Illumos #1951: leaking a vdev when removing an l2cache device
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88         int c;
89
90         for (c = 0; c < vd->vdev_children; c++) {
91                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92                 asize = MAX(asize, csize);
93         }
94
95         return (asize);
96 }
97
98 /*
99  * Get the minimum allocatable size. We define the allocatable size as
100  * the vdev's asize rounded to the nearest metaslab. This allows us to
101  * replace or attach devices which don't have the same physical size but
102  * can still satisfy the same number of allocations.
103  */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107         vdev_t *pvd = vd->vdev_parent;
108
109         /*
110          * The our parent is NULL (inactive spare or cache) or is the root,
111          * just return our own asize.
112          */
113         if (pvd == NULL)
114                 return (vd->vdev_asize);
115
116         /*
117          * The top-level vdev just returns the allocatable size rounded
118          * to the nearest metaslab.
119          */
120         if (vd == vd->vdev_top)
121                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123         /*
124          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125          * so each child must provide at least 1/Nth of its asize.
126          */
127         if (pvd->vdev_ops == &vdev_raidz_ops)
128                 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130         return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136         int c;
137         vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139         for (c = 0; c < vd->vdev_children; c++)
140                 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146         vdev_t *rvd = spa->spa_root_vdev;
147
148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150         if (vdev < rvd->vdev_children) {
151                 ASSERT(rvd->vdev_child[vdev] != NULL);
152                 return (rvd->vdev_child[vdev]);
153         }
154
155         return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161         vdev_t *mvd;
162         int c;
163
164         if (vd->vdev_guid == guid)
165                 return (vd);
166
167         for (c = 0; c < vd->vdev_children; c++)
168                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169                     NULL)
170                         return (mvd);
171
172         return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178         size_t oldsize, newsize;
179         uint64_t id = cvd->vdev_id;
180         vdev_t **newchild;
181
182         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183         ASSERT(cvd->vdev_parent == NULL);
184
185         cvd->vdev_parent = pvd;
186
187         if (pvd == NULL)
188                 return;
189
190         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192         oldsize = pvd->vdev_children * sizeof (vdev_t *);
193         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194         newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196         newchild = kmem_zalloc(newsize, KM_SLEEP);
197         if (pvd->vdev_child != NULL) {
198                 bcopy(pvd->vdev_child, newchild, oldsize);
199                 kmem_free(pvd->vdev_child, oldsize);
200         }
201
202         pvd->vdev_child = newchild;
203         pvd->vdev_child[id] = cvd;
204
205         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208         /*
209          * Walk up all ancestors to update guid sum.
210          */
211         for (; pvd != NULL; pvd = pvd->vdev_parent)
212                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255         vdev_t **newchild, *cvd;
256         int oldc = pvd->vdev_children;
257         int newc;
258         int c;
259
260         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262         for (c = newc = 0; c < oldc; c++)
263                 if (pvd->vdev_child[c])
264                         newc++;
265
266         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
268         for (c = newc = 0; c < oldc; c++) {
269                 if ((cvd = pvd->vdev_child[c]) != NULL) {
270                         newchild[newc] = cvd;
271                         cvd->vdev_id = newc++;
272                 }
273         }
274
275         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276         pvd->vdev_child = newchild;
277         pvd->vdev_children = newc;
278 }
279
280 /*
281  * Allocate and minimally initialize a vdev_t.
282  */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286         vdev_t *vd;
287         int t;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0 && ops != &vdev_hole_ops) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         guid = spa_generate_guid(NULL);
303                 } else {
304                         /*
305                          * Any other vdev's guid must be unique within the pool.
306                          */
307                         guid = spa_generate_guid(spa);
308                 }
309                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310         }
311
312         vd->vdev_spa = spa;
313         vd->vdev_id = id;
314         vd->vdev_guid = guid;
315         vd->vdev_guid_sum = guid;
316         vd->vdev_ops = ops;
317         vd->vdev_state = VDEV_STATE_CLOSED;
318         vd->vdev_ishole = (ops == &vdev_hole_ops);
319
320         list_link_init(&vd->vdev_config_dirty_node);
321         list_link_init(&vd->vdev_state_dirty_node);
322         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325         for (t = 0; t < DTL_TYPES; t++) {
326                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327                     &vd->vdev_dtl_lock);
328         }
329         txg_list_create(&vd->vdev_ms_list,
330             offsetof(struct metaslab, ms_txg_node));
331         txg_list_create(&vd->vdev_dtl_list,
332             offsetof(struct vdev, vdev_dtl_node));
333         vd->vdev_stat.vs_timestamp = gethrtime();
334         vdev_queue_init(vd);
335         vdev_cache_init(vd);
336
337         return (vd);
338 }
339
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349         vdev_ops_t *ops;
350         char *type;
351         uint64_t guid = 0, islog, nparity;
352         vdev_t *vd;
353
354         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357                 return (EINVAL);
358
359         if ((ops = vdev_getops(type)) == NULL)
360                 return (EINVAL);
361
362         /*
363          * If this is a load, get the vdev guid from the nvlist.
364          * Otherwise, vdev_alloc_common() will generate one for us.
365          */
366         if (alloctype == VDEV_ALLOC_LOAD) {
367                 uint64_t label_id;
368
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370                     label_id != id)
371                         return (EINVAL);
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         } else if (alloctype == VDEV_ALLOC_SPARE) {
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         }
385
386         /*
387          * The first allocated vdev must be of type 'root'.
388          */
389         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390                 return (EINVAL);
391
392         /*
393          * Determine whether we're a log vdev.
394          */
395         islog = 0;
396         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398                 return (ENOTSUP);
399
400         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
401                 return (ENOTSUP);
402
403         /*
404          * Set the nparity property for RAID-Z vdevs.
405          */
406         nparity = -1ULL;
407         if (ops == &vdev_raidz_ops) {
408                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
409                     &nparity) == 0) {
410                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
411                                 return (EINVAL);
412                         /*
413                          * Previous versions could only support 1 or 2 parity
414                          * device.
415                          */
416                         if (nparity > 1 &&
417                             spa_version(spa) < SPA_VERSION_RAIDZ2)
418                                 return (ENOTSUP);
419                         if (nparity > 2 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ3)
421                                 return (ENOTSUP);
422                 } else {
423                         /*
424                          * We require the parity to be specified for SPAs that
425                          * support multiple parity levels.
426                          */
427                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
428                                 return (EINVAL);
429                         /*
430                          * Otherwise, we default to 1 parity device for RAID-Z.
431                          */
432                         nparity = 1;
433                 }
434         } else {
435                 nparity = 0;
436         }
437         ASSERT(nparity != -1ULL);
438
439         vd = vdev_alloc_common(spa, id, guid, ops);
440
441         vd->vdev_islog = islog;
442         vd->vdev_nparity = nparity;
443
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
445                 vd->vdev_path = spa_strdup(vd->vdev_path);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
447                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
449             &vd->vdev_physpath) == 0)
450                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
452                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
453
454         /*
455          * Set the whole_disk property.  If it's not specified, leave the value
456          * as -1.
457          */
458         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459             &vd->vdev_wholedisk) != 0)
460                 vd->vdev_wholedisk = -1ULL;
461
462         /*
463          * Look for the 'not present' flag.  This will only be set if the device
464          * was not present at the time of import.
465          */
466         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467             &vd->vdev_not_present);
468
469         /*
470          * Get the alignment requirement.
471          */
472         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473
474         /*
475          * Retrieve the vdev creation time.
476          */
477         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
478             &vd->vdev_crtxg);
479
480         /*
481          * If we're a top-level vdev, try to load the allocation parameters.
482          */
483         if (parent && !parent->vdev_parent &&
484             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
486                     &vd->vdev_ms_array);
487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
488                     &vd->vdev_ms_shift);
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
490                     &vd->vdev_asize);
491                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
492                     &vd->vdev_removing);
493         }
494
495         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
496                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
497                     alloctype == VDEV_ALLOC_ADD ||
498                     alloctype == VDEV_ALLOC_SPLIT ||
499                     alloctype == VDEV_ALLOC_ROOTPOOL);
500                 vd->vdev_mg = metaslab_group_create(islog ?
501                     spa_log_class(spa) : spa_normal_class(spa), vd);
502         }
503
504         /*
505          * If we're a leaf vdev, try to load the DTL object and other state.
506          */
507         if (vd->vdev_ops->vdev_op_leaf &&
508             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
509             alloctype == VDEV_ALLOC_ROOTPOOL)) {
510                 if (alloctype == VDEV_ALLOC_LOAD) {
511                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
512                             &vd->vdev_dtl_smo.smo_object);
513                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
514                             &vd->vdev_unspare);
515                 }
516
517                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
518                         uint64_t spare = 0;
519
520                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
521                             &spare) == 0 && spare)
522                                 spa_spare_add(vd);
523                 }
524
525                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
526                     &vd->vdev_offline);
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
529                     &vd->vdev_resilvering);
530
531                 /*
532                  * When importing a pool, we want to ignore the persistent fault
533                  * state, as the diagnosis made on another system may not be
534                  * valid in the current context.  Local vdevs will
535                  * remain in the faulted state.
536                  */
537                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
539                             &vd->vdev_faulted);
540                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
541                             &vd->vdev_degraded);
542                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
543                             &vd->vdev_removed);
544
545                         if (vd->vdev_faulted || vd->vdev_degraded) {
546                                 char *aux;
547
548                                 vd->vdev_label_aux =
549                                     VDEV_AUX_ERR_EXCEEDED;
550                                 if (nvlist_lookup_string(nv,
551                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
552                                     strcmp(aux, "external") == 0)
553                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
554                         }
555                 }
556         }
557
558         /*
559          * Add ourselves to the parent's list of children.
560          */
561         vdev_add_child(parent, vd);
562
563         *vdp = vd;
564
565         return (0);
566 }
567
568 void
569 vdev_free(vdev_t *vd)
570 {
571         int c, t;
572         spa_t *spa = vd->vdev_spa;
573
574         /*
575          * vdev_free() implies closing the vdev first.  This is simpler than
576          * trying to ensure complicated semantics for all callers.
577          */
578         vdev_close(vd);
579
580         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583         /*
584          * Free all children.
585          */
586         for (c = 0; c < vd->vdev_children; c++)
587                 vdev_free(vd->vdev_child[c]);
588
589         ASSERT(vd->vdev_child == NULL);
590         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592         /*
593          * Discard allocation state.
594          */
595         if (vd->vdev_mg != NULL) {
596                 vdev_metaslab_fini(vd);
597                 metaslab_group_destroy(vd->vdev_mg);
598         }
599
600         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
601         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
602         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
603
604         /*
605          * Remove this vdev from its parent's child list.
606          */
607         vdev_remove_child(vd->vdev_parent, vd);
608
609         ASSERT(vd->vdev_parent == NULL);
610
611         /*
612          * Clean up vdev structure.
613          */
614         vdev_queue_fini(vd);
615         vdev_cache_fini(vd);
616
617         if (vd->vdev_path)
618                 spa_strfree(vd->vdev_path);
619         if (vd->vdev_devid)
620                 spa_strfree(vd->vdev_devid);
621         if (vd->vdev_physpath)
622                 spa_strfree(vd->vdev_physpath);
623         if (vd->vdev_fru)
624                 spa_strfree(vd->vdev_fru);
625
626         if (vd->vdev_isspare)
627                 spa_spare_remove(vd);
628         if (vd->vdev_isl2cache)
629                 spa_l2cache_remove(vd);
630
631         txg_list_destroy(&vd->vdev_ms_list);
632         txg_list_destroy(&vd->vdev_dtl_list);
633
634         mutex_enter(&vd->vdev_dtl_lock);
635         for (t = 0; t < DTL_TYPES; t++) {
636                 space_map_unload(&vd->vdev_dtl[t]);
637                 space_map_destroy(&vd->vdev_dtl[t]);
638         }
639         mutex_exit(&vd->vdev_dtl_lock);
640
641         mutex_destroy(&vd->vdev_dtl_lock);
642         mutex_destroy(&vd->vdev_stat_lock);
643         mutex_destroy(&vd->vdev_probe_lock);
644
645         if (vd == spa->spa_root_vdev)
646                 spa->spa_root_vdev = NULL;
647
648         kmem_free(vd, sizeof (vdev_t));
649 }
650
651 /*
652  * Transfer top-level vdev state from svd to tvd.
653  */
654 static void
655 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656 {
657         spa_t *spa = svd->vdev_spa;
658         metaslab_t *msp;
659         vdev_t *vd;
660         int t;
661
662         ASSERT(tvd == tvd->vdev_top);
663
664         tvd->vdev_ms_array = svd->vdev_ms_array;
665         tvd->vdev_ms_shift = svd->vdev_ms_shift;
666         tvd->vdev_ms_count = svd->vdev_ms_count;
667
668         svd->vdev_ms_array = 0;
669         svd->vdev_ms_shift = 0;
670         svd->vdev_ms_count = 0;
671
672         if (tvd->vdev_mg)
673                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
674         tvd->vdev_mg = svd->vdev_mg;
675         tvd->vdev_ms = svd->vdev_ms;
676
677         svd->vdev_mg = NULL;
678         svd->vdev_ms = NULL;
679
680         if (tvd->vdev_mg != NULL)
681                 tvd->vdev_mg->mg_vd = tvd;
682
683         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
684         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
685         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
686
687         svd->vdev_stat.vs_alloc = 0;
688         svd->vdev_stat.vs_space = 0;
689         svd->vdev_stat.vs_dspace = 0;
690
691         for (t = 0; t < TXG_SIZE; t++) {
692                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
693                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
694                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
695                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
696                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
697                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
698         }
699
700         if (list_link_active(&svd->vdev_config_dirty_node)) {
701                 vdev_config_clean(svd);
702                 vdev_config_dirty(tvd);
703         }
704
705         if (list_link_active(&svd->vdev_state_dirty_node)) {
706                 vdev_state_clean(svd);
707                 vdev_state_dirty(tvd);
708         }
709
710         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
711         svd->vdev_deflate_ratio = 0;
712
713         tvd->vdev_islog = svd->vdev_islog;
714         svd->vdev_islog = 0;
715 }
716
717 static void
718 vdev_top_update(vdev_t *tvd, vdev_t *vd)
719 {
720         int c;
721
722         if (vd == NULL)
723                 return;
724
725         vd->vdev_top = tvd;
726
727         for (c = 0; c < vd->vdev_children; c++)
728                 vdev_top_update(tvd, vd->vdev_child[c]);
729 }
730
731 /*
732  * Add a mirror/replacing vdev above an existing vdev.
733  */
734 vdev_t *
735 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736 {
737         spa_t *spa = cvd->vdev_spa;
738         vdev_t *pvd = cvd->vdev_parent;
739         vdev_t *mvd;
740
741         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744
745         mvd->vdev_asize = cvd->vdev_asize;
746         mvd->vdev_min_asize = cvd->vdev_min_asize;
747         mvd->vdev_ashift = cvd->vdev_ashift;
748         mvd->vdev_state = cvd->vdev_state;
749         mvd->vdev_crtxg = cvd->vdev_crtxg;
750
751         vdev_remove_child(pvd, cvd);
752         vdev_add_child(pvd, mvd);
753         cvd->vdev_id = mvd->vdev_children;
754         vdev_add_child(mvd, cvd);
755         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
756
757         if (mvd == mvd->vdev_top)
758                 vdev_top_transfer(cvd, mvd);
759
760         return (mvd);
761 }
762
763 /*
764  * Remove a 1-way mirror/replacing vdev from the tree.
765  */
766 void
767 vdev_remove_parent(vdev_t *cvd)
768 {
769         vdev_t *mvd = cvd->vdev_parent;
770         vdev_t *pvd = mvd->vdev_parent;
771
772         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
773
774         ASSERT(mvd->vdev_children == 1);
775         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
776             mvd->vdev_ops == &vdev_replacing_ops ||
777             mvd->vdev_ops == &vdev_spare_ops);
778         cvd->vdev_ashift = mvd->vdev_ashift;
779
780         vdev_remove_child(mvd, cvd);
781         vdev_remove_child(pvd, mvd);
782
783         /*
784          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
785          * Otherwise, we could have detached an offline device, and when we
786          * go to import the pool we'll think we have two top-level vdevs,
787          * instead of a different version of the same top-level vdev.
788          */
789         if (mvd->vdev_top == mvd) {
790                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
791                 cvd->vdev_orig_guid = cvd->vdev_guid;
792                 cvd->vdev_guid += guid_delta;
793                 cvd->vdev_guid_sum += guid_delta;
794         }
795         cvd->vdev_id = mvd->vdev_id;
796         vdev_add_child(pvd, cvd);
797         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
798
799         if (cvd == cvd->vdev_top)
800                 vdev_top_transfer(mvd, cvd);
801
802         ASSERT(mvd->vdev_children == 0);
803         vdev_free(mvd);
804 }
805
806 int
807 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
808 {
809         spa_t *spa = vd->vdev_spa;
810         objset_t *mos = spa->spa_meta_objset;
811         uint64_t m;
812         uint64_t oldc = vd->vdev_ms_count;
813         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
814         metaslab_t **mspp;
815         int error;
816
817         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
818
819         /*
820          * This vdev is not being allocated from yet or is a hole.
821          */
822         if (vd->vdev_ms_shift == 0)
823                 return (0);
824
825         ASSERT(!vd->vdev_ishole);
826
827         /*
828          * Compute the raidz-deflation ratio.  Note, we hard-code
829          * in 128k (1 << 17) because it is the current "typical" blocksize.
830          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
831          * or we will inconsistently account for existing bp's.
832          */
833         vd->vdev_deflate_ratio = (1 << 17) /
834             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
835
836         ASSERT(oldc <= newc);
837
838         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP | KM_NODEBUG);
839
840         if (oldc != 0) {
841                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
842                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
843         }
844
845         vd->vdev_ms = mspp;
846         vd->vdev_ms_count = newc;
847
848         for (m = oldc; m < newc; m++) {
849                 space_map_obj_t smo = { 0, 0, 0 };
850                 if (txg == 0) {
851                         uint64_t object = 0;
852                         error = dmu_read(mos, vd->vdev_ms_array,
853                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
854                             DMU_READ_PREFETCH);
855                         if (error)
856                                 return (error);
857                         if (object != 0) {
858                                 dmu_buf_t *db;
859                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
860                                 if (error)
861                                         return (error);
862                                 ASSERT3U(db->db_size, >=, sizeof (smo));
863                                 bcopy(db->db_data, &smo, sizeof (smo));
864                                 ASSERT3U(smo.smo_object, ==, object);
865                                 dmu_buf_rele(db, FTAG);
866                         }
867                 }
868                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
869                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
870         }
871
872         if (txg == 0)
873                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
874
875         /*
876          * If the vdev is being removed we don't activate
877          * the metaslabs since we want to ensure that no new
878          * allocations are performed on this device.
879          */
880         if (oldc == 0 && !vd->vdev_removing)
881                 metaslab_group_activate(vd->vdev_mg);
882
883         if (txg == 0)
884                 spa_config_exit(spa, SCL_ALLOC, FTAG);
885
886         return (0);
887 }
888
889 void
890 vdev_metaslab_fini(vdev_t *vd)
891 {
892         uint64_t m;
893         uint64_t count = vd->vdev_ms_count;
894
895         if (vd->vdev_ms != NULL) {
896                 metaslab_group_passivate(vd->vdev_mg);
897                 for (m = 0; m < count; m++)
898                         if (vd->vdev_ms[m] != NULL)
899                                 metaslab_fini(vd->vdev_ms[m]);
900                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
901                 vd->vdev_ms = NULL;
902         }
903 }
904
905 typedef struct vdev_probe_stats {
906         boolean_t       vps_readable;
907         boolean_t       vps_writeable;
908         int             vps_flags;
909 } vdev_probe_stats_t;
910
911 static void
912 vdev_probe_done(zio_t *zio)
913 {
914         spa_t *spa = zio->io_spa;
915         vdev_t *vd = zio->io_vd;
916         vdev_probe_stats_t *vps = zio->io_private;
917
918         ASSERT(vd->vdev_probe_zio != NULL);
919
920         if (zio->io_type == ZIO_TYPE_READ) {
921                 if (zio->io_error == 0)
922                         vps->vps_readable = 1;
923                 if (zio->io_error == 0 && spa_writeable(spa)) {
924                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
925                             zio->io_offset, zio->io_size, zio->io_data,
926                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
927                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
928                 } else {
929                         zio_buf_free(zio->io_data, zio->io_size);
930                 }
931         } else if (zio->io_type == ZIO_TYPE_WRITE) {
932                 if (zio->io_error == 0)
933                         vps->vps_writeable = 1;
934                 zio_buf_free(zio->io_data, zio->io_size);
935         } else if (zio->io_type == ZIO_TYPE_NULL) {
936                 zio_t *pio;
937
938                 vd->vdev_cant_read |= !vps->vps_readable;
939                 vd->vdev_cant_write |= !vps->vps_writeable;
940
941                 if (vdev_readable(vd) &&
942                     (vdev_writeable(vd) || !spa_writeable(spa))) {
943                         zio->io_error = 0;
944                 } else {
945                         ASSERT(zio->io_error != 0);
946                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
947                             spa, vd, NULL, 0, 0);
948                         zio->io_error = ENXIO;
949                 }
950
951                 mutex_enter(&vd->vdev_probe_lock);
952                 ASSERT(vd->vdev_probe_zio == zio);
953                 vd->vdev_probe_zio = NULL;
954                 mutex_exit(&vd->vdev_probe_lock);
955
956                 while ((pio = zio_walk_parents(zio)) != NULL)
957                         if (!vdev_accessible(vd, pio))
958                                 pio->io_error = ENXIO;
959
960                 kmem_free(vps, sizeof (*vps));
961         }
962 }
963
964 /*
965  * Determine whether this device is accessible by reading and writing
966  * to several known locations: the pad regions of each vdev label
967  * but the first (which we leave alone in case it contains a VTOC).
968  */
969 zio_t *
970 vdev_probe(vdev_t *vd, zio_t *zio)
971 {
972         spa_t *spa = vd->vdev_spa;
973         vdev_probe_stats_t *vps = NULL;
974         zio_t *pio;
975         int l;
976
977         ASSERT(vd->vdev_ops->vdev_op_leaf);
978
979         /*
980          * Don't probe the probe.
981          */
982         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
983                 return (NULL);
984
985         /*
986          * To prevent 'probe storms' when a device fails, we create
987          * just one probe i/o at a time.  All zios that want to probe
988          * this vdev will become parents of the probe io.
989          */
990         mutex_enter(&vd->vdev_probe_lock);
991
992         if ((pio = vd->vdev_probe_zio) == NULL) {
993                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
994
995                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
996                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
997                     ZIO_FLAG_TRYHARD;
998
999                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1000                         /*
1001                          * vdev_cant_read and vdev_cant_write can only
1002                          * transition from TRUE to FALSE when we have the
1003                          * SCL_ZIO lock as writer; otherwise they can only
1004                          * transition from FALSE to TRUE.  This ensures that
1005                          * any zio looking at these values can assume that
1006                          * failures persist for the life of the I/O.  That's
1007                          * important because when a device has intermittent
1008                          * connectivity problems, we want to ensure that
1009                          * they're ascribed to the device (ENXIO) and not
1010                          * the zio (EIO).
1011                          *
1012                          * Since we hold SCL_ZIO as writer here, clear both
1013                          * values so the probe can reevaluate from first
1014                          * principles.
1015                          */
1016                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1017                         vd->vdev_cant_read = B_FALSE;
1018                         vd->vdev_cant_write = B_FALSE;
1019                 }
1020
1021                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1022                     vdev_probe_done, vps,
1023                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1024
1025                 /*
1026                  * We can't change the vdev state in this context, so we
1027                  * kick off an async task to do it on our behalf.
1028                  */
1029                 if (zio != NULL) {
1030                         vd->vdev_probe_wanted = B_TRUE;
1031                         spa_async_request(spa, SPA_ASYNC_PROBE);
1032                 }
1033         }
1034
1035         if (zio != NULL)
1036                 zio_add_child(zio, pio);
1037
1038         mutex_exit(&vd->vdev_probe_lock);
1039
1040         if (vps == NULL) {
1041                 ASSERT(zio != NULL);
1042                 return (NULL);
1043         }
1044
1045         for (l = 1; l < VDEV_LABELS; l++) {
1046                 zio_nowait(zio_read_phys(pio, vd,
1047                     vdev_label_offset(vd->vdev_psize, l,
1048                     offsetof(vdev_label_t, vl_pad2)),
1049                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1050                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1051                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1052         }
1053
1054         if (zio == NULL)
1055                 return (pio);
1056
1057         zio_nowait(pio);
1058         return (NULL);
1059 }
1060
1061 static void
1062 vdev_open_child(void *arg)
1063 {
1064         vdev_t *vd = arg;
1065
1066         vd->vdev_open_thread = curthread;
1067         vd->vdev_open_error = vdev_open(vd);
1068         vd->vdev_open_thread = NULL;
1069 }
1070
1071 boolean_t
1072 vdev_uses_zvols(vdev_t *vd)
1073 {
1074 /*
1075  * Stacking zpools on top of zvols is unsupported until we implement a method
1076  * for determining if an arbitrary block device is a zvol without using the
1077  * path.  Solaris would check the 'zvol' path component but this does not
1078  * exist in the Linux port, so we really should do something like stat the
1079  * file and check the major number.  This is complicated by the fact that
1080  * we need to do this portably in user or kernel space.
1081  */
1082 #if 0
1083         int c;
1084
1085         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1086             strlen(ZVOL_DIR)) == 0)
1087                 return (B_TRUE);
1088         for (c = 0; c < vd->vdev_children; c++)
1089                 if (vdev_uses_zvols(vd->vdev_child[c]))
1090                         return (B_TRUE);
1091 #endif
1092         return (B_FALSE);
1093 }
1094
1095 void
1096 vdev_open_children(vdev_t *vd)
1097 {
1098         taskq_t *tq;
1099         int children = vd->vdev_children;
1100         int c;
1101
1102         /*
1103          * in order to handle pools on top of zvols, do the opens
1104          * in a single thread so that the same thread holds the
1105          * spa_namespace_lock
1106          */
1107         if (vdev_uses_zvols(vd)) {
1108                 for (c = 0; c < children; c++)
1109                         vd->vdev_child[c]->vdev_open_error =
1110                             vdev_open(vd->vdev_child[c]);
1111                 return;
1112         }
1113         tq = taskq_create("vdev_open", children, minclsyspri,
1114             children, children, TASKQ_PREPOPULATE);
1115
1116         for (c = 0; c < children; c++)
1117                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1118                     TQ_SLEEP) != 0);
1119
1120         taskq_destroy(tq);
1121 }
1122
1123 /*
1124  * Prepare a virtual device for access.
1125  */
1126 int
1127 vdev_open(vdev_t *vd)
1128 {
1129         spa_t *spa = vd->vdev_spa;
1130         int error;
1131         uint64_t osize = 0;
1132         uint64_t asize, psize;
1133         uint64_t ashift = 0;
1134         int c;
1135
1136         ASSERT(vd->vdev_open_thread == curthread ||
1137             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1138         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1139             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1140             vd->vdev_state == VDEV_STATE_OFFLINE);
1141
1142         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1143         vd->vdev_cant_read = B_FALSE;
1144         vd->vdev_cant_write = B_FALSE;
1145         vd->vdev_min_asize = vdev_get_min_asize(vd);
1146
1147         /*
1148          * If this vdev is not removed, check its fault status.  If it's
1149          * faulted, bail out of the open.
1150          */
1151         if (!vd->vdev_removed && vd->vdev_faulted) {
1152                 ASSERT(vd->vdev_children == 0);
1153                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1154                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1155                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1156                     vd->vdev_label_aux);
1157                 return (ENXIO);
1158         } else if (vd->vdev_offline) {
1159                 ASSERT(vd->vdev_children == 0);
1160                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1161                 return (ENXIO);
1162         }
1163
1164         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1165
1166         /*
1167          * Reset the vdev_reopening flag so that we actually close
1168          * the vdev on error.
1169          */
1170         vd->vdev_reopening = B_FALSE;
1171         if (zio_injection_enabled && error == 0)
1172                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1173
1174         if (error) {
1175                 if (vd->vdev_removed &&
1176                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1177                         vd->vdev_removed = B_FALSE;
1178
1179                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1180                     vd->vdev_stat.vs_aux);
1181                 return (error);
1182         }
1183
1184         vd->vdev_removed = B_FALSE;
1185
1186         /*
1187          * Recheck the faulted flag now that we have confirmed that
1188          * the vdev is accessible.  If we're faulted, bail.
1189          */
1190         if (vd->vdev_faulted) {
1191                 ASSERT(vd->vdev_children == 0);
1192                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1193                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1194                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1195                     vd->vdev_label_aux);
1196                 return (ENXIO);
1197         }
1198
1199         if (vd->vdev_degraded) {
1200                 ASSERT(vd->vdev_children == 0);
1201                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202                     VDEV_AUX_ERR_EXCEEDED);
1203         } else {
1204                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1205         }
1206
1207         /*
1208          * For hole or missing vdevs we just return success.
1209          */
1210         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1211                 return (0);
1212
1213         for (c = 0; c < vd->vdev_children; c++) {
1214                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1215                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1216                             VDEV_AUX_NONE);
1217                         break;
1218                 }
1219         }
1220
1221         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1222
1223         if (vd->vdev_children == 0) {
1224                 if (osize < SPA_MINDEVSIZE) {
1225                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1226                             VDEV_AUX_TOO_SMALL);
1227                         return (EOVERFLOW);
1228                 }
1229                 psize = osize;
1230                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1231         } else {
1232                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1233                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1234                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235                             VDEV_AUX_TOO_SMALL);
1236                         return (EOVERFLOW);
1237                 }
1238                 psize = 0;
1239                 asize = osize;
1240         }
1241
1242         vd->vdev_psize = psize;
1243
1244         /*
1245          * Make sure the allocatable size hasn't shrunk.
1246          */
1247         if (asize < vd->vdev_min_asize) {
1248                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249                     VDEV_AUX_BAD_LABEL);
1250                 return (EINVAL);
1251         }
1252
1253         if (vd->vdev_asize == 0) {
1254                 /*
1255                  * This is the first-ever open, so use the computed values.
1256                  * For testing purposes, a higher ashift can be requested.
1257                  */
1258                 vd->vdev_asize = asize;
1259                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1260         } else {
1261                 /*
1262                  * Make sure the alignment requirement hasn't increased.
1263                  */
1264                 if (ashift > vd->vdev_top->vdev_ashift) {
1265                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266                             VDEV_AUX_BAD_LABEL);
1267                         return (EINVAL);
1268                 }
1269         }
1270
1271         /*
1272          * If all children are healthy and the asize has increased,
1273          * then we've experienced dynamic LUN growth.  If automatic
1274          * expansion is enabled then use the additional space.
1275          */
1276         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1277             (vd->vdev_expanding || spa->spa_autoexpand))
1278                 vd->vdev_asize = asize;
1279
1280         vdev_set_min_asize(vd);
1281
1282         /*
1283          * Ensure we can issue some IO before declaring the
1284          * vdev open for business.
1285          */
1286         if (vd->vdev_ops->vdev_op_leaf &&
1287             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1289                     VDEV_AUX_ERR_EXCEEDED);
1290                 return (error);
1291         }
1292
1293         /*
1294          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1295          * resilver.  But don't do this if we are doing a reopen for a scrub,
1296          * since this would just restart the scrub we are already doing.
1297          */
1298         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1299             vdev_resilver_needed(vd, NULL, NULL))
1300                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1301
1302         return (0);
1303 }
1304
1305 /*
1306  * Called once the vdevs are all opened, this routine validates the label
1307  * contents.  This needs to be done before vdev_load() so that we don't
1308  * inadvertently do repair I/Os to the wrong device.
1309  *
1310  * This function will only return failure if one of the vdevs indicates that it
1311  * has since been destroyed or exported.  This is only possible if
1312  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1313  * will be updated but the function will return 0.
1314  */
1315 int
1316 vdev_validate(vdev_t *vd)
1317 {
1318         spa_t *spa = vd->vdev_spa;
1319         nvlist_t *label;
1320         uint64_t guid = 0, top_guid;
1321         uint64_t state;
1322         int c;
1323
1324         for (c = 0; c < vd->vdev_children; c++)
1325                 if (vdev_validate(vd->vdev_child[c]) != 0)
1326                         return (EBADF);
1327
1328         /*
1329          * If the device has already failed, or was marked offline, don't do
1330          * any further validation.  Otherwise, label I/O will fail and we will
1331          * overwrite the previous state.
1332          */
1333         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1334                 uint64_t aux_guid = 0;
1335                 nvlist_t *nvl;
1336
1337                 if ((label = vdev_label_read_config(vd)) == NULL) {
1338                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339                             VDEV_AUX_BAD_LABEL);
1340                         return (0);
1341                 }
1342
1343                 /*
1344                  * Determine if this vdev has been split off into another
1345                  * pool.  If so, then refuse to open it.
1346                  */
1347                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1348                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1349                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1350                             VDEV_AUX_SPLIT_POOL);
1351                         nvlist_free(label);
1352                         return (0);
1353                 }
1354
1355                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1356                     &guid) != 0 || guid != spa_guid(spa)) {
1357                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1358                             VDEV_AUX_CORRUPT_DATA);
1359                         nvlist_free(label);
1360                         return (0);
1361                 }
1362
1363                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1364                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1365                     &aux_guid) != 0)
1366                         aux_guid = 0;
1367
1368                 /*
1369                  * If this vdev just became a top-level vdev because its
1370                  * sibling was detached, it will have adopted the parent's
1371                  * vdev guid -- but the label may or may not be on disk yet.
1372                  * Fortunately, either version of the label will have the
1373                  * same top guid, so if we're a top-level vdev, we can
1374                  * safely compare to that instead.
1375                  *
1376                  * If we split this vdev off instead, then we also check the
1377                  * original pool's guid.  We don't want to consider the vdev
1378                  * corrupt if it is partway through a split operation.
1379                  */
1380                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1381                     &guid) != 0 ||
1382                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1383                     &top_guid) != 0 ||
1384                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1385                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1386                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1387                             VDEV_AUX_CORRUPT_DATA);
1388                         nvlist_free(label);
1389                         return (0);
1390                 }
1391
1392                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1393                     &state) != 0) {
1394                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1395                             VDEV_AUX_CORRUPT_DATA);
1396                         nvlist_free(label);
1397                         return (0);
1398                 }
1399
1400                 nvlist_free(label);
1401
1402                 /*
1403                  * If this is a verbatim import, no need to check the
1404                  * state of the pool.
1405                  */
1406                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1407                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1408                     state != POOL_STATE_ACTIVE)
1409                         return (EBADF);
1410
1411                 /*
1412                  * If we were able to open and validate a vdev that was
1413                  * previously marked permanently unavailable, clear that state
1414                  * now.
1415                  */
1416                 if (vd->vdev_not_present)
1417                         vd->vdev_not_present = 0;
1418         }
1419
1420         return (0);
1421 }
1422
1423 /*
1424  * Close a virtual device.
1425  */
1426 void
1427 vdev_close(vdev_t *vd)
1428 {
1429         vdev_t *pvd = vd->vdev_parent;
1430         ASSERTV(spa_t *spa = vd->vdev_spa);
1431
1432         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1433
1434         /*
1435          * If our parent is reopening, then we are as well, unless we are
1436          * going offline.
1437          */
1438         if (pvd != NULL && pvd->vdev_reopening)
1439                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1440
1441         vd->vdev_ops->vdev_op_close(vd);
1442
1443         vdev_cache_purge(vd);
1444
1445         /*
1446          * We record the previous state before we close it, so that if we are
1447          * doing a reopen(), we don't generate FMA ereports if we notice that
1448          * it's still faulted.
1449          */
1450         vd->vdev_prevstate = vd->vdev_state;
1451
1452         if (vd->vdev_offline)
1453                 vd->vdev_state = VDEV_STATE_OFFLINE;
1454         else
1455                 vd->vdev_state = VDEV_STATE_CLOSED;
1456         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1457 }
1458
1459 void
1460 vdev_hold(vdev_t *vd)
1461 {
1462         spa_t *spa = vd->vdev_spa;
1463         int c;
1464
1465         ASSERT(spa_is_root(spa));
1466         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1467                 return;
1468
1469         for (c = 0; c < vd->vdev_children; c++)
1470                 vdev_hold(vd->vdev_child[c]);
1471
1472         if (vd->vdev_ops->vdev_op_leaf)
1473                 vd->vdev_ops->vdev_op_hold(vd);
1474 }
1475
1476 void
1477 vdev_rele(vdev_t *vd)
1478 {
1479         int c;
1480
1481         ASSERT(spa_is_root(vd->vdev_spa));
1482         for (c = 0; c < vd->vdev_children; c++)
1483                 vdev_rele(vd->vdev_child[c]);
1484
1485         if (vd->vdev_ops->vdev_op_leaf)
1486                 vd->vdev_ops->vdev_op_rele(vd);
1487 }
1488
1489 /*
1490  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1491  * reopen leaf vdevs which had previously been opened as they might deadlock
1492  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1493  * If the leaf has never been opened then open it, as usual.
1494  */
1495 void
1496 vdev_reopen(vdev_t *vd)
1497 {
1498         spa_t *spa = vd->vdev_spa;
1499
1500         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1501
1502         /* set the reopening flag unless we're taking the vdev offline */
1503         vd->vdev_reopening = !vd->vdev_offline;
1504         vdev_close(vd);
1505         (void) vdev_open(vd);
1506
1507         /*
1508          * Call vdev_validate() here to make sure we have the same device.
1509          * Otherwise, a device with an invalid label could be successfully
1510          * opened in response to vdev_reopen().
1511          */
1512         if (vd->vdev_aux) {
1513                 (void) vdev_validate_aux(vd);
1514                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1515                     vd->vdev_aux == &spa->spa_l2cache &&
1516                     !l2arc_vdev_present(vd))
1517                         l2arc_add_vdev(spa, vd);
1518         } else {
1519                 (void) vdev_validate(vd);
1520         }
1521
1522         /*
1523          * Reassess parent vdev's health.
1524          */
1525         vdev_propagate_state(vd);
1526 }
1527
1528 int
1529 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1530 {
1531         int error;
1532
1533         /*
1534          * Normally, partial opens (e.g. of a mirror) are allowed.
1535          * For a create, however, we want to fail the request if
1536          * there are any components we can't open.
1537          */
1538         error = vdev_open(vd);
1539
1540         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1541                 vdev_close(vd);
1542                 return (error ? error : ENXIO);
1543         }
1544
1545         /*
1546          * Recursively initialize all labels.
1547          */
1548         if ((error = vdev_label_init(vd, txg, isreplacing ?
1549             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1550                 vdev_close(vd);
1551                 return (error);
1552         }
1553
1554         return (0);
1555 }
1556
1557 void
1558 vdev_metaslab_set_size(vdev_t *vd)
1559 {
1560         /*
1561          * Aim for roughly 200 metaslabs per vdev.
1562          */
1563         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1564         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1565 }
1566
1567 void
1568 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1569 {
1570         ASSERT(vd == vd->vdev_top);
1571         ASSERT(!vd->vdev_ishole);
1572         ASSERT(ISP2(flags));
1573         ASSERT(spa_writeable(vd->vdev_spa));
1574
1575         if (flags & VDD_METASLAB)
1576                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1577
1578         if (flags & VDD_DTL)
1579                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1580
1581         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1582 }
1583
1584 /*
1585  * DTLs.
1586  *
1587  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1588  * the vdev has less than perfect replication.  There are four kinds of DTL:
1589  *
1590  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1591  *
1592  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1593  *
1594  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1595  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1596  *      txgs that was scrubbed.
1597  *
1598  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1599  *      persistent errors or just some device being offline.
1600  *      Unlike the other three, the DTL_OUTAGE map is not generally
1601  *      maintained; it's only computed when needed, typically to
1602  *      determine whether a device can be detached.
1603  *
1604  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1605  * either has the data or it doesn't.
1606  *
1607  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1608  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1609  * if any child is less than fully replicated, then so is its parent.
1610  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1611  * comprising only those txgs which appear in 'maxfaults' or more children;
1612  * those are the txgs we don't have enough replication to read.  For example,
1613  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1614  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1615  * two child DTL_MISSING maps.
1616  *
1617  * It should be clear from the above that to compute the DTLs and outage maps
1618  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1619  * Therefore, that is all we keep on disk.  When loading the pool, or after
1620  * a configuration change, we generate all other DTLs from first principles.
1621  */
1622 void
1623 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1624 {
1625         space_map_t *sm = &vd->vdev_dtl[t];
1626
1627         ASSERT(t < DTL_TYPES);
1628         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1629         ASSERT(spa_writeable(vd->vdev_spa));
1630
1631         mutex_enter(sm->sm_lock);
1632         if (!space_map_contains(sm, txg, size))
1633                 space_map_add(sm, txg, size);
1634         mutex_exit(sm->sm_lock);
1635 }
1636
1637 boolean_t
1638 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1639 {
1640         space_map_t *sm = &vd->vdev_dtl[t];
1641         boolean_t dirty = B_FALSE;
1642
1643         ASSERT(t < DTL_TYPES);
1644         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1645
1646         mutex_enter(sm->sm_lock);
1647         if (sm->sm_space != 0)
1648                 dirty = space_map_contains(sm, txg, size);
1649         mutex_exit(sm->sm_lock);
1650
1651         return (dirty);
1652 }
1653
1654 boolean_t
1655 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1656 {
1657         space_map_t *sm = &vd->vdev_dtl[t];
1658         boolean_t empty;
1659
1660         mutex_enter(sm->sm_lock);
1661         empty = (sm->sm_space == 0);
1662         mutex_exit(sm->sm_lock);
1663
1664         return (empty);
1665 }
1666
1667 /*
1668  * Reassess DTLs after a config change or scrub completion.
1669  */
1670 void
1671 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1672 {
1673         spa_t *spa = vd->vdev_spa;
1674         avl_tree_t reftree;
1675         int c, t, minref;
1676
1677         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1678
1679         for (c = 0; c < vd->vdev_children; c++)
1680                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1681                     scrub_txg, scrub_done);
1682
1683         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1684                 return;
1685
1686         if (vd->vdev_ops->vdev_op_leaf) {
1687                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1688
1689                 mutex_enter(&vd->vdev_dtl_lock);
1690                 if (scrub_txg != 0 &&
1691                     (spa->spa_scrub_started ||
1692                     (scn && scn->scn_phys.scn_errors == 0))) {
1693                         /*
1694                          * We completed a scrub up to scrub_txg.  If we
1695                          * did it without rebooting, then the scrub dtl
1696                          * will be valid, so excise the old region and
1697                          * fold in the scrub dtl.  Otherwise, leave the
1698                          * dtl as-is if there was an error.
1699                          *
1700                          * There's little trick here: to excise the beginning
1701                          * of the DTL_MISSING map, we put it into a reference
1702                          * tree and then add a segment with refcnt -1 that
1703                          * covers the range [0, scrub_txg).  This means
1704                          * that each txg in that range has refcnt -1 or 0.
1705                          * We then add DTL_SCRUB with a refcnt of 2, so that
1706                          * entries in the range [0, scrub_txg) will have a
1707                          * positive refcnt -- either 1 or 2.  We then convert
1708                          * the reference tree into the new DTL_MISSING map.
1709                          */
1710                         space_map_ref_create(&reftree);
1711                         space_map_ref_add_map(&reftree,
1712                             &vd->vdev_dtl[DTL_MISSING], 1);
1713                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1714                         space_map_ref_add_map(&reftree,
1715                             &vd->vdev_dtl[DTL_SCRUB], 2);
1716                         space_map_ref_generate_map(&reftree,
1717                             &vd->vdev_dtl[DTL_MISSING], 1);
1718                         space_map_ref_destroy(&reftree);
1719                 }
1720                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1721                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1722                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1723                 if (scrub_done)
1724                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1725                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1726                 if (!vdev_readable(vd))
1727                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1728                 else
1729                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1730                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1731                 mutex_exit(&vd->vdev_dtl_lock);
1732
1733                 if (txg != 0)
1734                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1735                 return;
1736         }
1737
1738         mutex_enter(&vd->vdev_dtl_lock);
1739         for (t = 0; t < DTL_TYPES; t++) {
1740                 /* account for child's outage in parent's missing map */
1741                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1742                 if (t == DTL_SCRUB)
1743                         continue;                       /* leaf vdevs only */
1744                 if (t == DTL_PARTIAL)
1745                         minref = 1;                     /* i.e. non-zero */
1746                 else if (vd->vdev_nparity != 0)
1747                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1748                 else
1749                         minref = vd->vdev_children;     /* any kind of mirror */
1750                 space_map_ref_create(&reftree);
1751                 for (c = 0; c < vd->vdev_children; c++) {
1752                         vdev_t *cvd = vd->vdev_child[c];
1753                         mutex_enter(&cvd->vdev_dtl_lock);
1754                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1755                         mutex_exit(&cvd->vdev_dtl_lock);
1756                 }
1757                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1758                 space_map_ref_destroy(&reftree);
1759         }
1760         mutex_exit(&vd->vdev_dtl_lock);
1761 }
1762
1763 static int
1764 vdev_dtl_load(vdev_t *vd)
1765 {
1766         spa_t *spa = vd->vdev_spa;
1767         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1768         objset_t *mos = spa->spa_meta_objset;
1769         dmu_buf_t *db;
1770         int error;
1771
1772         ASSERT(vd->vdev_children == 0);
1773
1774         if (smo->smo_object == 0)
1775                 return (0);
1776
1777         ASSERT(!vd->vdev_ishole);
1778
1779         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1780                 return (error);
1781
1782         ASSERT3U(db->db_size, >=, sizeof (*smo));
1783         bcopy(db->db_data, smo, sizeof (*smo));
1784         dmu_buf_rele(db, FTAG);
1785
1786         mutex_enter(&vd->vdev_dtl_lock);
1787         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1788             NULL, SM_ALLOC, smo, mos);
1789         mutex_exit(&vd->vdev_dtl_lock);
1790
1791         return (error);
1792 }
1793
1794 void
1795 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1796 {
1797         spa_t *spa = vd->vdev_spa;
1798         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1799         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1800         objset_t *mos = spa->spa_meta_objset;
1801         space_map_t smsync;
1802         kmutex_t smlock;
1803         dmu_buf_t *db;
1804         dmu_tx_t *tx;
1805
1806         ASSERT(!vd->vdev_ishole);
1807
1808         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1809
1810         if (vd->vdev_detached) {
1811                 if (smo->smo_object != 0) {
1812                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1813                         smo->smo_object = 0;
1814                 }
1815                 dmu_tx_commit(tx);
1816                 return;
1817         }
1818
1819         if (smo->smo_object == 0) {
1820                 ASSERT(smo->smo_objsize == 0);
1821                 ASSERT(smo->smo_alloc == 0);
1822                 smo->smo_object = dmu_object_alloc(mos,
1823                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1824                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1825                 ASSERT(smo->smo_object != 0);
1826                 vdev_config_dirty(vd->vdev_top);
1827         }
1828
1829         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1830
1831         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1832             &smlock);
1833
1834         mutex_enter(&smlock);
1835
1836         mutex_enter(&vd->vdev_dtl_lock);
1837         space_map_walk(sm, space_map_add, &smsync);
1838         mutex_exit(&vd->vdev_dtl_lock);
1839
1840         space_map_truncate(smo, mos, tx);
1841         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1842
1843         space_map_destroy(&smsync);
1844
1845         mutex_exit(&smlock);
1846         mutex_destroy(&smlock);
1847
1848         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1849         dmu_buf_will_dirty(db, tx);
1850         ASSERT3U(db->db_size, >=, sizeof (*smo));
1851         bcopy(smo, db->db_data, sizeof (*smo));
1852         dmu_buf_rele(db, FTAG);
1853
1854         dmu_tx_commit(tx);
1855 }
1856
1857 /*
1858  * Determine whether the specified vdev can be offlined/detached/removed
1859  * without losing data.
1860  */
1861 boolean_t
1862 vdev_dtl_required(vdev_t *vd)
1863 {
1864         spa_t *spa = vd->vdev_spa;
1865         vdev_t *tvd = vd->vdev_top;
1866         uint8_t cant_read = vd->vdev_cant_read;
1867         boolean_t required;
1868
1869         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1870
1871         if (vd == spa->spa_root_vdev || vd == tvd)
1872                 return (B_TRUE);
1873
1874         /*
1875          * Temporarily mark the device as unreadable, and then determine
1876          * whether this results in any DTL outages in the top-level vdev.
1877          * If not, we can safely offline/detach/remove the device.
1878          */
1879         vd->vdev_cant_read = B_TRUE;
1880         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1882         vd->vdev_cant_read = cant_read;
1883         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1884
1885         if (!required && zio_injection_enabled)
1886                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1887
1888         return (required);
1889 }
1890
1891 /*
1892  * Determine if resilver is needed, and if so the txg range.
1893  */
1894 boolean_t
1895 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1896 {
1897         boolean_t needed = B_FALSE;
1898         uint64_t thismin = UINT64_MAX;
1899         uint64_t thismax = 0;
1900         int c;
1901
1902         if (vd->vdev_children == 0) {
1903                 mutex_enter(&vd->vdev_dtl_lock);
1904                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1905                     vdev_writeable(vd)) {
1906                         space_seg_t *ss;
1907
1908                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1909                         thismin = ss->ss_start - 1;
1910                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1911                         thismax = ss->ss_end;
1912                         needed = B_TRUE;
1913                 }
1914                 mutex_exit(&vd->vdev_dtl_lock);
1915         } else {
1916                 for (c = 0; c < vd->vdev_children; c++) {
1917                         vdev_t *cvd = vd->vdev_child[c];
1918                         uint64_t cmin, cmax;
1919
1920                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1921                                 thismin = MIN(thismin, cmin);
1922                                 thismax = MAX(thismax, cmax);
1923                                 needed = B_TRUE;
1924                         }
1925                 }
1926         }
1927
1928         if (needed && minp) {
1929                 *minp = thismin;
1930                 *maxp = thismax;
1931         }
1932         return (needed);
1933 }
1934
1935 void
1936 vdev_load(vdev_t *vd)
1937 {
1938         int c;
1939
1940         /*
1941          * Recursively load all children.
1942          */
1943         for (c = 0; c < vd->vdev_children; c++)
1944                 vdev_load(vd->vdev_child[c]);
1945
1946         /*
1947          * If this is a top-level vdev, initialize its metaslabs.
1948          */
1949         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1950             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1951             vdev_metaslab_init(vd, 0) != 0))
1952                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953                     VDEV_AUX_CORRUPT_DATA);
1954
1955         /*
1956          * If this is a leaf vdev, load its DTL.
1957          */
1958         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1959                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1960                     VDEV_AUX_CORRUPT_DATA);
1961 }
1962
1963 /*
1964  * The special vdev case is used for hot spares and l2cache devices.  Its
1965  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1966  * we make sure that we can open the underlying device, then try to read the
1967  * label, and make sure that the label is sane and that it hasn't been
1968  * repurposed to another pool.
1969  */
1970 int
1971 vdev_validate_aux(vdev_t *vd)
1972 {
1973         nvlist_t *label;
1974         uint64_t guid, version;
1975         uint64_t state;
1976
1977         if (!vdev_readable(vd))
1978                 return (0);
1979
1980         if ((label = vdev_label_read_config(vd)) == NULL) {
1981                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1982                     VDEV_AUX_CORRUPT_DATA);
1983                 return (-1);
1984         }
1985
1986         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1987             version > SPA_VERSION ||
1988             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1989             guid != vd->vdev_guid ||
1990             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1991                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1992                     VDEV_AUX_CORRUPT_DATA);
1993                 nvlist_free(label);
1994                 return (-1);
1995         }
1996
1997         /*
1998          * We don't actually check the pool state here.  If it's in fact in
1999          * use by another pool, we update this fact on the fly when requested.
2000          */
2001         nvlist_free(label);
2002         return (0);
2003 }
2004
2005 void
2006 vdev_remove(vdev_t *vd, uint64_t txg)
2007 {
2008         spa_t *spa = vd->vdev_spa;
2009         objset_t *mos = spa->spa_meta_objset;
2010         dmu_tx_t *tx;
2011         int m;
2012
2013         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2014
2015         if (vd->vdev_dtl_smo.smo_object) {
2016                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2017                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2018                 vd->vdev_dtl_smo.smo_object = 0;
2019         }
2020
2021         if (vd->vdev_ms != NULL) {
2022                 for (m = 0; m < vd->vdev_ms_count; m++) {
2023                         metaslab_t *msp = vd->vdev_ms[m];
2024
2025                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2026                                 continue;
2027
2028                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2029                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2030                         msp->ms_smo.smo_object = 0;
2031                 }
2032         }
2033
2034         if (vd->vdev_ms_array) {
2035                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2036                 vd->vdev_ms_array = 0;
2037                 vd->vdev_ms_shift = 0;
2038         }
2039         dmu_tx_commit(tx);
2040 }
2041
2042 void
2043 vdev_sync_done(vdev_t *vd, uint64_t txg)
2044 {
2045         metaslab_t *msp;
2046         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2047
2048         ASSERT(!vd->vdev_ishole);
2049
2050         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2051                 metaslab_sync_done(msp, txg);
2052
2053         if (reassess)
2054                 metaslab_sync_reassess(vd->vdev_mg);
2055 }
2056
2057 void
2058 vdev_sync(vdev_t *vd, uint64_t txg)
2059 {
2060         spa_t *spa = vd->vdev_spa;
2061         vdev_t *lvd;
2062         metaslab_t *msp;
2063         dmu_tx_t *tx;
2064
2065         ASSERT(!vd->vdev_ishole);
2066
2067         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2068                 ASSERT(vd == vd->vdev_top);
2069                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2070                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2071                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2072                 ASSERT(vd->vdev_ms_array != 0);
2073                 vdev_config_dirty(vd);
2074                 dmu_tx_commit(tx);
2075         }
2076
2077         /*
2078          * Remove the metadata associated with this vdev once it's empty.
2079          */
2080         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2081                 vdev_remove(vd, txg);
2082
2083         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2084                 metaslab_sync(msp, txg);
2085                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2086         }
2087
2088         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2089                 vdev_dtl_sync(lvd, txg);
2090
2091         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2092 }
2093
2094 uint64_t
2095 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2096 {
2097         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2098 }
2099
2100 /*
2101  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2102  * not be opened, and no I/O is attempted.
2103  */
2104 int
2105 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2106 {
2107         vdev_t *vd, *tvd;
2108
2109         spa_vdev_state_enter(spa, SCL_NONE);
2110
2111         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2112                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2113
2114         if (!vd->vdev_ops->vdev_op_leaf)
2115                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2116
2117         tvd = vd->vdev_top;
2118
2119         /*
2120          * We don't directly use the aux state here, but if we do a
2121          * vdev_reopen(), we need this value to be present to remember why we
2122          * were faulted.
2123          */
2124         vd->vdev_label_aux = aux;
2125
2126         /*
2127          * Faulted state takes precedence over degraded.
2128          */
2129         vd->vdev_delayed_close = B_FALSE;
2130         vd->vdev_faulted = 1ULL;
2131         vd->vdev_degraded = 0ULL;
2132         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2133
2134         /*
2135          * If this device has the only valid copy of the data, then
2136          * back off and simply mark the vdev as degraded instead.
2137          */
2138         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2139                 vd->vdev_degraded = 1ULL;
2140                 vd->vdev_faulted = 0ULL;
2141
2142                 /*
2143                  * If we reopen the device and it's not dead, only then do we
2144                  * mark it degraded.
2145                  */
2146                 vdev_reopen(tvd);
2147
2148                 if (vdev_readable(vd))
2149                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2150         }
2151
2152         return (spa_vdev_state_exit(spa, vd, 0));
2153 }
2154
2155 /*
2156  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2157  * user that something is wrong.  The vdev continues to operate as normal as far
2158  * as I/O is concerned.
2159  */
2160 int
2161 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2162 {
2163         vdev_t *vd;
2164
2165         spa_vdev_state_enter(spa, SCL_NONE);
2166
2167         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2168                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2169
2170         if (!vd->vdev_ops->vdev_op_leaf)
2171                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2172
2173         /*
2174          * If the vdev is already faulted, then don't do anything.
2175          */
2176         if (vd->vdev_faulted || vd->vdev_degraded)
2177                 return (spa_vdev_state_exit(spa, NULL, 0));
2178
2179         vd->vdev_degraded = 1ULL;
2180         if (!vdev_is_dead(vd))
2181                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2182                     aux);
2183
2184         return (spa_vdev_state_exit(spa, vd, 0));
2185 }
2186
2187 /*
2188  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2189  * any attached spare device should be detached when the device finishes
2190  * resilvering.  Second, the online should be treated like a 'test' online case,
2191  * so no FMA events are generated if the device fails to open.
2192  */
2193 int
2194 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2195 {
2196         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2197
2198         spa_vdev_state_enter(spa, SCL_NONE);
2199
2200         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2201                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2202
2203         if (!vd->vdev_ops->vdev_op_leaf)
2204                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2205
2206         tvd = vd->vdev_top;
2207         vd->vdev_offline = B_FALSE;
2208         vd->vdev_tmpoffline = B_FALSE;
2209         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2210         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2211
2212         /* XXX - L2ARC 1.0 does not support expansion */
2213         if (!vd->vdev_aux) {
2214                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2215                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2216         }
2217
2218         vdev_reopen(tvd);
2219         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2220
2221         if (!vd->vdev_aux) {
2222                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2223                         pvd->vdev_expanding = B_FALSE;
2224         }
2225
2226         if (newstate)
2227                 *newstate = vd->vdev_state;
2228         if ((flags & ZFS_ONLINE_UNSPARE) &&
2229             !vdev_is_dead(vd) && vd->vdev_parent &&
2230             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2231             vd->vdev_parent->vdev_child[0] == vd)
2232                 vd->vdev_unspare = B_TRUE;
2233
2234         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2235
2236                 /* XXX - L2ARC 1.0 does not support expansion */
2237                 if (vd->vdev_aux)
2238                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2239                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2240         }
2241         return (spa_vdev_state_exit(spa, vd, 0));
2242 }
2243
2244 static int
2245 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2246 {
2247         vdev_t *vd, *tvd;
2248         int error = 0;
2249         uint64_t generation;
2250         metaslab_group_t *mg;
2251
2252 top:
2253         spa_vdev_state_enter(spa, SCL_ALLOC);
2254
2255         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2256                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2257
2258         if (!vd->vdev_ops->vdev_op_leaf)
2259                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2260
2261         tvd = vd->vdev_top;
2262         mg = tvd->vdev_mg;
2263         generation = spa->spa_config_generation + 1;
2264
2265         /*
2266          * If the device isn't already offline, try to offline it.
2267          */
2268         if (!vd->vdev_offline) {
2269                 /*
2270                  * If this device has the only valid copy of some data,
2271                  * don't allow it to be offlined. Log devices are always
2272                  * expendable.
2273                  */
2274                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2275                     vdev_dtl_required(vd))
2276                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2277
2278                 /*
2279                  * If the top-level is a slog and it has had allocations
2280                  * then proceed.  We check that the vdev's metaslab group
2281                  * is not NULL since it's possible that we may have just
2282                  * added this vdev but not yet initialized its metaslabs.
2283                  */
2284                 if (tvd->vdev_islog && mg != NULL) {
2285                         /*
2286                          * Prevent any future allocations.
2287                          */
2288                         metaslab_group_passivate(mg);
2289                         (void) spa_vdev_state_exit(spa, vd, 0);
2290
2291                         error = spa_offline_log(spa);
2292
2293                         spa_vdev_state_enter(spa, SCL_ALLOC);
2294
2295                         /*
2296                          * Check to see if the config has changed.
2297                          */
2298                         if (error || generation != spa->spa_config_generation) {
2299                                 metaslab_group_activate(mg);
2300                                 if (error)
2301                                         return (spa_vdev_state_exit(spa,
2302                                             vd, error));
2303                                 (void) spa_vdev_state_exit(spa, vd, 0);
2304                                 goto top;
2305                         }
2306                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2307                 }
2308
2309                 /*
2310                  * Offline this device and reopen its top-level vdev.
2311                  * If the top-level vdev is a log device then just offline
2312                  * it. Otherwise, if this action results in the top-level
2313                  * vdev becoming unusable, undo it and fail the request.
2314                  */
2315                 vd->vdev_offline = B_TRUE;
2316                 vdev_reopen(tvd);
2317
2318                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2319                     vdev_is_dead(tvd)) {
2320                         vd->vdev_offline = B_FALSE;
2321                         vdev_reopen(tvd);
2322                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2323                 }
2324
2325                 /*
2326                  * Add the device back into the metaslab rotor so that
2327                  * once we online the device it's open for business.
2328                  */
2329                 if (tvd->vdev_islog && mg != NULL)
2330                         metaslab_group_activate(mg);
2331         }
2332
2333         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2334
2335         return (spa_vdev_state_exit(spa, vd, 0));
2336 }
2337
2338 int
2339 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2340 {
2341         int error;
2342
2343         mutex_enter(&spa->spa_vdev_top_lock);
2344         error = vdev_offline_locked(spa, guid, flags);
2345         mutex_exit(&spa->spa_vdev_top_lock);
2346
2347         return (error);
2348 }
2349
2350 /*
2351  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2352  * vdev_offline(), we assume the spa config is locked.  We also clear all
2353  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2354  */
2355 void
2356 vdev_clear(spa_t *spa, vdev_t *vd)
2357 {
2358         vdev_t *rvd = spa->spa_root_vdev;
2359         int c;
2360
2361         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2362
2363         if (vd == NULL)
2364                 vd = rvd;
2365
2366         vd->vdev_stat.vs_read_errors = 0;
2367         vd->vdev_stat.vs_write_errors = 0;
2368         vd->vdev_stat.vs_checksum_errors = 0;
2369
2370         for (c = 0; c < vd->vdev_children; c++)
2371                 vdev_clear(spa, vd->vdev_child[c]);
2372
2373         /*
2374          * If we're in the FAULTED state or have experienced failed I/O, then
2375          * clear the persistent state and attempt to reopen the device.  We
2376          * also mark the vdev config dirty, so that the new faulted state is
2377          * written out to disk.
2378          */
2379         if (vd->vdev_faulted || vd->vdev_degraded ||
2380             !vdev_readable(vd) || !vdev_writeable(vd)) {
2381
2382                 /*
2383                  * When reopening in reponse to a clear event, it may be due to
2384                  * a fmadm repair request.  In this case, if the device is
2385                  * still broken, we want to still post the ereport again.
2386                  */
2387                 vd->vdev_forcefault = B_TRUE;
2388
2389                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2390                 vd->vdev_cant_read = B_FALSE;
2391                 vd->vdev_cant_write = B_FALSE;
2392
2393                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2394
2395                 vd->vdev_forcefault = B_FALSE;
2396
2397                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2398                         vdev_state_dirty(vd->vdev_top);
2399
2400                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2401                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2402
2403                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2404         }
2405
2406         /*
2407          * When clearing a FMA-diagnosed fault, we always want to
2408          * unspare the device, as we assume that the original spare was
2409          * done in response to the FMA fault.
2410          */
2411         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2412             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2413             vd->vdev_parent->vdev_child[0] == vd)
2414                 vd->vdev_unspare = B_TRUE;
2415 }
2416
2417 boolean_t
2418 vdev_is_dead(vdev_t *vd)
2419 {
2420         /*
2421          * Holes and missing devices are always considered "dead".
2422          * This simplifies the code since we don't have to check for
2423          * these types of devices in the various code paths.
2424          * Instead we rely on the fact that we skip over dead devices
2425          * before issuing I/O to them.
2426          */
2427         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2428             vd->vdev_ops == &vdev_missing_ops);
2429 }
2430
2431 boolean_t
2432 vdev_readable(vdev_t *vd)
2433 {
2434         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2435 }
2436
2437 boolean_t
2438 vdev_writeable(vdev_t *vd)
2439 {
2440         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2441 }
2442
2443 boolean_t
2444 vdev_allocatable(vdev_t *vd)
2445 {
2446         uint64_t state = vd->vdev_state;
2447
2448         /*
2449          * We currently allow allocations from vdevs which may be in the
2450          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2451          * fails to reopen then we'll catch it later when we're holding
2452          * the proper locks.  Note that we have to get the vdev state
2453          * in a local variable because although it changes atomically,
2454          * we're asking two separate questions about it.
2455          */
2456         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2457             !vd->vdev_cant_write && !vd->vdev_ishole);
2458 }
2459
2460 boolean_t
2461 vdev_accessible(vdev_t *vd, zio_t *zio)
2462 {
2463         ASSERT(zio->io_vd == vd);
2464
2465         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2466                 return (B_FALSE);
2467
2468         if (zio->io_type == ZIO_TYPE_READ)
2469                 return (!vd->vdev_cant_read);
2470
2471         if (zio->io_type == ZIO_TYPE_WRITE)
2472                 return (!vd->vdev_cant_write);
2473
2474         return (B_TRUE);
2475 }
2476
2477 /*
2478  * Get statistics for the given vdev.
2479  */
2480 void
2481 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2482 {
2483         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2484         int c, t;
2485
2486         mutex_enter(&vd->vdev_stat_lock);
2487         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2488         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2489         vs->vs_state = vd->vdev_state;
2490         vs->vs_rsize = vdev_get_min_asize(vd);
2491         if (vd->vdev_ops->vdev_op_leaf)
2492                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2493         mutex_exit(&vd->vdev_stat_lock);
2494
2495         /*
2496          * If we're getting stats on the root vdev, aggregate the I/O counts
2497          * over all top-level vdevs (i.e. the direct children of the root).
2498          */
2499         if (vd == rvd) {
2500                 for (c = 0; c < rvd->vdev_children; c++) {
2501                         vdev_t *cvd = rvd->vdev_child[c];
2502                         vdev_stat_t *cvs = &cvd->vdev_stat;
2503
2504                         mutex_enter(&vd->vdev_stat_lock);
2505                         for (t = 0; t < ZIO_TYPES; t++) {
2506                                 vs->vs_ops[t] += cvs->vs_ops[t];
2507                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2508                         }
2509                         cvs->vs_scan_removing = cvd->vdev_removing;
2510                         mutex_exit(&vd->vdev_stat_lock);
2511                 }
2512         }
2513 }
2514
2515 void
2516 vdev_clear_stats(vdev_t *vd)
2517 {
2518         mutex_enter(&vd->vdev_stat_lock);
2519         vd->vdev_stat.vs_space = 0;
2520         vd->vdev_stat.vs_dspace = 0;
2521         vd->vdev_stat.vs_alloc = 0;
2522         mutex_exit(&vd->vdev_stat_lock);
2523 }
2524
2525 void
2526 vdev_scan_stat_init(vdev_t *vd)
2527 {
2528         vdev_stat_t *vs = &vd->vdev_stat;
2529         int c;
2530
2531         for (c = 0; c < vd->vdev_children; c++)
2532                 vdev_scan_stat_init(vd->vdev_child[c]);
2533
2534         mutex_enter(&vd->vdev_stat_lock);
2535         vs->vs_scan_processed = 0;
2536         mutex_exit(&vd->vdev_stat_lock);
2537 }
2538
2539 void
2540 vdev_stat_update(zio_t *zio, uint64_t psize)
2541 {
2542         spa_t *spa = zio->io_spa;
2543         vdev_t *rvd = spa->spa_root_vdev;
2544         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2545         vdev_t *pvd;
2546         uint64_t txg = zio->io_txg;
2547         vdev_stat_t *vs = &vd->vdev_stat;
2548         zio_type_t type = zio->io_type;
2549         int flags = zio->io_flags;
2550
2551         /*
2552          * If this i/o is a gang leader, it didn't do any actual work.
2553          */
2554         if (zio->io_gang_tree)
2555                 return;
2556
2557         if (zio->io_error == 0) {
2558                 /*
2559                  * If this is a root i/o, don't count it -- we've already
2560                  * counted the top-level vdevs, and vdev_get_stats() will
2561                  * aggregate them when asked.  This reduces contention on
2562                  * the root vdev_stat_lock and implicitly handles blocks
2563                  * that compress away to holes, for which there is no i/o.
2564                  * (Holes never create vdev children, so all the counters
2565                  * remain zero, which is what we want.)
2566                  *
2567                  * Note: this only applies to successful i/o (io_error == 0)
2568                  * because unlike i/o counts, errors are not additive.
2569                  * When reading a ditto block, for example, failure of
2570                  * one top-level vdev does not imply a root-level error.
2571                  */
2572                 if (vd == rvd)
2573                         return;
2574
2575                 ASSERT(vd == zio->io_vd);
2576
2577                 if (flags & ZIO_FLAG_IO_BYPASS)
2578                         return;
2579
2580                 mutex_enter(&vd->vdev_stat_lock);
2581
2582                 if (flags & ZIO_FLAG_IO_REPAIR) {
2583                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2584                                 dsl_scan_phys_t *scn_phys =
2585                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2586                                 uint64_t *processed = &scn_phys->scn_processed;
2587
2588                                 /* XXX cleanup? */
2589                                 if (vd->vdev_ops->vdev_op_leaf)
2590                                         atomic_add_64(processed, psize);
2591                                 vs->vs_scan_processed += psize;
2592                         }
2593
2594                         if (flags & ZIO_FLAG_SELF_HEAL)
2595                                 vs->vs_self_healed += psize;
2596                 }
2597
2598                 vs->vs_ops[type]++;
2599                 vs->vs_bytes[type] += psize;
2600
2601                 mutex_exit(&vd->vdev_stat_lock);
2602                 return;
2603         }
2604
2605         if (flags & ZIO_FLAG_SPECULATIVE)
2606                 return;
2607
2608         /*
2609          * If this is an I/O error that is going to be retried, then ignore the
2610          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2611          * hard errors, when in reality they can happen for any number of
2612          * innocuous reasons (bus resets, MPxIO link failure, etc).
2613          */
2614         if (zio->io_error == EIO &&
2615             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2616                 return;
2617
2618         /*
2619          * Intent logs writes won't propagate their error to the root
2620          * I/O so don't mark these types of failures as pool-level
2621          * errors.
2622          */
2623         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2624                 return;
2625
2626         mutex_enter(&vd->vdev_stat_lock);
2627         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2628                 if (zio->io_error == ECKSUM)
2629                         vs->vs_checksum_errors++;
2630                 else
2631                         vs->vs_read_errors++;
2632         }
2633         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2634                 vs->vs_write_errors++;
2635         mutex_exit(&vd->vdev_stat_lock);
2636
2637         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2638             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2639             (flags & ZIO_FLAG_SCAN_THREAD) ||
2640             spa->spa_claiming)) {
2641                 /*
2642                  * This is either a normal write (not a repair), or it's
2643                  * a repair induced by the scrub thread, or it's a repair
2644                  * made by zil_claim() during spa_load() in the first txg.
2645                  * In the normal case, we commit the DTL change in the same
2646                  * txg as the block was born.  In the scrub-induced repair
2647                  * case, we know that scrubs run in first-pass syncing context,
2648                  * so we commit the DTL change in spa_syncing_txg(spa).
2649                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2650                  *
2651                  * We currently do not make DTL entries for failed spontaneous
2652                  * self-healing writes triggered by normal (non-scrubbing)
2653                  * reads, because we have no transactional context in which to
2654                  * do so -- and it's not clear that it'd be desirable anyway.
2655                  */
2656                 if (vd->vdev_ops->vdev_op_leaf) {
2657                         uint64_t commit_txg = txg;
2658                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2659                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2660                                 ASSERT(spa_sync_pass(spa) == 1);
2661                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2662                                 commit_txg = spa_syncing_txg(spa);
2663                         } else if (spa->spa_claiming) {
2664                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2665                                 commit_txg = spa_first_txg(spa);
2666                         }
2667                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2668                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2669                                 return;
2670                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2671                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2672                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2673                 }
2674                 if (vd != rvd)
2675                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2676         }
2677 }
2678
2679 /*
2680  * Update the in-core space usage stats for this vdev, its metaslab class,
2681  * and the root vdev.
2682  */
2683 void
2684 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2685     int64_t space_delta)
2686 {
2687         int64_t dspace_delta = space_delta;
2688         spa_t *spa = vd->vdev_spa;
2689         vdev_t *rvd = spa->spa_root_vdev;
2690         metaslab_group_t *mg = vd->vdev_mg;
2691         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2692
2693         ASSERT(vd == vd->vdev_top);
2694
2695         /*
2696          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2697          * factor.  We must calculate this here and not at the root vdev
2698          * because the root vdev's psize-to-asize is simply the max of its
2699          * childrens', thus not accurate enough for us.
2700          */
2701         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2702         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2703         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2704             vd->vdev_deflate_ratio;
2705
2706         mutex_enter(&vd->vdev_stat_lock);
2707         vd->vdev_stat.vs_alloc += alloc_delta;
2708         vd->vdev_stat.vs_space += space_delta;
2709         vd->vdev_stat.vs_dspace += dspace_delta;
2710         mutex_exit(&vd->vdev_stat_lock);
2711
2712         if (mc == spa_normal_class(spa)) {
2713                 mutex_enter(&rvd->vdev_stat_lock);
2714                 rvd->vdev_stat.vs_alloc += alloc_delta;
2715                 rvd->vdev_stat.vs_space += space_delta;
2716                 rvd->vdev_stat.vs_dspace += dspace_delta;
2717                 mutex_exit(&rvd->vdev_stat_lock);
2718         }
2719
2720         if (mc != NULL) {
2721                 ASSERT(rvd == vd->vdev_parent);
2722                 ASSERT(vd->vdev_ms_count != 0);
2723
2724                 metaslab_class_space_update(mc,
2725                     alloc_delta, defer_delta, space_delta, dspace_delta);
2726         }
2727 }
2728
2729 /*
2730  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2731  * so that it will be written out next time the vdev configuration is synced.
2732  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2733  */
2734 void
2735 vdev_config_dirty(vdev_t *vd)
2736 {
2737         spa_t *spa = vd->vdev_spa;
2738         vdev_t *rvd = spa->spa_root_vdev;
2739         int c;
2740
2741         ASSERT(spa_writeable(spa));
2742
2743         /*
2744          * If this is an aux vdev (as with l2cache and spare devices), then we
2745          * update the vdev config manually and set the sync flag.
2746          */
2747         if (vd->vdev_aux != NULL) {
2748                 spa_aux_vdev_t *sav = vd->vdev_aux;
2749                 nvlist_t **aux;
2750                 uint_t naux;
2751
2752                 for (c = 0; c < sav->sav_count; c++) {
2753                         if (sav->sav_vdevs[c] == vd)
2754                                 break;
2755                 }
2756
2757                 if (c == sav->sav_count) {
2758                         /*
2759                          * We're being removed.  There's nothing more to do.
2760                          */
2761                         ASSERT(sav->sav_sync == B_TRUE);
2762                         return;
2763                 }
2764
2765                 sav->sav_sync = B_TRUE;
2766
2767                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2768                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2769                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2770                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2771                 }
2772
2773                 ASSERT(c < naux);
2774
2775                 /*
2776                  * Setting the nvlist in the middle if the array is a little
2777                  * sketchy, but it will work.
2778                  */
2779                 nvlist_free(aux[c]);
2780                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2781
2782                 return;
2783         }
2784
2785         /*
2786          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2787          * must either hold SCL_CONFIG as writer, or must be the sync thread
2788          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2789          * so this is sufficient to ensure mutual exclusion.
2790          */
2791         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2792             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2793             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2794
2795         if (vd == rvd) {
2796                 for (c = 0; c < rvd->vdev_children; c++)
2797                         vdev_config_dirty(rvd->vdev_child[c]);
2798         } else {
2799                 ASSERT(vd == vd->vdev_top);
2800
2801                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2802                     !vd->vdev_ishole)
2803                         list_insert_head(&spa->spa_config_dirty_list, vd);
2804         }
2805 }
2806
2807 void
2808 vdev_config_clean(vdev_t *vd)
2809 {
2810         spa_t *spa = vd->vdev_spa;
2811
2812         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2813             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2814             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2815
2816         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2817         list_remove(&spa->spa_config_dirty_list, vd);
2818 }
2819
2820 /*
2821  * Mark a top-level vdev's state as dirty, so that the next pass of
2822  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2823  * the state changes from larger config changes because they require
2824  * much less locking, and are often needed for administrative actions.
2825  */
2826 void
2827 vdev_state_dirty(vdev_t *vd)
2828 {
2829         spa_t *spa = vd->vdev_spa;
2830
2831         ASSERT(spa_writeable(spa));
2832         ASSERT(vd == vd->vdev_top);
2833
2834         /*
2835          * The state list is protected by the SCL_STATE lock.  The caller
2836          * must either hold SCL_STATE as writer, or must be the sync thread
2837          * (which holds SCL_STATE as reader).  There's only one sync thread,
2838          * so this is sufficient to ensure mutual exclusion.
2839          */
2840         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2841             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2842             spa_config_held(spa, SCL_STATE, RW_READER)));
2843
2844         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2845                 list_insert_head(&spa->spa_state_dirty_list, vd);
2846 }
2847
2848 void
2849 vdev_state_clean(vdev_t *vd)
2850 {
2851         spa_t *spa = vd->vdev_spa;
2852
2853         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2854             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2855             spa_config_held(spa, SCL_STATE, RW_READER)));
2856
2857         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2858         list_remove(&spa->spa_state_dirty_list, vd);
2859 }
2860
2861 /*
2862  * Propagate vdev state up from children to parent.
2863  */
2864 void
2865 vdev_propagate_state(vdev_t *vd)
2866 {
2867         spa_t *spa = vd->vdev_spa;
2868         vdev_t *rvd = spa->spa_root_vdev;
2869         int degraded = 0, faulted = 0;
2870         int corrupted = 0;
2871         vdev_t *child;
2872         int c;
2873
2874         if (vd->vdev_children > 0) {
2875                 for (c = 0; c < vd->vdev_children; c++) {
2876                         child = vd->vdev_child[c];
2877
2878                         /*
2879                          * Don't factor holes into the decision.
2880                          */
2881                         if (child->vdev_ishole)
2882                                 continue;
2883
2884                         if (!vdev_readable(child) ||
2885                             (!vdev_writeable(child) && spa_writeable(spa))) {
2886                                 /*
2887                                  * Root special: if there is a top-level log
2888                                  * device, treat the root vdev as if it were
2889                                  * degraded.
2890                                  */
2891                                 if (child->vdev_islog && vd == rvd)
2892                                         degraded++;
2893                                 else
2894                                         faulted++;
2895                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2896                                 degraded++;
2897                         }
2898
2899                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2900                                 corrupted++;
2901                 }
2902
2903                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2904
2905                 /*
2906                  * Root special: if there is a top-level vdev that cannot be
2907                  * opened due to corrupted metadata, then propagate the root
2908                  * vdev's aux state as 'corrupt' rather than 'insufficient
2909                  * replicas'.
2910                  */
2911                 if (corrupted && vd == rvd &&
2912                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2913                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2914                             VDEV_AUX_CORRUPT_DATA);
2915         }
2916
2917         if (vd->vdev_parent)
2918                 vdev_propagate_state(vd->vdev_parent);
2919 }
2920
2921 /*
2922  * Set a vdev's state.  If this is during an open, we don't update the parent
2923  * state, because we're in the process of opening children depth-first.
2924  * Otherwise, we propagate the change to the parent.
2925  *
2926  * If this routine places a device in a faulted state, an appropriate ereport is
2927  * generated.
2928  */
2929 void
2930 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2931 {
2932         uint64_t save_state;
2933         spa_t *spa = vd->vdev_spa;
2934
2935         if (state == vd->vdev_state) {
2936                 vd->vdev_stat.vs_aux = aux;
2937                 return;
2938         }
2939
2940         save_state = vd->vdev_state;
2941
2942         vd->vdev_state = state;
2943         vd->vdev_stat.vs_aux = aux;
2944
2945         /*
2946          * If we are setting the vdev state to anything but an open state, then
2947          * always close the underlying device unless the device has requested
2948          * a delayed close (i.e. we're about to remove or fault the device).
2949          * Otherwise, we keep accessible but invalid devices open forever.
2950          * We don't call vdev_close() itself, because that implies some extra
2951          * checks (offline, etc) that we don't want here.  This is limited to
2952          * leaf devices, because otherwise closing the device will affect other
2953          * children.
2954          */
2955         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2956             vd->vdev_ops->vdev_op_leaf)
2957                 vd->vdev_ops->vdev_op_close(vd);
2958
2959         /*
2960          * If we have brought this vdev back into service, we need
2961          * to notify fmd so that it can gracefully repair any outstanding
2962          * cases due to a missing device.  We do this in all cases, even those
2963          * that probably don't correlate to a repaired fault.  This is sure to
2964          * catch all cases, and we let the zfs-retire agent sort it out.  If
2965          * this is a transient state it's OK, as the retire agent will
2966          * double-check the state of the vdev before repairing it.
2967          */
2968         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2969             vd->vdev_prevstate != state)
2970                 zfs_post_state_change(spa, vd);
2971
2972         if (vd->vdev_removed &&
2973             state == VDEV_STATE_CANT_OPEN &&
2974             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2975                 /*
2976                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2977                  * device was previously marked removed and someone attempted to
2978                  * reopen it.  If this failed due to a nonexistent device, then
2979                  * keep the device in the REMOVED state.  We also let this be if
2980                  * it is one of our special test online cases, which is only
2981                  * attempting to online the device and shouldn't generate an FMA
2982                  * fault.
2983                  */
2984                 vd->vdev_state = VDEV_STATE_REMOVED;
2985                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2986         } else if (state == VDEV_STATE_REMOVED) {
2987                 vd->vdev_removed = B_TRUE;
2988         } else if (state == VDEV_STATE_CANT_OPEN) {
2989                 /*
2990                  * If we fail to open a vdev during an import or recovery, we
2991                  * mark it as "not available", which signifies that it was
2992                  * never there to begin with.  Failure to open such a device
2993                  * is not considered an error.
2994                  */
2995                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2996                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2997                     vd->vdev_ops->vdev_op_leaf)
2998                         vd->vdev_not_present = 1;
2999
3000                 /*
3001                  * Post the appropriate ereport.  If the 'prevstate' field is
3002                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3003                  * that this is part of a vdev_reopen().  In this case, we don't
3004                  * want to post the ereport if the device was already in the
3005                  * CANT_OPEN state beforehand.
3006                  *
3007                  * If the 'checkremove' flag is set, then this is an attempt to
3008                  * online the device in response to an insertion event.  If we
3009                  * hit this case, then we have detected an insertion event for a
3010                  * faulted or offline device that wasn't in the removed state.
3011                  * In this scenario, we don't post an ereport because we are
3012                  * about to replace the device, or attempt an online with
3013                  * vdev_forcefault, which will generate the fault for us.
3014                  */
3015                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3016                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3017                     vd != spa->spa_root_vdev) {
3018                         const char *class;
3019
3020                         switch (aux) {
3021                         case VDEV_AUX_OPEN_FAILED:
3022                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3023                                 break;
3024                         case VDEV_AUX_CORRUPT_DATA:
3025                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3026                                 break;
3027                         case VDEV_AUX_NO_REPLICAS:
3028                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3029                                 break;
3030                         case VDEV_AUX_BAD_GUID_SUM:
3031                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3032                                 break;
3033                         case VDEV_AUX_TOO_SMALL:
3034                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3035                                 break;
3036                         case VDEV_AUX_BAD_LABEL:
3037                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3038                                 break;
3039                         default:
3040                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3041                         }
3042
3043                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3044                 }
3045
3046                 /* Erase any notion of persistent removed state */
3047                 vd->vdev_removed = B_FALSE;
3048         } else {
3049                 vd->vdev_removed = B_FALSE;
3050         }
3051
3052         if (!isopen && vd->vdev_parent)
3053                 vdev_propagate_state(vd->vdev_parent);
3054 }
3055
3056 /*
3057  * Check the vdev configuration to ensure that it's capable of supporting
3058  * a root pool.
3059  */
3060 boolean_t
3061 vdev_is_bootable(vdev_t *vd)
3062 {
3063 #if defined(__sun__) || defined(__sun)
3064         /*
3065          * Currently, we do not support RAID-Z or partial configuration.
3066          * In addition, only a single top-level vdev is allowed and none of the
3067          * leaves can be wholedisks.
3068          */
3069         int c;
3070
3071         if (!vd->vdev_ops->vdev_op_leaf) {
3072                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3073
3074                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3075                     vd->vdev_children > 1) {
3076                         return (B_FALSE);
3077                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3078                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3079                         return (B_FALSE);
3080                 }
3081         } else if (vd->vdev_wholedisk == 1) {
3082                 return (B_FALSE);
3083         }
3084
3085         for (c = 0; c < vd->vdev_children; c++) {
3086                 if (!vdev_is_bootable(vd->vdev_child[c]))
3087                         return (B_FALSE);
3088         }
3089 #endif /* __sun__ || __sun */
3090         return (B_TRUE);
3091 }
3092
3093 /*
3094  * Load the state from the original vdev tree (ovd) which
3095  * we've retrieved from the MOS config object. If the original
3096  * vdev was offline or faulted then we transfer that state to the
3097  * device in the current vdev tree (nvd).
3098  */
3099 void
3100 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3101 {
3102         int c;
3103
3104         ASSERT(nvd->vdev_top->vdev_islog);
3105         ASSERT(spa_config_held(nvd->vdev_spa,
3106             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3107         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3108
3109         for (c = 0; c < nvd->vdev_children; c++)
3110                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3111
3112         if (nvd->vdev_ops->vdev_op_leaf) {
3113                 /*
3114                  * Restore the persistent vdev state
3115                  */
3116                 nvd->vdev_offline = ovd->vdev_offline;
3117                 nvd->vdev_faulted = ovd->vdev_faulted;
3118                 nvd->vdev_degraded = ovd->vdev_degraded;
3119                 nvd->vdev_removed = ovd->vdev_removed;
3120         }
3121 }
3122
3123 /*
3124  * Determine if a log device has valid content.  If the vdev was
3125  * removed or faulted in the MOS config then we know that
3126  * the content on the log device has already been written to the pool.
3127  */
3128 boolean_t
3129 vdev_log_state_valid(vdev_t *vd)
3130 {
3131         int c;
3132
3133         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3134             !vd->vdev_removed)
3135                 return (B_TRUE);
3136
3137         for (c = 0; c < vd->vdev_children; c++)
3138                 if (vdev_log_state_valid(vd->vdev_child[c]))
3139                         return (B_TRUE);
3140
3141         return (B_FALSE);
3142 }
3143
3144 /*
3145  * Expand a vdev if possible.
3146  */
3147 void
3148 vdev_expand(vdev_t *vd, uint64_t txg)
3149 {
3150         ASSERT(vd->vdev_top == vd);
3151         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3152
3153         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3154                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3155                 vdev_config_dirty(vd);
3156         }
3157 }
3158
3159 /*
3160  * Split a vdev.
3161  */
3162 void
3163 vdev_split(vdev_t *vd)
3164 {
3165         vdev_t *cvd, *pvd = vd->vdev_parent;
3166
3167         vdev_remove_child(pvd, vd);
3168         vdev_compact_children(pvd);
3169
3170         cvd = pvd->vdev_child[0];
3171         if (pvd->vdev_children == 1) {
3172                 vdev_remove_parent(cvd);
3173                 cvd->vdev_splitting = B_TRUE;
3174         }
3175         vdev_propagate_state(cvd);
3176 }
3177
3178 #if defined(_KERNEL) && defined(HAVE_SPL)
3179 EXPORT_SYMBOL(vdev_fault);
3180 EXPORT_SYMBOL(vdev_degrade);
3181 EXPORT_SYMBOL(vdev_online);
3182 EXPORT_SYMBOL(vdev_offline);
3183 EXPORT_SYMBOL(vdev_clear);
3184
3185 module_param(zfs_scrub_limit, int, 0644);
3186 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3187 #endif