Add FASTWRITE algorithm for synchronous writes.
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45
46 /*
47  * Virtual device management.
48  */
49
50 static vdev_ops_t *vdev_ops_table[] = {
51         &vdev_root_ops,
52         &vdev_raidz_ops,
53         &vdev_mirror_ops,
54         &vdev_replacing_ops,
55         &vdev_spare_ops,
56         &vdev_disk_ops,
57         &vdev_file_ops,
58         &vdev_missing_ops,
59         &vdev_hole_ops,
60         NULL
61 };
62
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72         vdev_ops_t *ops, **opspp;
73
74         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75                 if (strcmp(ops->vdev_op_type, type) == 0)
76                         break;
77
78         return (ops);
79 }
80
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89         uint64_t csize;
90         int c;
91
92         for (c = 0; c < vd->vdev_children; c++) {
93                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94                 asize = MAX(asize, csize);
95         }
96
97         return (asize);
98 }
99
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109         vdev_t *pvd = vd->vdev_parent;
110
111         /*
112          * If our parent is NULL (inactive spare or cache) or is the root,
113          * just return our own asize.
114          */
115         if (pvd == NULL)
116                 return (vd->vdev_asize);
117
118         /*
119          * The top-level vdev just returns the allocatable size rounded
120          * to the nearest metaslab.
121          */
122         if (vd == vd->vdev_top)
123                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125         /*
126          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127          * so each child must provide at least 1/Nth of its asize.
128          */
129         if (pvd->vdev_ops == &vdev_raidz_ops)
130                 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132         return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138         int c;
139         vd->vdev_min_asize = vdev_get_min_asize(vd);
140
141         for (c = 0; c < vd->vdev_children; c++)
142                 vdev_set_min_asize(vd->vdev_child[c]);
143 }
144
145 vdev_t *
146 vdev_lookup_top(spa_t *spa, uint64_t vdev)
147 {
148         vdev_t *rvd = spa->spa_root_vdev;
149
150         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
151
152         if (vdev < rvd->vdev_children) {
153                 ASSERT(rvd->vdev_child[vdev] != NULL);
154                 return (rvd->vdev_child[vdev]);
155         }
156
157         return (NULL);
158 }
159
160 vdev_t *
161 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
162 {
163         vdev_t *mvd;
164         int c;
165
166         if (vd->vdev_guid == guid)
167                 return (vd);
168
169         for (c = 0; c < vd->vdev_children; c++)
170                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
171                     NULL)
172                         return (mvd);
173
174         return (NULL);
175 }
176
177 void
178 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
179 {
180         size_t oldsize, newsize;
181         uint64_t id = cvd->vdev_id;
182         vdev_t **newchild;
183
184         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
185         ASSERT(cvd->vdev_parent == NULL);
186
187         cvd->vdev_parent = pvd;
188
189         if (pvd == NULL)
190                 return;
191
192         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
193
194         oldsize = pvd->vdev_children * sizeof (vdev_t *);
195         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
196         newsize = pvd->vdev_children * sizeof (vdev_t *);
197
198         newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
199         if (pvd->vdev_child != NULL) {
200                 bcopy(pvd->vdev_child, newchild, oldsize);
201                 kmem_free(pvd->vdev_child, oldsize);
202         }
203
204         pvd->vdev_child = newchild;
205         pvd->vdev_child[id] = cvd;
206
207         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
208         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
209
210         /*
211          * Walk up all ancestors to update guid sum.
212          */
213         for (; pvd != NULL; pvd = pvd->vdev_parent)
214                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
215 }
216
217 void
218 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
219 {
220         int c;
221         uint_t id = cvd->vdev_id;
222
223         ASSERT(cvd->vdev_parent == pvd);
224
225         if (pvd == NULL)
226                 return;
227
228         ASSERT(id < pvd->vdev_children);
229         ASSERT(pvd->vdev_child[id] == cvd);
230
231         pvd->vdev_child[id] = NULL;
232         cvd->vdev_parent = NULL;
233
234         for (c = 0; c < pvd->vdev_children; c++)
235                 if (pvd->vdev_child[c])
236                         break;
237
238         if (c == pvd->vdev_children) {
239                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
240                 pvd->vdev_child = NULL;
241                 pvd->vdev_children = 0;
242         }
243
244         /*
245          * Walk up all ancestors to update guid sum.
246          */
247         for (; pvd != NULL; pvd = pvd->vdev_parent)
248                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260         int c;
261
262         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263
264         for (c = newc = 0; c < oldc; c++)
265                 if (pvd->vdev_child[c])
266                         newc++;
267
268         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
269
270         for (c = newc = 0; c < oldc; c++) {
271                 if ((cvd = pvd->vdev_child[c]) != NULL) {
272                         newchild[newc] = cvd;
273                         cvd->vdev_id = newc++;
274                 }
275         }
276
277         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278         pvd->vdev_child = newchild;
279         pvd->vdev_children = newc;
280 }
281
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288         vdev_t *vd;
289         int t;
290
291         vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
292
293         if (spa->spa_root_vdev == NULL) {
294                 ASSERT(ops == &vdev_root_ops);
295                 spa->spa_root_vdev = vd;
296                 spa->spa_load_guid = spa_generate_guid(NULL);
297         }
298
299         if (guid == 0 && ops != &vdev_hole_ops) {
300                 if (spa->spa_root_vdev == vd) {
301                         /*
302                          * The root vdev's guid will also be the pool guid,
303                          * which must be unique among all pools.
304                          */
305                         guid = spa_generate_guid(NULL);
306                 } else {
307                         /*
308                          * Any other vdev's guid must be unique within the pool.
309                          */
310                         guid = spa_generate_guid(spa);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321         vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323         list_link_init(&vd->vdev_config_dirty_node);
324         list_link_init(&vd->vdev_state_dirty_node);
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (EINVAL);
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (EINVAL);
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (EINVAL);
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (EINVAL);
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (EINVAL);
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (ENOTSUP);
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (ENOTSUP);
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (EINVAL);
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (ENOTSUP);
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (ENOTSUP);
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (EINVAL);
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         int c, t;
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         if (tvd->vdev_mg)
676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677         tvd->vdev_mg = svd->vdev_mg;
678         tvd->vdev_ms = svd->vdev_ms;
679
680         svd->vdev_mg = NULL;
681         svd->vdev_ms = NULL;
682
683         if (tvd->vdev_mg != NULL)
684                 tvd->vdev_mg->mg_vd = tvd;
685
686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689
690         svd->vdev_stat.vs_alloc = 0;
691         svd->vdev_stat.vs_space = 0;
692         svd->vdev_stat.vs_dspace = 0;
693
694         for (t = 0; t < TXG_SIZE; t++) {
695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701         }
702
703         if (list_link_active(&svd->vdev_config_dirty_node)) {
704                 vdev_config_clean(svd);
705                 vdev_config_dirty(tvd);
706         }
707
708         if (list_link_active(&svd->vdev_state_dirty_node)) {
709                 vdev_state_clean(svd);
710                 vdev_state_dirty(tvd);
711         }
712
713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714         svd->vdev_deflate_ratio = 0;
715
716         tvd->vdev_islog = svd->vdev_islog;
717         svd->vdev_islog = 0;
718 }
719
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723         int c;
724
725         if (vd == NULL)
726                 return;
727
728         vd->vdev_top = tvd;
729
730         for (c = 0; c < vd->vdev_children; c++)
731                 vdev_top_update(tvd, vd->vdev_child[c]);
732 }
733
734 /*
735  * Add a mirror/replacing vdev above an existing vdev.
736  */
737 vdev_t *
738 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
739 {
740         spa_t *spa = cvd->vdev_spa;
741         vdev_t *pvd = cvd->vdev_parent;
742         vdev_t *mvd;
743
744         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
745
746         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
747
748         mvd->vdev_asize = cvd->vdev_asize;
749         mvd->vdev_min_asize = cvd->vdev_min_asize;
750         mvd->vdev_max_asize = cvd->vdev_max_asize;
751         mvd->vdev_ashift = cvd->vdev_ashift;
752         mvd->vdev_state = cvd->vdev_state;
753         mvd->vdev_crtxg = cvd->vdev_crtxg;
754
755         vdev_remove_child(pvd, cvd);
756         vdev_add_child(pvd, mvd);
757         cvd->vdev_id = mvd->vdev_children;
758         vdev_add_child(mvd, cvd);
759         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
760
761         if (mvd == mvd->vdev_top)
762                 vdev_top_transfer(cvd, mvd);
763
764         return (mvd);
765 }
766
767 /*
768  * Remove a 1-way mirror/replacing vdev from the tree.
769  */
770 void
771 vdev_remove_parent(vdev_t *cvd)
772 {
773         vdev_t *mvd = cvd->vdev_parent;
774         vdev_t *pvd = mvd->vdev_parent;
775
776         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
777
778         ASSERT(mvd->vdev_children == 1);
779         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
780             mvd->vdev_ops == &vdev_replacing_ops ||
781             mvd->vdev_ops == &vdev_spare_ops);
782         cvd->vdev_ashift = mvd->vdev_ashift;
783
784         vdev_remove_child(mvd, cvd);
785         vdev_remove_child(pvd, mvd);
786
787         /*
788          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
789          * Otherwise, we could have detached an offline device, and when we
790          * go to import the pool we'll think we have two top-level vdevs,
791          * instead of a different version of the same top-level vdev.
792          */
793         if (mvd->vdev_top == mvd) {
794                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
795                 cvd->vdev_orig_guid = cvd->vdev_guid;
796                 cvd->vdev_guid += guid_delta;
797                 cvd->vdev_guid_sum += guid_delta;
798         }
799         cvd->vdev_id = mvd->vdev_id;
800         vdev_add_child(pvd, cvd);
801         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802
803         if (cvd == cvd->vdev_top)
804                 vdev_top_transfer(mvd, cvd);
805
806         ASSERT(mvd->vdev_children == 0);
807         vdev_free(mvd);
808 }
809
810 int
811 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
812 {
813         spa_t *spa = vd->vdev_spa;
814         objset_t *mos = spa->spa_meta_objset;
815         uint64_t m;
816         uint64_t oldc = vd->vdev_ms_count;
817         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
818         metaslab_t **mspp;
819         int error;
820
821         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
822
823         /*
824          * This vdev is not being allocated from yet or is a hole.
825          */
826         if (vd->vdev_ms_shift == 0)
827                 return (0);
828
829         ASSERT(!vd->vdev_ishole);
830
831         /*
832          * Compute the raidz-deflation ratio.  Note, we hard-code
833          * in 128k (1 << 17) because it is the current "typical" blocksize.
834          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
835          * or we will inconsistently account for existing bp's.
836          */
837         vd->vdev_deflate_ratio = (1 << 17) /
838             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
839
840         ASSERT(oldc <= newc);
841
842         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
843
844         if (oldc != 0) {
845                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
846                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
847         }
848
849         vd->vdev_ms = mspp;
850         vd->vdev_ms_count = newc;
851
852         for (m = oldc; m < newc; m++) {
853                 space_map_obj_t smo = { 0, 0, 0 };
854                 if (txg == 0) {
855                         uint64_t object = 0;
856                         error = dmu_read(mos, vd->vdev_ms_array,
857                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
858                             DMU_READ_PREFETCH);
859                         if (error)
860                                 return (error);
861                         if (object != 0) {
862                                 dmu_buf_t *db;
863                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
864                                 if (error)
865                                         return (error);
866                                 ASSERT3U(db->db_size, >=, sizeof (smo));
867                                 bcopy(db->db_data, &smo, sizeof (smo));
868                                 ASSERT3U(smo.smo_object, ==, object);
869                                 dmu_buf_rele(db, FTAG);
870                         }
871                 }
872                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
873                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
874         }
875
876         if (txg == 0)
877                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
878
879         /*
880          * If the vdev is being removed we don't activate
881          * the metaslabs since we want to ensure that no new
882          * allocations are performed on this device.
883          */
884         if (oldc == 0 && !vd->vdev_removing)
885                 metaslab_group_activate(vd->vdev_mg);
886
887         if (txg == 0)
888                 spa_config_exit(spa, SCL_ALLOC, FTAG);
889
890         return (0);
891 }
892
893 void
894 vdev_metaslab_fini(vdev_t *vd)
895 {
896         uint64_t m;
897         uint64_t count = vd->vdev_ms_count;
898
899         if (vd->vdev_ms != NULL) {
900                 metaslab_group_passivate(vd->vdev_mg);
901                 for (m = 0; m < count; m++)
902                         if (vd->vdev_ms[m] != NULL)
903                                 metaslab_fini(vd->vdev_ms[m]);
904                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
905                 vd->vdev_ms = NULL;
906         }
907
908         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
909 }
910
911 typedef struct vdev_probe_stats {
912         boolean_t       vps_readable;
913         boolean_t       vps_writeable;
914         int             vps_flags;
915 } vdev_probe_stats_t;
916
917 static void
918 vdev_probe_done(zio_t *zio)
919 {
920         spa_t *spa = zio->io_spa;
921         vdev_t *vd = zio->io_vd;
922         vdev_probe_stats_t *vps = zio->io_private;
923
924         ASSERT(vd->vdev_probe_zio != NULL);
925
926         if (zio->io_type == ZIO_TYPE_READ) {
927                 if (zio->io_error == 0)
928                         vps->vps_readable = 1;
929                 if (zio->io_error == 0 && spa_writeable(spa)) {
930                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
931                             zio->io_offset, zio->io_size, zio->io_data,
932                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
933                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
934                 } else {
935                         zio_buf_free(zio->io_data, zio->io_size);
936                 }
937         } else if (zio->io_type == ZIO_TYPE_WRITE) {
938                 if (zio->io_error == 0)
939                         vps->vps_writeable = 1;
940                 zio_buf_free(zio->io_data, zio->io_size);
941         } else if (zio->io_type == ZIO_TYPE_NULL) {
942                 zio_t *pio;
943
944                 vd->vdev_cant_read |= !vps->vps_readable;
945                 vd->vdev_cant_write |= !vps->vps_writeable;
946
947                 if (vdev_readable(vd) &&
948                     (vdev_writeable(vd) || !spa_writeable(spa))) {
949                         zio->io_error = 0;
950                 } else {
951                         ASSERT(zio->io_error != 0);
952                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
953                             spa, vd, NULL, 0, 0);
954                         zio->io_error = ENXIO;
955                 }
956
957                 mutex_enter(&vd->vdev_probe_lock);
958                 ASSERT(vd->vdev_probe_zio == zio);
959                 vd->vdev_probe_zio = NULL;
960                 mutex_exit(&vd->vdev_probe_lock);
961
962                 while ((pio = zio_walk_parents(zio)) != NULL)
963                         if (!vdev_accessible(vd, pio))
964                                 pio->io_error = ENXIO;
965
966                 kmem_free(vps, sizeof (*vps));
967         }
968 }
969
970 /*
971  * Determine whether this device is accessible by reading and writing
972  * to several known locations: the pad regions of each vdev label
973  * but the first (which we leave alone in case it contains a VTOC).
974  */
975 zio_t *
976 vdev_probe(vdev_t *vd, zio_t *zio)
977 {
978         spa_t *spa = vd->vdev_spa;
979         vdev_probe_stats_t *vps = NULL;
980         zio_t *pio;
981         int l;
982
983         ASSERT(vd->vdev_ops->vdev_op_leaf);
984
985         /*
986          * Don't probe the probe.
987          */
988         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
989                 return (NULL);
990
991         /*
992          * To prevent 'probe storms' when a device fails, we create
993          * just one probe i/o at a time.  All zios that want to probe
994          * this vdev will become parents of the probe io.
995          */
996         mutex_enter(&vd->vdev_probe_lock);
997
998         if ((pio = vd->vdev_probe_zio) == NULL) {
999                 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1000
1001                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1002                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1003                     ZIO_FLAG_TRYHARD;
1004
1005                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1006                         /*
1007                          * vdev_cant_read and vdev_cant_write can only
1008                          * transition from TRUE to FALSE when we have the
1009                          * SCL_ZIO lock as writer; otherwise they can only
1010                          * transition from FALSE to TRUE.  This ensures that
1011                          * any zio looking at these values can assume that
1012                          * failures persist for the life of the I/O.  That's
1013                          * important because when a device has intermittent
1014                          * connectivity problems, we want to ensure that
1015                          * they're ascribed to the device (ENXIO) and not
1016                          * the zio (EIO).
1017                          *
1018                          * Since we hold SCL_ZIO as writer here, clear both
1019                          * values so the probe can reevaluate from first
1020                          * principles.
1021                          */
1022                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1023                         vd->vdev_cant_read = B_FALSE;
1024                         vd->vdev_cant_write = B_FALSE;
1025                 }
1026
1027                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1028                     vdev_probe_done, vps,
1029                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1030
1031                 /*
1032                  * We can't change the vdev state in this context, so we
1033                  * kick off an async task to do it on our behalf.
1034                  */
1035                 if (zio != NULL) {
1036                         vd->vdev_probe_wanted = B_TRUE;
1037                         spa_async_request(spa, SPA_ASYNC_PROBE);
1038                 }
1039         }
1040
1041         if (zio != NULL)
1042                 zio_add_child(zio, pio);
1043
1044         mutex_exit(&vd->vdev_probe_lock);
1045
1046         if (vps == NULL) {
1047                 ASSERT(zio != NULL);
1048                 return (NULL);
1049         }
1050
1051         for (l = 1; l < VDEV_LABELS; l++) {
1052                 zio_nowait(zio_read_phys(pio, vd,
1053                     vdev_label_offset(vd->vdev_psize, l,
1054                     offsetof(vdev_label_t, vl_pad2)),
1055                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1056                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1058         }
1059
1060         if (zio == NULL)
1061                 return (pio);
1062
1063         zio_nowait(pio);
1064         return (NULL);
1065 }
1066
1067 static void
1068 vdev_open_child(void *arg)
1069 {
1070         vdev_t *vd = arg;
1071
1072         vd->vdev_open_thread = curthread;
1073         vd->vdev_open_error = vdev_open(vd);
1074         vd->vdev_open_thread = NULL;
1075 }
1076
1077 boolean_t
1078 vdev_uses_zvols(vdev_t *vd)
1079 {
1080 /*
1081  * Stacking zpools on top of zvols is unsupported until we implement a method
1082  * for determining if an arbitrary block device is a zvol without using the
1083  * path.  Solaris would check the 'zvol' path component but this does not
1084  * exist in the Linux port, so we really should do something like stat the
1085  * file and check the major number.  This is complicated by the fact that
1086  * we need to do this portably in user or kernel space.
1087  */
1088 #if 0
1089         int c;
1090
1091         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1092             strlen(ZVOL_DIR)) == 0)
1093                 return (B_TRUE);
1094         for (c = 0; c < vd->vdev_children; c++)
1095                 if (vdev_uses_zvols(vd->vdev_child[c]))
1096                         return (B_TRUE);
1097 #endif
1098         return (B_FALSE);
1099 }
1100
1101 void
1102 vdev_open_children(vdev_t *vd)
1103 {
1104         taskq_t *tq;
1105         int children = vd->vdev_children;
1106         int c;
1107
1108         /*
1109          * in order to handle pools on top of zvols, do the opens
1110          * in a single thread so that the same thread holds the
1111          * spa_namespace_lock
1112          */
1113         if (vdev_uses_zvols(vd)) {
1114                 for (c = 0; c < children; c++)
1115                         vd->vdev_child[c]->vdev_open_error =
1116                             vdev_open(vd->vdev_child[c]);
1117                 return;
1118         }
1119         tq = taskq_create("vdev_open", children, minclsyspri,
1120             children, children, TASKQ_PREPOPULATE);
1121
1122         for (c = 0; c < children; c++)
1123                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1124                     TQ_SLEEP) != 0);
1125
1126         taskq_destroy(tq);
1127 }
1128
1129 /*
1130  * Prepare a virtual device for access.
1131  */
1132 int
1133 vdev_open(vdev_t *vd)
1134 {
1135         spa_t *spa = vd->vdev_spa;
1136         int error;
1137         uint64_t osize = 0;
1138         uint64_t max_osize = 0;
1139         uint64_t asize, max_asize, psize;
1140         uint64_t ashift = 0;
1141         int c;
1142
1143         ASSERT(vd->vdev_open_thread == curthread ||
1144             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1145         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1146             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1147             vd->vdev_state == VDEV_STATE_OFFLINE);
1148
1149         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1150         vd->vdev_cant_read = B_FALSE;
1151         vd->vdev_cant_write = B_FALSE;
1152         vd->vdev_min_asize = vdev_get_min_asize(vd);
1153
1154         /*
1155          * If this vdev is not removed, check its fault status.  If it's
1156          * faulted, bail out of the open.
1157          */
1158         if (!vd->vdev_removed && vd->vdev_faulted) {
1159                 ASSERT(vd->vdev_children == 0);
1160                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163                     vd->vdev_label_aux);
1164                 return (ENXIO);
1165         } else if (vd->vdev_offline) {
1166                 ASSERT(vd->vdev_children == 0);
1167                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1168                 return (ENXIO);
1169         }
1170
1171         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1172
1173         /*
1174          * Reset the vdev_reopening flag so that we actually close
1175          * the vdev on error.
1176          */
1177         vd->vdev_reopening = B_FALSE;
1178         if (zio_injection_enabled && error == 0)
1179                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1180
1181         if (error) {
1182                 if (vd->vdev_removed &&
1183                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1184                         vd->vdev_removed = B_FALSE;
1185
1186                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1187                     vd->vdev_stat.vs_aux);
1188                 return (error);
1189         }
1190
1191         vd->vdev_removed = B_FALSE;
1192
1193         /*
1194          * Recheck the faulted flag now that we have confirmed that
1195          * the vdev is accessible.  If we're faulted, bail.
1196          */
1197         if (vd->vdev_faulted) {
1198                 ASSERT(vd->vdev_children == 0);
1199                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1200                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1201                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1202                     vd->vdev_label_aux);
1203                 return (ENXIO);
1204         }
1205
1206         if (vd->vdev_degraded) {
1207                 ASSERT(vd->vdev_children == 0);
1208                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1209                     VDEV_AUX_ERR_EXCEEDED);
1210         } else {
1211                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1212         }
1213
1214         /*
1215          * For hole or missing vdevs we just return success.
1216          */
1217         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1218                 return (0);
1219
1220         for (c = 0; c < vd->vdev_children; c++) {
1221                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1222                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1223                             VDEV_AUX_NONE);
1224                         break;
1225                 }
1226         }
1227
1228         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1229         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1230
1231         if (vd->vdev_children == 0) {
1232                 if (osize < SPA_MINDEVSIZE) {
1233                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234                             VDEV_AUX_TOO_SMALL);
1235                         return (EOVERFLOW);
1236                 }
1237                 psize = osize;
1238                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1239                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1240                     VDEV_LABEL_END_SIZE);
1241         } else {
1242                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1243                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1244                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245                             VDEV_AUX_TOO_SMALL);
1246                         return (EOVERFLOW);
1247                 }
1248                 psize = 0;
1249                 asize = osize;
1250                 max_asize = max_osize;
1251         }
1252
1253         vd->vdev_psize = psize;
1254
1255         /*
1256          * Make sure the allocatable size hasn't shrunk.
1257          */
1258         if (asize < vd->vdev_min_asize) {
1259                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260                     VDEV_AUX_BAD_LABEL);
1261                 return (EINVAL);
1262         }
1263
1264         if (vd->vdev_asize == 0) {
1265                 /*
1266                  * This is the first-ever open, so use the computed values.
1267                  * For testing purposes, a higher ashift can be requested.
1268                  */
1269                 vd->vdev_asize = asize;
1270                 vd->vdev_max_asize = max_asize;
1271                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1272         } else {
1273                 /*
1274                  * Make sure the alignment requirement hasn't increased.
1275                  */
1276                 if (ashift > vd->vdev_top->vdev_ashift) {
1277                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1278                             VDEV_AUX_BAD_LABEL);
1279                         return (EINVAL);
1280                 }
1281                 vd->vdev_max_asize = max_asize;
1282         }
1283
1284         /*
1285          * If all children are healthy and the asize has increased,
1286          * then we've experienced dynamic LUN growth.  If automatic
1287          * expansion is enabled then use the additional space.
1288          */
1289         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1290             (vd->vdev_expanding || spa->spa_autoexpand))
1291                 vd->vdev_asize = asize;
1292
1293         vdev_set_min_asize(vd);
1294
1295         /*
1296          * Ensure we can issue some IO before declaring the
1297          * vdev open for business.
1298          */
1299         if (vd->vdev_ops->vdev_op_leaf &&
1300             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1301                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1302                     VDEV_AUX_ERR_EXCEEDED);
1303                 return (error);
1304         }
1305
1306         /*
1307          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1308          * resilver.  But don't do this if we are doing a reopen for a scrub,
1309          * since this would just restart the scrub we are already doing.
1310          */
1311         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1312             vdev_resilver_needed(vd, NULL, NULL))
1313                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1314
1315         return (0);
1316 }
1317
1318 /*
1319  * Called once the vdevs are all opened, this routine validates the label
1320  * contents.  This needs to be done before vdev_load() so that we don't
1321  * inadvertently do repair I/Os to the wrong device.
1322  *
1323  * If 'strict' is false ignore the spa guid check. This is necessary because
1324  * if the machine crashed during a re-guid the new guid might have been written
1325  * to all of the vdev labels, but not the cached config. The strict check
1326  * will be performed when the pool is opened again using the mos config.
1327  *
1328  * This function will only return failure if one of the vdevs indicates that it
1329  * has since been destroyed or exported.  This is only possible if
1330  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1331  * will be updated but the function will return 0.
1332  */
1333 int
1334 vdev_validate(vdev_t *vd, boolean_t strict)
1335 {
1336         spa_t *spa = vd->vdev_spa;
1337         nvlist_t *label;
1338         uint64_t guid = 0, top_guid;
1339         uint64_t state;
1340         int c;
1341
1342         for (c = 0; c < vd->vdev_children; c++)
1343                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1344                         return (EBADF);
1345
1346         /*
1347          * If the device has already failed, or was marked offline, don't do
1348          * any further validation.  Otherwise, label I/O will fail and we will
1349          * overwrite the previous state.
1350          */
1351         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1352                 uint64_t aux_guid = 0;
1353                 nvlist_t *nvl;
1354
1355                 if ((label = vdev_label_read_config(vd)) == NULL) {
1356                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1357                             VDEV_AUX_BAD_LABEL);
1358                         return (0);
1359                 }
1360
1361                 /*
1362                  * Determine if this vdev has been split off into another
1363                  * pool.  If so, then refuse to open it.
1364                  */
1365                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1366                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1367                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1368                             VDEV_AUX_SPLIT_POOL);
1369                         nvlist_free(label);
1370                         return (0);
1371                 }
1372
1373                 if (strict && (nvlist_lookup_uint64(label,
1374                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1375                     guid != spa_guid(spa))) {
1376                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1377                             VDEV_AUX_CORRUPT_DATA);
1378                         nvlist_free(label);
1379                         return (0);
1380                 }
1381
1382                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1383                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1384                     &aux_guid) != 0)
1385                         aux_guid = 0;
1386
1387                 /*
1388                  * If this vdev just became a top-level vdev because its
1389                  * sibling was detached, it will have adopted the parent's
1390                  * vdev guid -- but the label may or may not be on disk yet.
1391                  * Fortunately, either version of the label will have the
1392                  * same top guid, so if we're a top-level vdev, we can
1393                  * safely compare to that instead.
1394                  *
1395                  * If we split this vdev off instead, then we also check the
1396                  * original pool's guid.  We don't want to consider the vdev
1397                  * corrupt if it is partway through a split operation.
1398                  */
1399                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1400                     &guid) != 0 ||
1401                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1402                     &top_guid) != 0 ||
1403                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1404                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1405                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1406                             VDEV_AUX_CORRUPT_DATA);
1407                         nvlist_free(label);
1408                         return (0);
1409                 }
1410
1411                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1412                     &state) != 0) {
1413                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1414                             VDEV_AUX_CORRUPT_DATA);
1415                         nvlist_free(label);
1416                         return (0);
1417                 }
1418
1419                 nvlist_free(label);
1420
1421                 /*
1422                  * If this is a verbatim import, no need to check the
1423                  * state of the pool.
1424                  */
1425                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1426                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1427                     state != POOL_STATE_ACTIVE)
1428                         return (EBADF);
1429
1430                 /*
1431                  * If we were able to open and validate a vdev that was
1432                  * previously marked permanently unavailable, clear that state
1433                  * now.
1434                  */
1435                 if (vd->vdev_not_present)
1436                         vd->vdev_not_present = 0;
1437         }
1438
1439         return (0);
1440 }
1441
1442 /*
1443  * Close a virtual device.
1444  */
1445 void
1446 vdev_close(vdev_t *vd)
1447 {
1448         vdev_t *pvd = vd->vdev_parent;
1449         ASSERTV(spa_t *spa = vd->vdev_spa);
1450
1451         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1452
1453         /*
1454          * If our parent is reopening, then we are as well, unless we are
1455          * going offline.
1456          */
1457         if (pvd != NULL && pvd->vdev_reopening)
1458                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1459
1460         vd->vdev_ops->vdev_op_close(vd);
1461
1462         vdev_cache_purge(vd);
1463
1464         /*
1465          * We record the previous state before we close it, so that if we are
1466          * doing a reopen(), we don't generate FMA ereports if we notice that
1467          * it's still faulted.
1468          */
1469         vd->vdev_prevstate = vd->vdev_state;
1470
1471         if (vd->vdev_offline)
1472                 vd->vdev_state = VDEV_STATE_OFFLINE;
1473         else
1474                 vd->vdev_state = VDEV_STATE_CLOSED;
1475         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1476 }
1477
1478 void
1479 vdev_hold(vdev_t *vd)
1480 {
1481         spa_t *spa = vd->vdev_spa;
1482         int c;
1483
1484         ASSERT(spa_is_root(spa));
1485         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1486                 return;
1487
1488         for (c = 0; c < vd->vdev_children; c++)
1489                 vdev_hold(vd->vdev_child[c]);
1490
1491         if (vd->vdev_ops->vdev_op_leaf)
1492                 vd->vdev_ops->vdev_op_hold(vd);
1493 }
1494
1495 void
1496 vdev_rele(vdev_t *vd)
1497 {
1498         int c;
1499
1500         ASSERT(spa_is_root(vd->vdev_spa));
1501         for (c = 0; c < vd->vdev_children; c++)
1502                 vdev_rele(vd->vdev_child[c]);
1503
1504         if (vd->vdev_ops->vdev_op_leaf)
1505                 vd->vdev_ops->vdev_op_rele(vd);
1506 }
1507
1508 /*
1509  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1510  * reopen leaf vdevs which had previously been opened as they might deadlock
1511  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1512  * If the leaf has never been opened then open it, as usual.
1513  */
1514 void
1515 vdev_reopen(vdev_t *vd)
1516 {
1517         spa_t *spa = vd->vdev_spa;
1518
1519         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1520
1521         /* set the reopening flag unless we're taking the vdev offline */
1522         vd->vdev_reopening = !vd->vdev_offline;
1523         vdev_close(vd);
1524         (void) vdev_open(vd);
1525
1526         /*
1527          * Call vdev_validate() here to make sure we have the same device.
1528          * Otherwise, a device with an invalid label could be successfully
1529          * opened in response to vdev_reopen().
1530          */
1531         if (vd->vdev_aux) {
1532                 (void) vdev_validate_aux(vd);
1533                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1534                     vd->vdev_aux == &spa->spa_l2cache &&
1535                     !l2arc_vdev_present(vd))
1536                         l2arc_add_vdev(spa, vd);
1537         } else {
1538                 (void) vdev_validate(vd, B_TRUE);
1539         }
1540
1541         /*
1542          * Reassess parent vdev's health.
1543          */
1544         vdev_propagate_state(vd);
1545 }
1546
1547 int
1548 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1549 {
1550         int error;
1551
1552         /*
1553          * Normally, partial opens (e.g. of a mirror) are allowed.
1554          * For a create, however, we want to fail the request if
1555          * there are any components we can't open.
1556          */
1557         error = vdev_open(vd);
1558
1559         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1560                 vdev_close(vd);
1561                 return (error ? error : ENXIO);
1562         }
1563
1564         /*
1565          * Recursively initialize all labels.
1566          */
1567         if ((error = vdev_label_init(vd, txg, isreplacing ?
1568             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1569                 vdev_close(vd);
1570                 return (error);
1571         }
1572
1573         return (0);
1574 }
1575
1576 void
1577 vdev_metaslab_set_size(vdev_t *vd)
1578 {
1579         /*
1580          * Aim for roughly 200 metaslabs per vdev.
1581          */
1582         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1583         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1584 }
1585
1586 void
1587 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1588 {
1589         ASSERT(vd == vd->vdev_top);
1590         ASSERT(!vd->vdev_ishole);
1591         ASSERT(ISP2(flags));
1592         ASSERT(spa_writeable(vd->vdev_spa));
1593
1594         if (flags & VDD_METASLAB)
1595                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1596
1597         if (flags & VDD_DTL)
1598                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1599
1600         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1601 }
1602
1603 /*
1604  * DTLs.
1605  *
1606  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1607  * the vdev has less than perfect replication.  There are four kinds of DTL:
1608  *
1609  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1610  *
1611  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1612  *
1613  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1614  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1615  *      txgs that was scrubbed.
1616  *
1617  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1618  *      persistent errors or just some device being offline.
1619  *      Unlike the other three, the DTL_OUTAGE map is not generally
1620  *      maintained; it's only computed when needed, typically to
1621  *      determine whether a device can be detached.
1622  *
1623  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1624  * either has the data or it doesn't.
1625  *
1626  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1627  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1628  * if any child is less than fully replicated, then so is its parent.
1629  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1630  * comprising only those txgs which appear in 'maxfaults' or more children;
1631  * those are the txgs we don't have enough replication to read.  For example,
1632  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1633  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1634  * two child DTL_MISSING maps.
1635  *
1636  * It should be clear from the above that to compute the DTLs and outage maps
1637  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1638  * Therefore, that is all we keep on disk.  When loading the pool, or after
1639  * a configuration change, we generate all other DTLs from first principles.
1640  */
1641 void
1642 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1643 {
1644         space_map_t *sm = &vd->vdev_dtl[t];
1645
1646         ASSERT(t < DTL_TYPES);
1647         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1648         ASSERT(spa_writeable(vd->vdev_spa));
1649
1650         mutex_enter(sm->sm_lock);
1651         if (!space_map_contains(sm, txg, size))
1652                 space_map_add(sm, txg, size);
1653         mutex_exit(sm->sm_lock);
1654 }
1655
1656 boolean_t
1657 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1658 {
1659         space_map_t *sm = &vd->vdev_dtl[t];
1660         boolean_t dirty = B_FALSE;
1661
1662         ASSERT(t < DTL_TYPES);
1663         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1664
1665         mutex_enter(sm->sm_lock);
1666         if (sm->sm_space != 0)
1667                 dirty = space_map_contains(sm, txg, size);
1668         mutex_exit(sm->sm_lock);
1669
1670         return (dirty);
1671 }
1672
1673 boolean_t
1674 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1675 {
1676         space_map_t *sm = &vd->vdev_dtl[t];
1677         boolean_t empty;
1678
1679         mutex_enter(sm->sm_lock);
1680         empty = (sm->sm_space == 0);
1681         mutex_exit(sm->sm_lock);
1682
1683         return (empty);
1684 }
1685
1686 /*
1687  * Reassess DTLs after a config change or scrub completion.
1688  */
1689 void
1690 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1691 {
1692         spa_t *spa = vd->vdev_spa;
1693         avl_tree_t reftree;
1694         int c, t, minref;
1695
1696         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1697
1698         for (c = 0; c < vd->vdev_children; c++)
1699                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1700                     scrub_txg, scrub_done);
1701
1702         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1703                 return;
1704
1705         if (vd->vdev_ops->vdev_op_leaf) {
1706                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1707
1708                 mutex_enter(&vd->vdev_dtl_lock);
1709                 if (scrub_txg != 0 &&
1710                     (spa->spa_scrub_started ||
1711                     (scn && scn->scn_phys.scn_errors == 0))) {
1712                         /*
1713                          * We completed a scrub up to scrub_txg.  If we
1714                          * did it without rebooting, then the scrub dtl
1715                          * will be valid, so excise the old region and
1716                          * fold in the scrub dtl.  Otherwise, leave the
1717                          * dtl as-is if there was an error.
1718                          *
1719                          * There's little trick here: to excise the beginning
1720                          * of the DTL_MISSING map, we put it into a reference
1721                          * tree and then add a segment with refcnt -1 that
1722                          * covers the range [0, scrub_txg).  This means
1723                          * that each txg in that range has refcnt -1 or 0.
1724                          * We then add DTL_SCRUB with a refcnt of 2, so that
1725                          * entries in the range [0, scrub_txg) will have a
1726                          * positive refcnt -- either 1 or 2.  We then convert
1727                          * the reference tree into the new DTL_MISSING map.
1728                          */
1729                         space_map_ref_create(&reftree);
1730                         space_map_ref_add_map(&reftree,
1731                             &vd->vdev_dtl[DTL_MISSING], 1);
1732                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1733                         space_map_ref_add_map(&reftree,
1734                             &vd->vdev_dtl[DTL_SCRUB], 2);
1735                         space_map_ref_generate_map(&reftree,
1736                             &vd->vdev_dtl[DTL_MISSING], 1);
1737                         space_map_ref_destroy(&reftree);
1738                 }
1739                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1740                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1741                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1742                 if (scrub_done)
1743                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1744                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1745                 if (!vdev_readable(vd))
1746                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1747                 else
1748                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1749                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1750                 mutex_exit(&vd->vdev_dtl_lock);
1751
1752                 if (txg != 0)
1753                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1754                 return;
1755         }
1756
1757         mutex_enter(&vd->vdev_dtl_lock);
1758         for (t = 0; t < DTL_TYPES; t++) {
1759                 /* account for child's outage in parent's missing map */
1760                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1761                 if (t == DTL_SCRUB)
1762                         continue;                       /* leaf vdevs only */
1763                 if (t == DTL_PARTIAL)
1764                         minref = 1;                     /* i.e. non-zero */
1765                 else if (vd->vdev_nparity != 0)
1766                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1767                 else
1768                         minref = vd->vdev_children;     /* any kind of mirror */
1769                 space_map_ref_create(&reftree);
1770                 for (c = 0; c < vd->vdev_children; c++) {
1771                         vdev_t *cvd = vd->vdev_child[c];
1772                         mutex_enter(&cvd->vdev_dtl_lock);
1773                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1774                         mutex_exit(&cvd->vdev_dtl_lock);
1775                 }
1776                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1777                 space_map_ref_destroy(&reftree);
1778         }
1779         mutex_exit(&vd->vdev_dtl_lock);
1780 }
1781
1782 static int
1783 vdev_dtl_load(vdev_t *vd)
1784 {
1785         spa_t *spa = vd->vdev_spa;
1786         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1787         objset_t *mos = spa->spa_meta_objset;
1788         dmu_buf_t *db;
1789         int error;
1790
1791         ASSERT(vd->vdev_children == 0);
1792
1793         if (smo->smo_object == 0)
1794                 return (0);
1795
1796         ASSERT(!vd->vdev_ishole);
1797
1798         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1799                 return (error);
1800
1801         ASSERT3U(db->db_size, >=, sizeof (*smo));
1802         bcopy(db->db_data, smo, sizeof (*smo));
1803         dmu_buf_rele(db, FTAG);
1804
1805         mutex_enter(&vd->vdev_dtl_lock);
1806         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1807             NULL, SM_ALLOC, smo, mos);
1808         mutex_exit(&vd->vdev_dtl_lock);
1809
1810         return (error);
1811 }
1812
1813 void
1814 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1815 {
1816         spa_t *spa = vd->vdev_spa;
1817         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1818         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1819         objset_t *mos = spa->spa_meta_objset;
1820         space_map_t smsync;
1821         kmutex_t smlock;
1822         dmu_buf_t *db;
1823         dmu_tx_t *tx;
1824
1825         ASSERT(!vd->vdev_ishole);
1826
1827         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1828
1829         if (vd->vdev_detached) {
1830                 if (smo->smo_object != 0) {
1831                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1832                         smo->smo_object = 0;
1833                 }
1834                 dmu_tx_commit(tx);
1835                 return;
1836         }
1837
1838         if (smo->smo_object == 0) {
1839                 ASSERT(smo->smo_objsize == 0);
1840                 ASSERT(smo->smo_alloc == 0);
1841                 smo->smo_object = dmu_object_alloc(mos,
1842                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1843                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1844                 ASSERT(smo->smo_object != 0);
1845                 vdev_config_dirty(vd->vdev_top);
1846         }
1847
1848         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1849
1850         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1851             &smlock);
1852
1853         mutex_enter(&smlock);
1854
1855         mutex_enter(&vd->vdev_dtl_lock);
1856         space_map_walk(sm, space_map_add, &smsync);
1857         mutex_exit(&vd->vdev_dtl_lock);
1858
1859         space_map_truncate(smo, mos, tx);
1860         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1861
1862         space_map_destroy(&smsync);
1863
1864         mutex_exit(&smlock);
1865         mutex_destroy(&smlock);
1866
1867         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1868         dmu_buf_will_dirty(db, tx);
1869         ASSERT3U(db->db_size, >=, sizeof (*smo));
1870         bcopy(smo, db->db_data, sizeof (*smo));
1871         dmu_buf_rele(db, FTAG);
1872
1873         dmu_tx_commit(tx);
1874 }
1875
1876 /*
1877  * Determine whether the specified vdev can be offlined/detached/removed
1878  * without losing data.
1879  */
1880 boolean_t
1881 vdev_dtl_required(vdev_t *vd)
1882 {
1883         spa_t *spa = vd->vdev_spa;
1884         vdev_t *tvd = vd->vdev_top;
1885         uint8_t cant_read = vd->vdev_cant_read;
1886         boolean_t required;
1887
1888         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1889
1890         if (vd == spa->spa_root_vdev || vd == tvd)
1891                 return (B_TRUE);
1892
1893         /*
1894          * Temporarily mark the device as unreadable, and then determine
1895          * whether this results in any DTL outages in the top-level vdev.
1896          * If not, we can safely offline/detach/remove the device.
1897          */
1898         vd->vdev_cant_read = B_TRUE;
1899         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1901         vd->vdev_cant_read = cant_read;
1902         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1903
1904         if (!required && zio_injection_enabled)
1905                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1906
1907         return (required);
1908 }
1909
1910 /*
1911  * Determine if resilver is needed, and if so the txg range.
1912  */
1913 boolean_t
1914 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1915 {
1916         boolean_t needed = B_FALSE;
1917         uint64_t thismin = UINT64_MAX;
1918         uint64_t thismax = 0;
1919         int c;
1920
1921         if (vd->vdev_children == 0) {
1922                 mutex_enter(&vd->vdev_dtl_lock);
1923                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1924                     vdev_writeable(vd)) {
1925                         space_seg_t *ss;
1926
1927                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1928                         thismin = ss->ss_start - 1;
1929                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1930                         thismax = ss->ss_end;
1931                         needed = B_TRUE;
1932                 }
1933                 mutex_exit(&vd->vdev_dtl_lock);
1934         } else {
1935                 for (c = 0; c < vd->vdev_children; c++) {
1936                         vdev_t *cvd = vd->vdev_child[c];
1937                         uint64_t cmin, cmax;
1938
1939                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1940                                 thismin = MIN(thismin, cmin);
1941                                 thismax = MAX(thismax, cmax);
1942                                 needed = B_TRUE;
1943                         }
1944                 }
1945         }
1946
1947         if (needed && minp) {
1948                 *minp = thismin;
1949                 *maxp = thismax;
1950         }
1951         return (needed);
1952 }
1953
1954 void
1955 vdev_load(vdev_t *vd)
1956 {
1957         int c;
1958
1959         /*
1960          * Recursively load all children.
1961          */
1962         for (c = 0; c < vd->vdev_children; c++)
1963                 vdev_load(vd->vdev_child[c]);
1964
1965         /*
1966          * If this is a top-level vdev, initialize its metaslabs.
1967          */
1968         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1969             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1970             vdev_metaslab_init(vd, 0) != 0))
1971                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1972                     VDEV_AUX_CORRUPT_DATA);
1973
1974         /*
1975          * If this is a leaf vdev, load its DTL.
1976          */
1977         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1978                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1979                     VDEV_AUX_CORRUPT_DATA);
1980 }
1981
1982 /*
1983  * The special vdev case is used for hot spares and l2cache devices.  Its
1984  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1985  * we make sure that we can open the underlying device, then try to read the
1986  * label, and make sure that the label is sane and that it hasn't been
1987  * repurposed to another pool.
1988  */
1989 int
1990 vdev_validate_aux(vdev_t *vd)
1991 {
1992         nvlist_t *label;
1993         uint64_t guid, version;
1994         uint64_t state;
1995
1996         if (!vdev_readable(vd))
1997                 return (0);
1998
1999         if ((label = vdev_label_read_config(vd)) == NULL) {
2000                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2001                     VDEV_AUX_CORRUPT_DATA);
2002                 return (-1);
2003         }
2004
2005         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2006             version > SPA_VERSION ||
2007             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2008             guid != vd->vdev_guid ||
2009             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2010                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2011                     VDEV_AUX_CORRUPT_DATA);
2012                 nvlist_free(label);
2013                 return (-1);
2014         }
2015
2016         /*
2017          * We don't actually check the pool state here.  If it's in fact in
2018          * use by another pool, we update this fact on the fly when requested.
2019          */
2020         nvlist_free(label);
2021         return (0);
2022 }
2023
2024 void
2025 vdev_remove(vdev_t *vd, uint64_t txg)
2026 {
2027         spa_t *spa = vd->vdev_spa;
2028         objset_t *mos = spa->spa_meta_objset;
2029         dmu_tx_t *tx;
2030         int m;
2031
2032         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2033
2034         if (vd->vdev_dtl_smo.smo_object) {
2035                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2036                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2037                 vd->vdev_dtl_smo.smo_object = 0;
2038         }
2039
2040         if (vd->vdev_ms != NULL) {
2041                 for (m = 0; m < vd->vdev_ms_count; m++) {
2042                         metaslab_t *msp = vd->vdev_ms[m];
2043
2044                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2045                                 continue;
2046
2047                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2048                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2049                         msp->ms_smo.smo_object = 0;
2050                 }
2051         }
2052
2053         if (vd->vdev_ms_array) {
2054                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2055                 vd->vdev_ms_array = 0;
2056                 vd->vdev_ms_shift = 0;
2057         }
2058         dmu_tx_commit(tx);
2059 }
2060
2061 void
2062 vdev_sync_done(vdev_t *vd, uint64_t txg)
2063 {
2064         metaslab_t *msp;
2065         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2066
2067         ASSERT(!vd->vdev_ishole);
2068
2069         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2070                 metaslab_sync_done(msp, txg);
2071
2072         if (reassess)
2073                 metaslab_sync_reassess(vd->vdev_mg);
2074 }
2075
2076 void
2077 vdev_sync(vdev_t *vd, uint64_t txg)
2078 {
2079         spa_t *spa = vd->vdev_spa;
2080         vdev_t *lvd;
2081         metaslab_t *msp;
2082         dmu_tx_t *tx;
2083
2084         ASSERT(!vd->vdev_ishole);
2085
2086         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2087                 ASSERT(vd == vd->vdev_top);
2088                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2089                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2090                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2091                 ASSERT(vd->vdev_ms_array != 0);
2092                 vdev_config_dirty(vd);
2093                 dmu_tx_commit(tx);
2094         }
2095
2096         /*
2097          * Remove the metadata associated with this vdev once it's empty.
2098          */
2099         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2100                 vdev_remove(vd, txg);
2101
2102         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2103                 metaslab_sync(msp, txg);
2104                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2105         }
2106
2107         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2108                 vdev_dtl_sync(lvd, txg);
2109
2110         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2111 }
2112
2113 uint64_t
2114 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2115 {
2116         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2117 }
2118
2119 /*
2120  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2121  * not be opened, and no I/O is attempted.
2122  */
2123 int
2124 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2125 {
2126         vdev_t *vd, *tvd;
2127
2128         spa_vdev_state_enter(spa, SCL_NONE);
2129
2130         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2131                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2132
2133         if (!vd->vdev_ops->vdev_op_leaf)
2134                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2135
2136         tvd = vd->vdev_top;
2137
2138         /*
2139          * We don't directly use the aux state here, but if we do a
2140          * vdev_reopen(), we need this value to be present to remember why we
2141          * were faulted.
2142          */
2143         vd->vdev_label_aux = aux;
2144
2145         /*
2146          * Faulted state takes precedence over degraded.
2147          */
2148         vd->vdev_delayed_close = B_FALSE;
2149         vd->vdev_faulted = 1ULL;
2150         vd->vdev_degraded = 0ULL;
2151         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2152
2153         /*
2154          * If this device has the only valid copy of the data, then
2155          * back off and simply mark the vdev as degraded instead.
2156          */
2157         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2158                 vd->vdev_degraded = 1ULL;
2159                 vd->vdev_faulted = 0ULL;
2160
2161                 /*
2162                  * If we reopen the device and it's not dead, only then do we
2163                  * mark it degraded.
2164                  */
2165                 vdev_reopen(tvd);
2166
2167                 if (vdev_readable(vd))
2168                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2169         }
2170
2171         return (spa_vdev_state_exit(spa, vd, 0));
2172 }
2173
2174 /*
2175  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2176  * user that something is wrong.  The vdev continues to operate as normal as far
2177  * as I/O is concerned.
2178  */
2179 int
2180 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2181 {
2182         vdev_t *vd;
2183
2184         spa_vdev_state_enter(spa, SCL_NONE);
2185
2186         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2187                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2188
2189         if (!vd->vdev_ops->vdev_op_leaf)
2190                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2191
2192         /*
2193          * If the vdev is already faulted, then don't do anything.
2194          */
2195         if (vd->vdev_faulted || vd->vdev_degraded)
2196                 return (spa_vdev_state_exit(spa, NULL, 0));
2197
2198         vd->vdev_degraded = 1ULL;
2199         if (!vdev_is_dead(vd))
2200                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2201                     aux);
2202
2203         return (spa_vdev_state_exit(spa, vd, 0));
2204 }
2205
2206 /*
2207  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2208  * any attached spare device should be detached when the device finishes
2209  * resilvering.  Second, the online should be treated like a 'test' online case,
2210  * so no FMA events are generated if the device fails to open.
2211  */
2212 int
2213 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2214 {
2215         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2216
2217         spa_vdev_state_enter(spa, SCL_NONE);
2218
2219         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2220                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2221
2222         if (!vd->vdev_ops->vdev_op_leaf)
2223                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2224
2225         tvd = vd->vdev_top;
2226         vd->vdev_offline = B_FALSE;
2227         vd->vdev_tmpoffline = B_FALSE;
2228         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2229         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2230
2231         /* XXX - L2ARC 1.0 does not support expansion */
2232         if (!vd->vdev_aux) {
2233                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2234                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2235         }
2236
2237         vdev_reopen(tvd);
2238         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2239
2240         if (!vd->vdev_aux) {
2241                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2242                         pvd->vdev_expanding = B_FALSE;
2243         }
2244
2245         if (newstate)
2246                 *newstate = vd->vdev_state;
2247         if ((flags & ZFS_ONLINE_UNSPARE) &&
2248             !vdev_is_dead(vd) && vd->vdev_parent &&
2249             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2250             vd->vdev_parent->vdev_child[0] == vd)
2251                 vd->vdev_unspare = B_TRUE;
2252
2253         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2254
2255                 /* XXX - L2ARC 1.0 does not support expansion */
2256                 if (vd->vdev_aux)
2257                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2258                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2259         }
2260         return (spa_vdev_state_exit(spa, vd, 0));
2261 }
2262
2263 static int
2264 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2265 {
2266         vdev_t *vd, *tvd;
2267         int error = 0;
2268         uint64_t generation;
2269         metaslab_group_t *mg;
2270
2271 top:
2272         spa_vdev_state_enter(spa, SCL_ALLOC);
2273
2274         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2275                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2276
2277         if (!vd->vdev_ops->vdev_op_leaf)
2278                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2279
2280         tvd = vd->vdev_top;
2281         mg = tvd->vdev_mg;
2282         generation = spa->spa_config_generation + 1;
2283
2284         /*
2285          * If the device isn't already offline, try to offline it.
2286          */
2287         if (!vd->vdev_offline) {
2288                 /*
2289                  * If this device has the only valid copy of some data,
2290                  * don't allow it to be offlined. Log devices are always
2291                  * expendable.
2292                  */
2293                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2294                     vdev_dtl_required(vd))
2295                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2296
2297                 /*
2298                  * If the top-level is a slog and it has had allocations
2299                  * then proceed.  We check that the vdev's metaslab group
2300                  * is not NULL since it's possible that we may have just
2301                  * added this vdev but not yet initialized its metaslabs.
2302                  */
2303                 if (tvd->vdev_islog && mg != NULL) {
2304                         /*
2305                          * Prevent any future allocations.
2306                          */
2307                         metaslab_group_passivate(mg);
2308                         (void) spa_vdev_state_exit(spa, vd, 0);
2309
2310                         error = spa_offline_log(spa);
2311
2312                         spa_vdev_state_enter(spa, SCL_ALLOC);
2313
2314                         /*
2315                          * Check to see if the config has changed.
2316                          */
2317                         if (error || generation != spa->spa_config_generation) {
2318                                 metaslab_group_activate(mg);
2319                                 if (error)
2320                                         return (spa_vdev_state_exit(spa,
2321                                             vd, error));
2322                                 (void) spa_vdev_state_exit(spa, vd, 0);
2323                                 goto top;
2324                         }
2325                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2326                 }
2327
2328                 /*
2329                  * Offline this device and reopen its top-level vdev.
2330                  * If the top-level vdev is a log device then just offline
2331                  * it. Otherwise, if this action results in the top-level
2332                  * vdev becoming unusable, undo it and fail the request.
2333                  */
2334                 vd->vdev_offline = B_TRUE;
2335                 vdev_reopen(tvd);
2336
2337                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2338                     vdev_is_dead(tvd)) {
2339                         vd->vdev_offline = B_FALSE;
2340                         vdev_reopen(tvd);
2341                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2342                 }
2343
2344                 /*
2345                  * Add the device back into the metaslab rotor so that
2346                  * once we online the device it's open for business.
2347                  */
2348                 if (tvd->vdev_islog && mg != NULL)
2349                         metaslab_group_activate(mg);
2350         }
2351
2352         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2353
2354         return (spa_vdev_state_exit(spa, vd, 0));
2355 }
2356
2357 int
2358 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2359 {
2360         int error;
2361
2362         mutex_enter(&spa->spa_vdev_top_lock);
2363         error = vdev_offline_locked(spa, guid, flags);
2364         mutex_exit(&spa->spa_vdev_top_lock);
2365
2366         return (error);
2367 }
2368
2369 /*
2370  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2371  * vdev_offline(), we assume the spa config is locked.  We also clear all
2372  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2373  */
2374 void
2375 vdev_clear(spa_t *spa, vdev_t *vd)
2376 {
2377         vdev_t *rvd = spa->spa_root_vdev;
2378         int c;
2379
2380         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2381
2382         if (vd == NULL)
2383                 vd = rvd;
2384
2385         vd->vdev_stat.vs_read_errors = 0;
2386         vd->vdev_stat.vs_write_errors = 0;
2387         vd->vdev_stat.vs_checksum_errors = 0;
2388
2389         for (c = 0; c < vd->vdev_children; c++)
2390                 vdev_clear(spa, vd->vdev_child[c]);
2391
2392         /*
2393          * If we're in the FAULTED state or have experienced failed I/O, then
2394          * clear the persistent state and attempt to reopen the device.  We
2395          * also mark the vdev config dirty, so that the new faulted state is
2396          * written out to disk.
2397          */
2398         if (vd->vdev_faulted || vd->vdev_degraded ||
2399             !vdev_readable(vd) || !vdev_writeable(vd)) {
2400
2401                 /*
2402                  * When reopening in reponse to a clear event, it may be due to
2403                  * a fmadm repair request.  In this case, if the device is
2404                  * still broken, we want to still post the ereport again.
2405                  */
2406                 vd->vdev_forcefault = B_TRUE;
2407
2408                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2409                 vd->vdev_cant_read = B_FALSE;
2410                 vd->vdev_cant_write = B_FALSE;
2411
2412                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2413
2414                 vd->vdev_forcefault = B_FALSE;
2415
2416                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2417                         vdev_state_dirty(vd->vdev_top);
2418
2419                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2420                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2421
2422                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2423         }
2424
2425         /*
2426          * When clearing a FMA-diagnosed fault, we always want to
2427          * unspare the device, as we assume that the original spare was
2428          * done in response to the FMA fault.
2429          */
2430         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2431             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2432             vd->vdev_parent->vdev_child[0] == vd)
2433                 vd->vdev_unspare = B_TRUE;
2434 }
2435
2436 boolean_t
2437 vdev_is_dead(vdev_t *vd)
2438 {
2439         /*
2440          * Holes and missing devices are always considered "dead".
2441          * This simplifies the code since we don't have to check for
2442          * these types of devices in the various code paths.
2443          * Instead we rely on the fact that we skip over dead devices
2444          * before issuing I/O to them.
2445          */
2446         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2447             vd->vdev_ops == &vdev_missing_ops);
2448 }
2449
2450 boolean_t
2451 vdev_readable(vdev_t *vd)
2452 {
2453         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2454 }
2455
2456 boolean_t
2457 vdev_writeable(vdev_t *vd)
2458 {
2459         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2460 }
2461
2462 boolean_t
2463 vdev_allocatable(vdev_t *vd)
2464 {
2465         uint64_t state = vd->vdev_state;
2466
2467         /*
2468          * We currently allow allocations from vdevs which may be in the
2469          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2470          * fails to reopen then we'll catch it later when we're holding
2471          * the proper locks.  Note that we have to get the vdev state
2472          * in a local variable because although it changes atomically,
2473          * we're asking two separate questions about it.
2474          */
2475         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2476             !vd->vdev_cant_write && !vd->vdev_ishole);
2477 }
2478
2479 boolean_t
2480 vdev_accessible(vdev_t *vd, zio_t *zio)
2481 {
2482         ASSERT(zio->io_vd == vd);
2483
2484         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2485                 return (B_FALSE);
2486
2487         if (zio->io_type == ZIO_TYPE_READ)
2488                 return (!vd->vdev_cant_read);
2489
2490         if (zio->io_type == ZIO_TYPE_WRITE)
2491                 return (!vd->vdev_cant_write);
2492
2493         return (B_TRUE);
2494 }
2495
2496 /*
2497  * Get statistics for the given vdev.
2498  */
2499 void
2500 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2501 {
2502         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2503         int c, t;
2504
2505         mutex_enter(&vd->vdev_stat_lock);
2506         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2507         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2508         vs->vs_state = vd->vdev_state;
2509         vs->vs_rsize = vdev_get_min_asize(vd);
2510         if (vd->vdev_ops->vdev_op_leaf)
2511                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2512         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2513         mutex_exit(&vd->vdev_stat_lock);
2514
2515         /*
2516          * If we're getting stats on the root vdev, aggregate the I/O counts
2517          * over all top-level vdevs (i.e. the direct children of the root).
2518          */
2519         if (vd == rvd) {
2520                 for (c = 0; c < rvd->vdev_children; c++) {
2521                         vdev_t *cvd = rvd->vdev_child[c];
2522                         vdev_stat_t *cvs = &cvd->vdev_stat;
2523
2524                         mutex_enter(&vd->vdev_stat_lock);
2525                         for (t = 0; t < ZIO_TYPES; t++) {
2526                                 vs->vs_ops[t] += cvs->vs_ops[t];
2527                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2528                         }
2529                         cvs->vs_scan_removing = cvd->vdev_removing;
2530                         mutex_exit(&vd->vdev_stat_lock);
2531                 }
2532         }
2533 }
2534
2535 void
2536 vdev_clear_stats(vdev_t *vd)
2537 {
2538         mutex_enter(&vd->vdev_stat_lock);
2539         vd->vdev_stat.vs_space = 0;
2540         vd->vdev_stat.vs_dspace = 0;
2541         vd->vdev_stat.vs_alloc = 0;
2542         mutex_exit(&vd->vdev_stat_lock);
2543 }
2544
2545 void
2546 vdev_scan_stat_init(vdev_t *vd)
2547 {
2548         vdev_stat_t *vs = &vd->vdev_stat;
2549         int c;
2550
2551         for (c = 0; c < vd->vdev_children; c++)
2552                 vdev_scan_stat_init(vd->vdev_child[c]);
2553
2554         mutex_enter(&vd->vdev_stat_lock);
2555         vs->vs_scan_processed = 0;
2556         mutex_exit(&vd->vdev_stat_lock);
2557 }
2558
2559 void
2560 vdev_stat_update(zio_t *zio, uint64_t psize)
2561 {
2562         spa_t *spa = zio->io_spa;
2563         vdev_t *rvd = spa->spa_root_vdev;
2564         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2565         vdev_t *pvd;
2566         uint64_t txg = zio->io_txg;
2567         vdev_stat_t *vs = &vd->vdev_stat;
2568         zio_type_t type = zio->io_type;
2569         int flags = zio->io_flags;
2570
2571         /*
2572          * If this i/o is a gang leader, it didn't do any actual work.
2573          */
2574         if (zio->io_gang_tree)
2575                 return;
2576
2577         if (zio->io_error == 0) {
2578                 /*
2579                  * If this is a root i/o, don't count it -- we've already
2580                  * counted the top-level vdevs, and vdev_get_stats() will
2581                  * aggregate them when asked.  This reduces contention on
2582                  * the root vdev_stat_lock and implicitly handles blocks
2583                  * that compress away to holes, for which there is no i/o.
2584                  * (Holes never create vdev children, so all the counters
2585                  * remain zero, which is what we want.)
2586                  *
2587                  * Note: this only applies to successful i/o (io_error == 0)
2588                  * because unlike i/o counts, errors are not additive.
2589                  * When reading a ditto block, for example, failure of
2590                  * one top-level vdev does not imply a root-level error.
2591                  */
2592                 if (vd == rvd)
2593                         return;
2594
2595                 ASSERT(vd == zio->io_vd);
2596
2597                 if (flags & ZIO_FLAG_IO_BYPASS)
2598                         return;
2599
2600                 mutex_enter(&vd->vdev_stat_lock);
2601
2602                 if (flags & ZIO_FLAG_IO_REPAIR) {
2603                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2604                                 dsl_scan_phys_t *scn_phys =
2605                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2606                                 uint64_t *processed = &scn_phys->scn_processed;
2607
2608                                 /* XXX cleanup? */
2609                                 if (vd->vdev_ops->vdev_op_leaf)
2610                                         atomic_add_64(processed, psize);
2611                                 vs->vs_scan_processed += psize;
2612                         }
2613
2614                         if (flags & ZIO_FLAG_SELF_HEAL)
2615                                 vs->vs_self_healed += psize;
2616                 }
2617
2618                 vs->vs_ops[type]++;
2619                 vs->vs_bytes[type] += psize;
2620
2621                 mutex_exit(&vd->vdev_stat_lock);
2622                 return;
2623         }
2624
2625         if (flags & ZIO_FLAG_SPECULATIVE)
2626                 return;
2627
2628         /*
2629          * If this is an I/O error that is going to be retried, then ignore the
2630          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2631          * hard errors, when in reality they can happen for any number of
2632          * innocuous reasons (bus resets, MPxIO link failure, etc).
2633          */
2634         if (zio->io_error == EIO &&
2635             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2636                 return;
2637
2638         /*
2639          * Intent logs writes won't propagate their error to the root
2640          * I/O so don't mark these types of failures as pool-level
2641          * errors.
2642          */
2643         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2644                 return;
2645
2646         mutex_enter(&vd->vdev_stat_lock);
2647         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2648                 if (zio->io_error == ECKSUM)
2649                         vs->vs_checksum_errors++;
2650                 else
2651                         vs->vs_read_errors++;
2652         }
2653         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2654                 vs->vs_write_errors++;
2655         mutex_exit(&vd->vdev_stat_lock);
2656
2657         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2658             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2659             (flags & ZIO_FLAG_SCAN_THREAD) ||
2660             spa->spa_claiming)) {
2661                 /*
2662                  * This is either a normal write (not a repair), or it's
2663                  * a repair induced by the scrub thread, or it's a repair
2664                  * made by zil_claim() during spa_load() in the first txg.
2665                  * In the normal case, we commit the DTL change in the same
2666                  * txg as the block was born.  In the scrub-induced repair
2667                  * case, we know that scrubs run in first-pass syncing context,
2668                  * so we commit the DTL change in spa_syncing_txg(spa).
2669                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2670                  *
2671                  * We currently do not make DTL entries for failed spontaneous
2672                  * self-healing writes triggered by normal (non-scrubbing)
2673                  * reads, because we have no transactional context in which to
2674                  * do so -- and it's not clear that it'd be desirable anyway.
2675                  */
2676                 if (vd->vdev_ops->vdev_op_leaf) {
2677                         uint64_t commit_txg = txg;
2678                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2679                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2680                                 ASSERT(spa_sync_pass(spa) == 1);
2681                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2682                                 commit_txg = spa_syncing_txg(spa);
2683                         } else if (spa->spa_claiming) {
2684                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2685                                 commit_txg = spa_first_txg(spa);
2686                         }
2687                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2688                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2689                                 return;
2690                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2691                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2692                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2693                 }
2694                 if (vd != rvd)
2695                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2696         }
2697 }
2698
2699 /*
2700  * Update the in-core space usage stats for this vdev, its metaslab class,
2701  * and the root vdev.
2702  */
2703 void
2704 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2705     int64_t space_delta)
2706 {
2707         int64_t dspace_delta = space_delta;
2708         spa_t *spa = vd->vdev_spa;
2709         vdev_t *rvd = spa->spa_root_vdev;
2710         metaslab_group_t *mg = vd->vdev_mg;
2711         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2712
2713         ASSERT(vd == vd->vdev_top);
2714
2715         /*
2716          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2717          * factor.  We must calculate this here and not at the root vdev
2718          * because the root vdev's psize-to-asize is simply the max of its
2719          * childrens', thus not accurate enough for us.
2720          */
2721         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2722         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2723         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2724             vd->vdev_deflate_ratio;
2725
2726         mutex_enter(&vd->vdev_stat_lock);
2727         vd->vdev_stat.vs_alloc += alloc_delta;
2728         vd->vdev_stat.vs_space += space_delta;
2729         vd->vdev_stat.vs_dspace += dspace_delta;
2730         mutex_exit(&vd->vdev_stat_lock);
2731
2732         if (mc == spa_normal_class(spa)) {
2733                 mutex_enter(&rvd->vdev_stat_lock);
2734                 rvd->vdev_stat.vs_alloc += alloc_delta;
2735                 rvd->vdev_stat.vs_space += space_delta;
2736                 rvd->vdev_stat.vs_dspace += dspace_delta;
2737                 mutex_exit(&rvd->vdev_stat_lock);
2738         }
2739
2740         if (mc != NULL) {
2741                 ASSERT(rvd == vd->vdev_parent);
2742                 ASSERT(vd->vdev_ms_count != 0);
2743
2744                 metaslab_class_space_update(mc,
2745                     alloc_delta, defer_delta, space_delta, dspace_delta);
2746         }
2747 }
2748
2749 /*
2750  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2751  * so that it will be written out next time the vdev configuration is synced.
2752  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2753  */
2754 void
2755 vdev_config_dirty(vdev_t *vd)
2756 {
2757         spa_t *spa = vd->vdev_spa;
2758         vdev_t *rvd = spa->spa_root_vdev;
2759         int c;
2760
2761         ASSERT(spa_writeable(spa));
2762
2763         /*
2764          * If this is an aux vdev (as with l2cache and spare devices), then we
2765          * update the vdev config manually and set the sync flag.
2766          */
2767         if (vd->vdev_aux != NULL) {
2768                 spa_aux_vdev_t *sav = vd->vdev_aux;
2769                 nvlist_t **aux;
2770                 uint_t naux;
2771
2772                 for (c = 0; c < sav->sav_count; c++) {
2773                         if (sav->sav_vdevs[c] == vd)
2774                                 break;
2775                 }
2776
2777                 if (c == sav->sav_count) {
2778                         /*
2779                          * We're being removed.  There's nothing more to do.
2780                          */
2781                         ASSERT(sav->sav_sync == B_TRUE);
2782                         return;
2783                 }
2784
2785                 sav->sav_sync = B_TRUE;
2786
2787                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2788                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2789                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2790                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2791                 }
2792
2793                 ASSERT(c < naux);
2794
2795                 /*
2796                  * Setting the nvlist in the middle if the array is a little
2797                  * sketchy, but it will work.
2798                  */
2799                 nvlist_free(aux[c]);
2800                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2801
2802                 return;
2803         }
2804
2805         /*
2806          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2807          * must either hold SCL_CONFIG as writer, or must be the sync thread
2808          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2809          * so this is sufficient to ensure mutual exclusion.
2810          */
2811         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2812             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2814
2815         if (vd == rvd) {
2816                 for (c = 0; c < rvd->vdev_children; c++)
2817                         vdev_config_dirty(rvd->vdev_child[c]);
2818         } else {
2819                 ASSERT(vd == vd->vdev_top);
2820
2821                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2822                     !vd->vdev_ishole)
2823                         list_insert_head(&spa->spa_config_dirty_list, vd);
2824         }
2825 }
2826
2827 void
2828 vdev_config_clean(vdev_t *vd)
2829 {
2830         spa_t *spa = vd->vdev_spa;
2831
2832         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2833             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2835
2836         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2837         list_remove(&spa->spa_config_dirty_list, vd);
2838 }
2839
2840 /*
2841  * Mark a top-level vdev's state as dirty, so that the next pass of
2842  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2843  * the state changes from larger config changes because they require
2844  * much less locking, and are often needed for administrative actions.
2845  */
2846 void
2847 vdev_state_dirty(vdev_t *vd)
2848 {
2849         spa_t *spa = vd->vdev_spa;
2850
2851         ASSERT(spa_writeable(spa));
2852         ASSERT(vd == vd->vdev_top);
2853
2854         /*
2855          * The state list is protected by the SCL_STATE lock.  The caller
2856          * must either hold SCL_STATE as writer, or must be the sync thread
2857          * (which holds SCL_STATE as reader).  There's only one sync thread,
2858          * so this is sufficient to ensure mutual exclusion.
2859          */
2860         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2861             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2862             spa_config_held(spa, SCL_STATE, RW_READER)));
2863
2864         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2865                 list_insert_head(&spa->spa_state_dirty_list, vd);
2866 }
2867
2868 void
2869 vdev_state_clean(vdev_t *vd)
2870 {
2871         spa_t *spa = vd->vdev_spa;
2872
2873         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2874             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2875             spa_config_held(spa, SCL_STATE, RW_READER)));
2876
2877         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2878         list_remove(&spa->spa_state_dirty_list, vd);
2879 }
2880
2881 /*
2882  * Propagate vdev state up from children to parent.
2883  */
2884 void
2885 vdev_propagate_state(vdev_t *vd)
2886 {
2887         spa_t *spa = vd->vdev_spa;
2888         vdev_t *rvd = spa->spa_root_vdev;
2889         int degraded = 0, faulted = 0;
2890         int corrupted = 0;
2891         vdev_t *child;
2892         int c;
2893
2894         if (vd->vdev_children > 0) {
2895                 for (c = 0; c < vd->vdev_children; c++) {
2896                         child = vd->vdev_child[c];
2897
2898                         /*
2899                          * Don't factor holes into the decision.
2900                          */
2901                         if (child->vdev_ishole)
2902                                 continue;
2903
2904                         if (!vdev_readable(child) ||
2905                             (!vdev_writeable(child) && spa_writeable(spa))) {
2906                                 /*
2907                                  * Root special: if there is a top-level log
2908                                  * device, treat the root vdev as if it were
2909                                  * degraded.
2910                                  */
2911                                 if (child->vdev_islog && vd == rvd)
2912                                         degraded++;
2913                                 else
2914                                         faulted++;
2915                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2916                                 degraded++;
2917                         }
2918
2919                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2920                                 corrupted++;
2921                 }
2922
2923                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2924
2925                 /*
2926                  * Root special: if there is a top-level vdev that cannot be
2927                  * opened due to corrupted metadata, then propagate the root
2928                  * vdev's aux state as 'corrupt' rather than 'insufficient
2929                  * replicas'.
2930                  */
2931                 if (corrupted && vd == rvd &&
2932                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2933                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2934                             VDEV_AUX_CORRUPT_DATA);
2935         }
2936
2937         if (vd->vdev_parent)
2938                 vdev_propagate_state(vd->vdev_parent);
2939 }
2940
2941 /*
2942  * Set a vdev's state.  If this is during an open, we don't update the parent
2943  * state, because we're in the process of opening children depth-first.
2944  * Otherwise, we propagate the change to the parent.
2945  *
2946  * If this routine places a device in a faulted state, an appropriate ereport is
2947  * generated.
2948  */
2949 void
2950 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2951 {
2952         uint64_t save_state;
2953         spa_t *spa = vd->vdev_spa;
2954
2955         if (state == vd->vdev_state) {
2956                 vd->vdev_stat.vs_aux = aux;
2957                 return;
2958         }
2959
2960         save_state = vd->vdev_state;
2961
2962         vd->vdev_state = state;
2963         vd->vdev_stat.vs_aux = aux;
2964
2965         /*
2966          * If we are setting the vdev state to anything but an open state, then
2967          * always close the underlying device unless the device has requested
2968          * a delayed close (i.e. we're about to remove or fault the device).
2969          * Otherwise, we keep accessible but invalid devices open forever.
2970          * We don't call vdev_close() itself, because that implies some extra
2971          * checks (offline, etc) that we don't want here.  This is limited to
2972          * leaf devices, because otherwise closing the device will affect other
2973          * children.
2974          */
2975         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2976             vd->vdev_ops->vdev_op_leaf)
2977                 vd->vdev_ops->vdev_op_close(vd);
2978
2979         /*
2980          * If we have brought this vdev back into service, we need
2981          * to notify fmd so that it can gracefully repair any outstanding
2982          * cases due to a missing device.  We do this in all cases, even those
2983          * that probably don't correlate to a repaired fault.  This is sure to
2984          * catch all cases, and we let the zfs-retire agent sort it out.  If
2985          * this is a transient state it's OK, as the retire agent will
2986          * double-check the state of the vdev before repairing it.
2987          */
2988         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2989             vd->vdev_prevstate != state)
2990                 zfs_post_state_change(spa, vd);
2991
2992         if (vd->vdev_removed &&
2993             state == VDEV_STATE_CANT_OPEN &&
2994             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2995                 /*
2996                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2997                  * device was previously marked removed and someone attempted to
2998                  * reopen it.  If this failed due to a nonexistent device, then
2999                  * keep the device in the REMOVED state.  We also let this be if
3000                  * it is one of our special test online cases, which is only
3001                  * attempting to online the device and shouldn't generate an FMA
3002                  * fault.
3003                  */
3004                 vd->vdev_state = VDEV_STATE_REMOVED;
3005                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3006         } else if (state == VDEV_STATE_REMOVED) {
3007                 vd->vdev_removed = B_TRUE;
3008         } else if (state == VDEV_STATE_CANT_OPEN) {
3009                 /*
3010                  * If we fail to open a vdev during an import or recovery, we
3011                  * mark it as "not available", which signifies that it was
3012                  * never there to begin with.  Failure to open such a device
3013                  * is not considered an error.
3014                  */
3015                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3016                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3017                     vd->vdev_ops->vdev_op_leaf)
3018                         vd->vdev_not_present = 1;
3019
3020                 /*
3021                  * Post the appropriate ereport.  If the 'prevstate' field is
3022                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3023                  * that this is part of a vdev_reopen().  In this case, we don't
3024                  * want to post the ereport if the device was already in the
3025                  * CANT_OPEN state beforehand.
3026                  *
3027                  * If the 'checkremove' flag is set, then this is an attempt to
3028                  * online the device in response to an insertion event.  If we
3029                  * hit this case, then we have detected an insertion event for a
3030                  * faulted or offline device that wasn't in the removed state.
3031                  * In this scenario, we don't post an ereport because we are
3032                  * about to replace the device, or attempt an online with
3033                  * vdev_forcefault, which will generate the fault for us.
3034                  */
3035                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3036                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3037                     vd != spa->spa_root_vdev) {
3038                         const char *class;
3039
3040                         switch (aux) {
3041                         case VDEV_AUX_OPEN_FAILED:
3042                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3043                                 break;
3044                         case VDEV_AUX_CORRUPT_DATA:
3045                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3046                                 break;
3047                         case VDEV_AUX_NO_REPLICAS:
3048                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3049                                 break;
3050                         case VDEV_AUX_BAD_GUID_SUM:
3051                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3052                                 break;
3053                         case VDEV_AUX_TOO_SMALL:
3054                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3055                                 break;
3056                         case VDEV_AUX_BAD_LABEL:
3057                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3058                                 break;
3059                         default:
3060                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3061                         }
3062
3063                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3064                 }
3065
3066                 /* Erase any notion of persistent removed state */
3067                 vd->vdev_removed = B_FALSE;
3068         } else {
3069                 vd->vdev_removed = B_FALSE;
3070         }
3071
3072         if (!isopen && vd->vdev_parent)
3073                 vdev_propagate_state(vd->vdev_parent);
3074 }
3075
3076 /*
3077  * Check the vdev configuration to ensure that it's capable of supporting
3078  * a root pool.
3079  */
3080 boolean_t
3081 vdev_is_bootable(vdev_t *vd)
3082 {
3083 #if defined(__sun__) || defined(__sun)
3084         /*
3085          * Currently, we do not support RAID-Z or partial configuration.
3086          * In addition, only a single top-level vdev is allowed and none of the
3087          * leaves can be wholedisks.
3088          */
3089         int c;
3090
3091         if (!vd->vdev_ops->vdev_op_leaf) {
3092                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3093
3094                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3095                     vd->vdev_children > 1) {
3096                         return (B_FALSE);
3097                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3098                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3099                         return (B_FALSE);
3100                 }
3101         } else if (vd->vdev_wholedisk == 1) {
3102                 return (B_FALSE);
3103         }
3104
3105         for (c = 0; c < vd->vdev_children; c++) {
3106                 if (!vdev_is_bootable(vd->vdev_child[c]))
3107                         return (B_FALSE);
3108         }
3109 #endif /* __sun__ || __sun */
3110         return (B_TRUE);
3111 }
3112
3113 /*
3114  * Load the state from the original vdev tree (ovd) which
3115  * we've retrieved from the MOS config object. If the original
3116  * vdev was offline or faulted then we transfer that state to the
3117  * device in the current vdev tree (nvd).
3118  */
3119 void
3120 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3121 {
3122         int c;
3123
3124         ASSERT(nvd->vdev_top->vdev_islog);
3125         ASSERT(spa_config_held(nvd->vdev_spa,
3126             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3127         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3128
3129         for (c = 0; c < nvd->vdev_children; c++)
3130                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3131
3132         if (nvd->vdev_ops->vdev_op_leaf) {
3133                 /*
3134                  * Restore the persistent vdev state
3135                  */
3136                 nvd->vdev_offline = ovd->vdev_offline;
3137                 nvd->vdev_faulted = ovd->vdev_faulted;
3138                 nvd->vdev_degraded = ovd->vdev_degraded;
3139                 nvd->vdev_removed = ovd->vdev_removed;
3140         }
3141 }
3142
3143 /*
3144  * Determine if a log device has valid content.  If the vdev was
3145  * removed or faulted in the MOS config then we know that
3146  * the content on the log device has already been written to the pool.
3147  */
3148 boolean_t
3149 vdev_log_state_valid(vdev_t *vd)
3150 {
3151         int c;
3152
3153         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3154             !vd->vdev_removed)
3155                 return (B_TRUE);
3156
3157         for (c = 0; c < vd->vdev_children; c++)
3158                 if (vdev_log_state_valid(vd->vdev_child[c]))
3159                         return (B_TRUE);
3160
3161         return (B_FALSE);
3162 }
3163
3164 /*
3165  * Expand a vdev if possible.
3166  */
3167 void
3168 vdev_expand(vdev_t *vd, uint64_t txg)
3169 {
3170         ASSERT(vd->vdev_top == vd);
3171         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3172
3173         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3174                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3175                 vdev_config_dirty(vd);
3176         }
3177 }
3178
3179 /*
3180  * Split a vdev.
3181  */
3182 void
3183 vdev_split(vdev_t *vd)
3184 {
3185         vdev_t *cvd, *pvd = vd->vdev_parent;
3186
3187         vdev_remove_child(pvd, vd);
3188         vdev_compact_children(pvd);
3189
3190         cvd = pvd->vdev_child[0];
3191         if (pvd->vdev_children == 1) {
3192                 vdev_remove_parent(cvd);
3193                 cvd->vdev_splitting = B_TRUE;
3194         }
3195         vdev_propagate_state(cvd);
3196 }
3197
3198 #if defined(_KERNEL) && defined(HAVE_SPL)
3199 EXPORT_SYMBOL(vdev_fault);
3200 EXPORT_SYMBOL(vdev_degrade);
3201 EXPORT_SYMBOL(vdev_online);
3202 EXPORT_SYMBOL(vdev_offline);
3203 EXPORT_SYMBOL(vdev_clear);
3204
3205 module_param(zfs_scrub_limit, int, 0644);
3206 MODULE_PARM_DESC(zfs_scrub_limit, "Max scrub/resilver I/O per leaf vdev");
3207 #endif