULL)
2328                         metaslab_group_activate(mg);
2329         }
2330
2331         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2332
2333         return (spa_vdev_state_exit(spa, vd, 0));
2334 }
2335
2336 int
2337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2338 {
2339         int error;
2340
2341         mutex_enter(&spa->spa_vdev_top_lock);
2342         error = vdev_offline_locked(spa, guid, flags);
2343         mutex_exit(&spa->spa_vdev_top_lock);
2344
2345         return (error);
2346 }
2347
2348 /*
2349  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2350  * vdev_offline(), we assume the spa config is locked.  We also clear all
2351  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2352  */
2353 void
2354 vdev_clear(spa_t *spa, vdev_t *vd)
2355 {
2356         vdev_t *rvd = spa->spa_root_vdev;
2357         int c;
2358
2359         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2360
2361         if (vd == NULL)
2362                 vd = rvd;
2363
2364         vd->vdev_stat.vs_read_errors = 0;
2365         vd->vdev_stat.vs_write_errors = 0;
2366         vd->vdev_stat.vs_checksum_errors = 0;
2367
2368         for (c = 0; c < vd->vdev_children; c++)
2369                 vdev_clear(spa, vd->vdev_child[c]);
2370
2371         /*
2372          * If we're in the FAULTED state or have experienced failed I/O, then
2373          * clear the persistent state and attempt to reopen the device.  We
2374          * also mark the vdev config dirty, so that the new faulted state is
2375          * written out to disk.
2376          */
2377         if (vd->vdev_faulted || vd->vdev_degraded ||
2378             !vdev_readable(vd) || !vdev_writeable(vd)) {
2379
2380                 /*
2381                  * When reopening in reponse to a clear event, it may be due to
2382                  * a fmadm repair request.  In this case, if the device is
2383                  * still broken, we want to still post the ereport again.
2384                  */
2385                 vd->vdev_forcefault = B_TRUE;
2386
2387                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2388                 vd->vdev_cant_read = B_FALSE;
2389                 vd->vdev_cant_write = B_FALSE;
2390
2391                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2392
2393                 vd->vdev_forcefault = B_FALSE;
2394
2395                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2396                         vdev_state_dirty(vd->vdev_top);
2397
2398                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2399                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2400
2401                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2402         }
2403
2404         /*
2405          * When clearing a FMA-diagnosed fault, we always want to
2406          * unspare the device, as we assume that the original spare was
2407          * done in response to the FMA fault.
2408          */
2409         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2410             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2411             vd->vdev_parent->vdev_child[0] == vd)
2412                 vd->vdev_unspare = B_TRUE;
2413 }
2414
2415 boolean_t
2416 vdev_is_dead(vdev_t *vd)
2417 {
2418         /*
2419          * Holes and missing devices are always considered "dead".
2420          * This simplifies the code since we don't have to check for
2421          * these types of devices in the various code paths.
2422          * Instead we rely on the fact that we skip over dead devices
2423          * before issuing I/O to them.
2424          */
2425         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2426             vd->vdev_ops == &vdev_missing_ops);
2427 }
2428
2429 boolean_t
2430 vdev_readable(vdev_t *vd)
2431 {
2432         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2433 }
2434
2435 boolean_t
2436 vdev_writeable(vdev_t *vd)
2437 {
2438         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2439 }
2440
2441 boolean_t
2442 vdev_allocatable(vdev_t *vd)
2443 {
2444         uint64_t state = vd->vdev_state;
2445
2446         /*
2447          * We currently allow allocations from vdevs which may be in the
2448          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2449          * fails to reopen then we'll catch it later when we're holding
2450          * the proper locks.  Note that we have to get the vdev state
2451          * in a local variable because although it changes atomically,
2452          * we're asking two separate questions about it.
2453          */
2454         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2455             !vd->vdev_cant_write && !vd->vdev_ishole);
2456 }
2457
2458 boolean_t
2459 vdev_accessible(vdev_t *vd, zio_t *zio)
2460 {
2461         ASSERT(zio->io_vd == vd);
2462
2463         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2464                 return (B_FALSE);
2465
2466         if (zio->io_type == ZIO_TYPE_READ)
2467                 return (!vd->vdev_cant_read);
2468
2469         if (zio->io_type == ZIO_TYPE_WRITE)
2470                 return (!vd->vdev_cant_write);
2471
2472         return (B_TRUE);
2473 }
2474
2475 /*
2476  * Get statistics for the given vdev.
2477  */
2478 void
2479 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2480 {
2481         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2482         int c, t;
2483
2484         mutex_enter(&vd->vdev_stat_lock);
2485         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2486         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2487         vs->vs_state = vd->vdev_state;
2488         vs->vs_rsize = vdev_get_min_asize(vd);
2489         if (vd->vdev_ops->vdev_op_leaf)
2490                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2491         mutex_exit(&vd->vdev_stat_lock);
2492
2493         /*
2494          * If we're getting stats on the root vdev, aggregate the I/O counts
2495          * over all top-level vdevs (i.e. the direct children of the root).
2496          */
2497         if (vd == rvd) {
2498                 for (c = 0; c < rvd->vdev_children; c++) {
2499                         vdev_t *cvd = rvd->vdev_child[c];
2500                         vdev_stat_t *cvs = &cvd->vdev_stat;
2501
2502                         mutex_enter(&vd->vdev_stat_lock);
2503                         for (t = 0; t < ZIO_TYPES; t++) {
2504                                 vs->vs_ops[t] += cvs->vs_ops[t];
2505                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2506                         }
2507                         cvs->vs_scan_removing = cvd->vdev_removing;
2508                         mutex_exit(&vd->vdev_stat_lock);
2509                 }
2510         }
2511 }
2512
2513 void
2514 vdev_clear_stats(vdev_t *vd)
2515 {
2516         mutex_enter(&vd->vdev_stat_lock);
2517         vd->vdev_stat.vs_space = 0;
2518         vd->vdev_stat.vs_dspace = 0;
2519         vd->vdev_stat.vs_alloc = 0;
2520         mutex_exit(&vd->vdev_stat_lock);
2521 }
2522
2523 void
2524 vdev_scan_stat_init(vdev_t *vd)
2525 {
2526         vdev_stat_t *vs = &vd->vdev_stat;
2527         int c;
2528
2529         for (c = 0; c < vd->vdev_children; c++)
2530                 vdev_scan_stat_init(vd->vdev_child[c]);
2531
2532         mutex_enter(&vd->vdev_stat_lock);
2533         vs->vs_scan_processed = 0;
2534         mutex_exit(&vd->vdev_stat_lock);
2535 }
2536
2537 void
2538 vdev_stat_update(zio_t *zio, uint64_t psize)
2539 {
2540         spa_t *spa = zio->io_spa;
2541         vdev_t *rvd = spa->spa_root_vdev;
2542         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2543         vdev_t *pvd;
2544         uint64_t txg = zio->io_txg;
2545         vdev_stat_t *vs = &vd->vdev_stat;
2546         zio_type_t type = zio->io_type;
2547         int flags = zio->io_flags;
2548
2549         /*
2550          * If this i/o is a gang leader, it didn't do any actual work.
2551          */
2552         if (zio->io_gang_tree)
2553                 return;
2554
2555         if (zio->io_error == 0) {
2556                 /*
2557                  * If this is a root i/o, don't count it -- we've already
2558                  * counted the top-level vdevs, and vdev_get_stats() will
2559                  * aggregate them when asked.  This reduces contention on
2560                  * the root vdev_stat_lock and implicitly handles blocks
2561                  * that compress away to holes, for which there is no i/o.
2562                  * (Holes never create vdev children, so all the counters
2563                  * remain zero, which is what we want.)
2564                  *
2565                  * Note: this only applies to successful i/o (io_error == 0)
2566                  * because unlike i/o counts, errors are not additive.
2567                  * When reading a ditto block, for example, failure of
2568                  * one top-level vdev does not imply a root-level error.
2569                  */
2570                 if (vd == rvd)
2571                         return;
2572
2573                 ASSERT(vd == zio->io_vd);
2574
2575                 if (flags & ZIO_FLAG_IO_BYPASS)
2576                         return;
2577
2578                 mutex_enter(&vd->vdev_stat_lock);
2579
2580                 if (flags & ZIO_FLAG_IO_REPAIR) {
2581                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2582                                 dsl_scan_phys_t *scn_phys =
2583                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2584                                 uint64_t *processed = &scn_phys->scn_processed;
2585
2586                                 /* XXX cleanup? */
2587                                 if (vd->vdev_ops->vdev_op_leaf)
2588                                         atomic_add_64(processed, psize);
2589                                 vs->vs_scan_processed += psize;
2590                         }
2591
2592                         if (flags & ZIO_FLAG_SELF_HEAL)
2593                                 vs->vs_self_healed += psize;
2594                 }
2595
2596                 vs->vs_ops[type]++;
2597                 vs->vs_bytes[type] += psize;
2598
2599                 mutex_exit(&vd->vdev_stat_lock);
2600                 return;
2601         }
2602
2603         if (flags & ZIO_FLAG_SPECULATIVE)
2604                 return;
2605
2606         /*
2607          * If this is an I/O error that is going to be retried, then ignore the
2608          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2609          * hard errors, when in reality they can happen for any number of
2610          * innocuous reasons (bus resets, MPxIO link failure, etc).
2611          */
2612         if (zio->io_error == EIO &&
2613             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2614                 return;
2615
2616         /*
2617          * Intent logs writes won't propagate their error to the root
2618          * I/O so don't mark these types of failures as pool-level
2619          * errors.
2620          */
2621         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2622                 return;
2623
2624         mutex_enter(&vd->vdev_stat_lock);
2625         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2626                 if (zio->io_error == ECKSUM)
2627                         vs->vs_checksum_errors++;
2628                 else
2629                         vs->vs_read_errors++;
2630         }
2631         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2632                 vs->vs_write_errors++;
2633         mutex_exit(&vd->vdev_stat_lock);
2634
2635         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2636             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2637             (flags & ZIO_FLAG_SCAN_THREAD) ||
2638             spa->spa_claiming)) {
2639                 /*
2640                  * This is either a normal write (not a repair), or it's
2641                  * a repair induced by the scrub thread, or it's a repair
2642                  * made by zil_claim() during spa_load() in the first txg.
2643                  * In the normal case, we commit the DTL change in the same
2644                  * txg as the block was born.  In the scrub-induced repair
2645                  * case, we know that scrubs run in first-pass syncing context,
2646                  * so we commit the DTL change in spa_syncing_txg(spa).
2647                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2648                  *
2649                  * We currently do not make DTL entries for failed spontaneous
2650                  * self-healing writes triggered by normal (non-scrubbing)
2651                  * reads, because we have no transactional context in which to
2652                  * do so -- and it's not clear that it'd be desirable anyway.
2653                  */
2654                 if (vd->vdev_ops->vdev_op_leaf) {
2655                         uint64_t commit_txg = txg;
2656                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2657                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2658                                 ASSERT(spa_sync_pass(spa) == 1);
2659                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2660                                 commit_txg = spa_syncing_txg(spa);
2661                         } else if (spa->spa_claiming) {
2662                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2663                                 commit_txg = spa_first_txg(spa);
2664                         }
2665                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2666                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2667                                 return;
2668                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2669                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2670                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2671                 }
2672                 if (vd != rvd)
2673                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2674         }
2675 }
2676
2677 /*
2678  * Update the in-core space usage stats for this vdev, its metaslab class,
2679  * and the root vdev.
2680  */
2681 void
2682 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2683     int64_t space_delta)
2684 {
2685         int64_t dspace_delta = space_delta;
2686         spa_t *spa = vd->vdev_spa;
2687         vdev_t *rvd = spa->spa_root_vdev;
2688         metaslab_group_t *mg = vd->vdev_mg;
2689         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2690
2691         ASSERT(vd == vd->vdev_top);
2692
2693         /*
2694          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2695          * factor.  We must calculate this here and not at the root vdev
2696          * because the root vdev's psize-to-asize is simply the max of its
2697          * childrens', thus not accurate enough for us.
2698          */
2699         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2700         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2701         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2702             vd->vdev_deflate_ratio;
2703
2704         mutex_enter(&vd->vdev_stat_lock);
2705         vd->vdev_stat.vs_alloc += alloc_delta;
2706         vd->vdev_stat.vs_space += space_delta;
2707         vd->vdev_stat.vs_dspace += dspace_delta;
2708         mutex_exit(&vd->vdev_stat_lock);
2709
2710         if (mc == spa_normal_class(spa)) {
2711                 mutex_enter(&rvd->vdev_stat_lock);
2712                 rvd->vdev_stat.vs_alloc += alloc_delta;
2713                 rvd->vdev_stat.vs_space += space_delta;
2714                 rvd->vdev_stat.vs_dspace += dspace_delta;
2715                 mutex_exit(&rvd->vdev_stat_lock);
2716         }
2717
2718         if (mc != NULL) {
2719                 ASSERT(rvd == vd->vdev_parent);
2720                 ASSERT(vd->vdev_ms_count != 0);
2721
2722                 metaslab_class_space_update(mc,
2723                     alloc_delta, defer_delta, space_delta, dspace_delta);
2724         }
2725 }
2726
2727 /*
2728  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2729  * so that it will be written out next time the vdev configuration is synced.
2730  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2731  */
2732 void
2733 vdev_config_dirty(vdev_t *vd)
2734 {
2735         spa_t *spa = vd->vdev_spa;
2736         vdev_t *rvd = spa->spa_root_vdev;
2737         int c;
2738
2739         ASSERT(spa_writeable(spa));
2740
2741         /*
2742          * If this is an aux vdev (as with l2cache and spare devices), then we
2743          * update the vdev config manually and set the sync flag.
2744          */
2745         if (vd->vdev_aux != NULL) {
2746                 spa_aux_vdev_t *sav = vd->vdev_aux;
2747                 nvlist_t **aux;
2748                 uint_t naux;
2749
2750                 for (c = 0; c < sav->sav_count; c++) {
2751                         if (sav->sav_vdevs[c] == vd)
2752                                 break;
2753                 }
2754
2755                 if (c == sav->sav_count) {
2756                         /*
2757                          * We're being removed.  There's nothing more to do.
2758                          */
2759                         ASSERT(sav->sav_sync == B_TRUE);
2760                         return;
2761                 }
2762
2763                 sav->sav_sync = B_TRUE;
2764
2765                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2766                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2767                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2768                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2769                 }
2770
2771                 ASSERT(c < naux);
2772
2773                 /*
2774                  * Setting the nvlist in the middle if the array is a little
2775                  * sketchy, but it will work.
2776                  */
2777                 nvlist_free(aux[c]);
2778                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2779
2780                 return;
2781         }
2782
2783         /*
2784          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2785          * must either hold SCL_CONFIG as writer, or must be the sync thread
2786          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2787          * so this is sufficient to ensure mutual exclusion.
2788          */
2789         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2790             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2791             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2792
2793         if (vd == rvd) {
2794                 for (c = 0; c < rvd->vdev_children; c++)
2795                         vdev_config_dirty(rvd->vdev_child[c]);
2796         } else {
2797                 ASSERT(vd == vd->vdev_top);
2798
2799                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2800                     !vd->vdev_ishole)
2801                         list_insert_head(&spa->spa_config_dirty_list, vd);
2802         }
2803 }
2804
2805 void
2806 vdev_config_clean(vdev_t *vd)
2807 {
2808         spa_t *spa = vd->vdev_spa;
2809
2810         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2811             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2812             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2813
2814         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2815         list_remove(&spa->spa_config_dirty_list, vd);
2816 }
2817
2818 /*
2819  * Mark a top-level vdev's state as dirty, so that the next pass of
2820  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2821  * the state changes from larger config changes because they require
2822  * much less locking, and are often needed for administrative actions.
2823  */
2824 void
2825 vdev_state_dirty(vdev_t *vd)
2826 {
2827         spa_t *spa = vd->vdev_spa;
2828
2829         ASSERT(spa_writeable(spa));
2830         ASSERT(vd == vd->vdev_top);
2831
2832         /*
2833          * The state list is protected by the SCL_STATE lock.  The caller
2834          * must either hold SCL_STATE as writer, or must be the sync thread
2835          * (which holds SCL_STATE as reader).  There's only one sync thread,
2836          * so this is sufficient to ensure mutual exclusion.
2837          */
2838         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2839             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2840             spa_config_held(spa, SCL_STATE, RW_READER)));
2841
2842         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2843                 list_insert_head(&spa->spa_state_dirty_list, vd);
2844 }
2845
2846 void
2847 vdev_state_clean(vdev_t *vd)
2848 {
2849         spa_t *spa = vd->vdev_spa;
2850
2851         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2852             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2853             spa_config_held(spa, SCL_STATE, RW_READER)));
2854
2855         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2856         list_remove(&spa->spa_state_dirty_list, vd);
2857 }
2858
2859 /*
2860  * Propagate vdev state up from children to parent.
2861  */
2862 void
2863 vdev_propagate_state(vdev_t *vd)
2864 {
2865         spa_t *spa = vd->vdev_spa;
2866         vdev_t *rvd = spa->spa_root_vdev;
2867         int degraded = 0, faulted = 0;
2868         int corrupted = 0;
2869         vdev_t *child;
2870         int c;
2871
2872         if (vd->vdev_children > 0) {
2873                 for (c = 0; c < vd->vdev_children; c++) {
2874                         child = vd->vdev_child[c];
2875
2876                         /*
2877                          * Don't factor holes into the decision.
2878                          */
2879                         if (child->vdev_ishole)
2880                                 continue;
2881
2882                         if (!vdev_readable(child) ||
2883                             (!vdev_writeable(child) && spa_writeable(spa))) {
2884                                 /*
2885                                  * Root special: if there is a top-level log
2886                                  * device, treat the root vdev as if it were
2887                                  * degraded.
2888                                  */
2889                                 if (child->vdev_islog && vd == rvd)
2890                                         degraded++;
2891                                 else
2892                                         faulted++;
2893                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2894                                 degraded++;
2895                         }
2896
2897                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2898                                 corrupted++;
2899                 }
2900
2901                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2902
2903                 /*
2904                  * Root special: if there is a top-level vdev that cannot be
2905                  * opened due to corrupted metadata, then propagate the root
2906                  * vdev's aux state as 'corrupt' rather than 'insufficient
2907                  * replicas'.
2908                  */
2909                 if (corrupted && vd == rvd &&
2910                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2911                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2912                             VDEV_AUX_CORRUPT_DATA);
2913         }
2914
2915         if (vd->vdev_parent)
2916                 vdev_propagate_state(vd->vdev_parent);
2917 }
2918
2919 /*
2920  * Set a vdev's state.  If this is during an open, we don't update the parent
2921  * state, because we're in the process of opening children depth-first.
2922  * Otherwise, we propagate the change to the parent.
2923  *
2924  * If this routine places a device in a faulted state, an appropriate ereport is
2925  * generated.
2926  */
2927 void
2928 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2929 {
2930         uint64_t save_state;
2931         spa_t *spa = vd->vdev_spa;
2932
2933         if (state == vd->vdev_state) {
2934                 vd->vdev_stat.vs_aux = aux;
2935                 return;
2936         }
2937
2938         save_state = vd->vdev_state;
2939
2940         vd->vdev_state = state;
2941         vd->vdev_stat.vs_aux = aux;
2942
2943         /*
2944          * If we are setting the vdev state to anything but an open state, then
2945          * always close the underlying device unless the device has requested
2946          * a delayed close (i.e. we're about to remove or fault the device).
2947          * Otherwise, we keep accessible but invalid devices open forever.
2948          * We don't call vdev_close() itself, because that implies some extra
2949          * checks (offline, etc) that we don't want here.  This is limited to
2950          * leaf devices, because otherwise closing the device will affect other
2951          * children.
2952          */
2953         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2954             vd->vdev_ops->vdev_op_leaf)
2955                 vd->vdev_ops->vdev_op_close(vd);
2956
2957         /*
2958          * If we have brought this vdev back into service, we need
2959          * to notify fmd so that it can gracefully repair any outstanding
2960          * cases due to a missing device.  We do this in all cases, even those
2961          * that probably don't correlate to a repaired fault.  This is sure to
2962          * catch all cases, and we let the zfs-retire agent sort it out.  If
2963          * this is a transient state it's OK, as the retire agent will
2964          * double-check the state of the vdev before repairing it.
2965          */
2966         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2967             vd->vdev_prevstate != state)
2968                 zfs_post_state_change(spa, vd);
2969
2970         if (vd->vdev_removed &&
2971             state == VDEV_STATE_CANT_OPEN &&
2972             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2973                 /*
2974                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2975                  * device was previously marked removed and someone attempted to
2976                  * reopen it.  If this failed due to a nonexistent device, then
2977                  * keep the device in the REMOVED state.  We also let this be if
2978                  * it is one of our special test online cases, which is only
2979                  * attempting to online the device and shouldn't generate an FMA
2980                  * fault.
2981                  */
2982                 vd->vdev_state = VDEV_STATE_REMOVED;
2983                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2984         } else if (state == VDEV_STATE_REMOVED) {
2985                 vd->vdev_removed = B_TRUE;
2986         } else if (state == VDEV_STATE_CANT_OPEN) {
2987                 /*
2988                  * If we fail to open a vdev during an import or recovery, we
2989                  * mark it as "not available", which signifies that it was
2990                  * never there to begin with.  Failure to open such a device
2991                  * is not considered an error.
2992                  */
2993                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2994                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2995                     vd->vdev_ops->vdev_op_leaf)
2996                         vd->vdev_not_present = 1;
2997
2998                 /*
2999                  * Post the appropriate ereport.  If the 'prevstate' field is
3000                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3001                  * that this is part of a vdev_reopen().  In this case, we don't
3002                  * want to post the ereport if the device was already in the
3003                  * CANT_OPEN state beforehand.
3004                  *
3005                  * If the 'checkremove' flag is set, then this is an attempt to
3006                  * online the device in response to an insertion event.  If we
3007                  * hit this case, then we have detected an insertion event for a
3008                  * faulted or offline device that wasn't in the removed state.
3009                  * In this scenario, we don't post an ereport because we are
3010                  * about to replace the device, or attempt an online with
3011                  * vdev_forcefault, which will generate the fault for us.
3012                  */
3013                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3014                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3015                     vd != spa->spa_root_vdev) {
3016                         const char *class;
3017
3018                         switch (aux) {
3019                         case VDEV_AUX_OPEN_FAILED:
3020                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3021                                 break;
3022                         case VDEV_AUX_CORRUPT_DATA:
3023                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3024                                 break;
3025                         case VDEV_AUX_NO_REPLICAS:
3026                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3027                                 break;
3028                         case VDEV_AUX_BAD_GUID_SUM:
3029                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3030                                 break;
3031                         case VDEV_AUX_TOO_SMALL:
3032                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3033                                 break;
3034                         case VDEV_AUX_BAD_LABEL:
3035                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3036                                 break;
3037                         default:
3038                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3039                         }
3040
3041                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3042                 }
3043
3044                 /* Erase any notion of persistent removed state */
3045                 vd->vdev_removed = B_FALSE;
3046         } else {
3047                 vd->vdev_removed = B_FALSE;
3048         }
3049
3050         if (!isopen && vd->vdev_parent)
3051                 vdev_propagate_state(vd->vdev_parent);
3052 }
3053
3054 /*
3055  * Check the vdev configuration to ensure that it's capable of supporting
3056  * a root pool.
3057  */
3058 boolean_t
3059 vdev_is_bootable(vdev_t *vd)
3060 {
3061 #if defined(__sun__) || defined(__sun)
3062         /*
3063          * Currently, we do not support RAID-Z or partial configuration.
3064          * In addition, only a single top-level vdev is allowed and none of the
3065          * leaves can be wholedisks.
3066          */
3067         int c;
3068
3069         if (!vd->vdev_ops->vdev_op_leaf) {
3070                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3071
3072                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3073                     vd->vdev_children > 1) {
3074                         return (B_FALSE);
3075                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3076                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3077                         return (B_FALSE);
3078                 }
3079         } else if (vd->vdev_wholedisk == 1) {
3080                 return (B_FALSE);
3081         }
3082
3083         for (c = 0; c < vd->vdev_children; c++) {
3084                 if (!vdev_is_bootable(vd->vdev_child[c]))
3085                         return (B_FALSE);
3086         }
3087 #endif /* __sun__ || __sun */
3088         return (B_TRUE);
3089 }
3090
3091 /*
3092  * Load the state from the original vdev tree (ovd) which
3093  * we've retrieved from the MOS config object. If the original
3094  * vdev was offline or faulted then we transfer that state to the
3095  * device in the current vdev tree (nvd).
3096  */
3097 void
3098 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3099 {
3100         int c;
3101
3102         ASSERT(nvd->vdev_top->vdev_islog);
3103         ASSERT(spa_config_held(nvd->vdev_spa,
3104             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3105         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3106
3107         for (c = 0; c < nvd->vdev_children; c++)
3108                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3109
3110         if (nvd->vdev_ops->vdev_op_leaf) {
3111                 /*
3112                  * Restore the persistent vdev state
3113                  */
3114                 nvd->vdev_offline = ovd->vdev_offline;
3115                 nvd->vdev_faulted = ovd->vdev_faulted;
3116                 nvd->vdev_degraded = ovd->vdev_degraded;
3117                 nvd->vdev_removed = ovd->vdev_removed;
3118         }
3119 }
3120
3121 /*
3122  * Determine if a log device has valid content.  If the vdev was
3123  * removed or faulted in the MOS config then we know that
3124  * the content on the log device has already been written to the pool.
3125  */
3126 boolean_t
3127 vdev_log_state_valid(vdev_t *vd)
3128 {
3129         int c;
3130
3131         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3132             !vd->vdev_removed)
3133                 return (B_TRUE);
3134
3135         for (c = 0; c < vd->vdev_children; c++)
3136                 if (vdev_log_state_valid(vd->vdev_child[c]))
3137                         return (B_TRUE);
3138
3139         return (B_FALSE);
3140 }
3141
3142 /*
3143  * Expand a vdev if possible.
3144  */
3145 void
3146 vdev_expand(vdev_t *vd, uint64_t txg)
3147 {
3148         ASSERT(vd->vdev_top == vd);
3149         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3150
3151         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3152                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3153                 vdev_config_dirty(vd);
3154         }
3155 }
3156
3157 /*
3158  * Split a vdev.
3159  */
3160 void
3161 vdev_split(vdev_t *vd)
3162 {
3163         vdev_t *cvd, *pvd = vd->vdev_parent;
3164
3165         vdev_remove_child(pvd, vd);
3166         vdev_compact_children(pvd);
3167
3168         cvd = pvd->vdev_child[0];
3169         if (pvd->vdev_children == 1) {
3170                 vdev_remove_parent(cvd);
3171                 cvd->vdev_splitting = B_TRUE;
3172         }
3173         vdev_propagate_state(cvd);
3174 }
3175
3176 #if defined(_KERNEL) && defined(HAVE_SPL)
3177 EXPORT_SYMBOL(vdev_fault);
3178 EXPORT_SYMBOL(vdev_degrade);
3179 EXPORT_SYMBOL(vdev_online);
3180 EXPORT_SYMBOL(vdev_offline);
3181 EXPORT_SYMBOL(vdev_clear);
3182
3183 module_param(zfs_scrub_limit, int, 0644);
3184 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3185 #endif