Rebase master to b117
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         NULL
58 };
59
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69         vdev_ops_t *ops, **opspp;
70
71         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72                 if (strcmp(ops->vdev_op_type, type) == 0)
73                         break;
74
75         return (ops);
76 }
77
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86         uint64_t csize;
87
88         for (int c = 0; c < vd->vdev_children; c++) {
89                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90                 asize = MAX(asize, csize);
91         }
92
93         return (asize);
94 }
95
96 /*
97  * Get the minimum allocatable size. We define the allocatable size as
98  * the vdev's asize rounded to the nearest metaslab. This allows us to
99  * replace or attach devices which don't have the same physical size but
100  * can still satisfy the same number of allocations.
101  */
102 uint64_t
103 vdev_get_min_asize(vdev_t *vd)
104 {
105         vdev_t *pvd = vd->vdev_parent;
106
107         /*
108          * The our parent is NULL (inactive spare or cache) or is the root,
109          * just return our own asize.
110          */
111         if (pvd == NULL)
112                 return (vd->vdev_asize);
113
114         /*
115          * The top-level vdev just returns the allocatable size rounded
116          * to the nearest metaslab.
117          */
118         if (vd == vd->vdev_top)
119                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120
121         /*
122          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123          * so each child must provide at least 1/Nth of its asize.
124          */
125         if (pvd->vdev_ops == &vdev_raidz_ops)
126                 return (pvd->vdev_min_asize / pvd->vdev_children);
127
128         return (pvd->vdev_min_asize);
129 }
130
131 void
132 vdev_set_min_asize(vdev_t *vd)
133 {
134         vd->vdev_min_asize = vdev_get_min_asize(vd);
135
136         for (int c = 0; c < vd->vdev_children; c++)
137                 vdev_set_min_asize(vd->vdev_child[c]);
138 }
139
140 vdev_t *
141 vdev_lookup_top(spa_t *spa, uint64_t vdev)
142 {
143         vdev_t *rvd = spa->spa_root_vdev;
144
145         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146
147         if (vdev < rvd->vdev_children) {
148                 ASSERT(rvd->vdev_child[vdev] != NULL);
149                 return (rvd->vdev_child[vdev]);
150         }
151
152         return (NULL);
153 }
154
155 vdev_t *
156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157 {
158         vdev_t *mvd;
159
160         if (vd->vdev_guid == guid)
161                 return (vd);
162
163         for (int c = 0; c < vd->vdev_children; c++)
164                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165                     NULL)
166                         return (mvd);
167
168         return (NULL);
169 }
170
171 void
172 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173 {
174         size_t oldsize, newsize;
175         uint64_t id = cvd->vdev_id;
176         vdev_t **newchild;
177
178         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179         ASSERT(cvd->vdev_parent == NULL);
180
181         cvd->vdev_parent = pvd;
182
183         if (pvd == NULL)
184                 return;
185
186         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187
188         oldsize = pvd->vdev_children * sizeof (vdev_t *);
189         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190         newsize = pvd->vdev_children * sizeof (vdev_t *);
191
192         newchild = kmem_zalloc(newsize, KM_SLEEP);
193         if (pvd->vdev_child != NULL) {
194                 bcopy(pvd->vdev_child, newchild, oldsize);
195                 kmem_free(pvd->vdev_child, oldsize);
196         }
197
198         pvd->vdev_child = newchild;
199         pvd->vdev_child[id] = cvd;
200
201         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203
204         /*
205          * Walk up all ancestors to update guid sum.
206          */
207         for (; pvd != NULL; pvd = pvd->vdev_parent)
208                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209
210         if (cvd->vdev_ops->vdev_op_leaf)
211                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212 }
213
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217         int c;
218         uint_t id = cvd->vdev_id;
219
220         ASSERT(cvd->vdev_parent == pvd);
221
222         if (pvd == NULL)
223                 return;
224
225         ASSERT(id < pvd->vdev_children);
226         ASSERT(pvd->vdev_child[id] == cvd);
227
228         pvd->vdev_child[id] = NULL;
229         cvd->vdev_parent = NULL;
230
231         for (c = 0; c < pvd->vdev_children; c++)
232                 if (pvd->vdev_child[c])
233                         break;
234
235         if (c == pvd->vdev_children) {
236                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237                 pvd->vdev_child = NULL;
238                 pvd->vdev_children = 0;
239         }
240
241         /*
242          * Walk up all ancestors to update guid sum.
243          */
244         for (; pvd != NULL; pvd = pvd->vdev_parent)
245                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246
247         if (cvd->vdev_ops->vdev_op_leaf)
248                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249 }
250
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257         vdev_t **newchild, *cvd;
258         int oldc = pvd->vdev_children;
259         int newc;
260
261         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262
263         for (int c = newc = 0; c < oldc; c++)
264                 if (pvd->vdev_child[c])
265                         newc++;
266
267         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268
269         for (int c = newc = 0; c < oldc; c++) {
270                 if ((cvd = pvd->vdev_child[c]) != NULL) {
271                         newchild[newc] = cvd;
272                         cvd->vdev_id = newc++;
273                 }
274         }
275
276         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277         pvd->vdev_child = newchild;
278         pvd->vdev_children = newc;
279 }
280
281 /*
282  * Allocate and minimally initialize a vdev_t.
283  */
284 static vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287         vdev_t *vd;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         while (guid == 0 || spa_guid_exists(guid, 0))
303                                 guid = spa_get_random(-1ULL);
304                 } else {
305                         /*
306                          * Any other vdev's guid must be unique within the pool.
307                          */
308                         while (guid == 0 ||
309                             spa_guid_exists(spa_guid(spa), guid))
310                                 guid = spa_get_random(-1ULL);
311                 }
312                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313         }
314
315         vd->vdev_spa = spa;
316         vd->vdev_id = id;
317         vd->vdev_guid = guid;
318         vd->vdev_guid_sum = guid;
319         vd->vdev_ops = ops;
320         vd->vdev_state = VDEV_STATE_CLOSED;
321
322         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325         for (int t = 0; t < DTL_TYPES; t++) {
326                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327                     &vd->vdev_dtl_lock);
328         }
329         txg_list_create(&vd->vdev_ms_list,
330             offsetof(struct metaslab, ms_txg_node));
331         txg_list_create(&vd->vdev_dtl_list,
332             offsetof(struct vdev, vdev_dtl_node));
333         vd->vdev_stat.vs_timestamp = gethrtime();
334         vdev_queue_init(vd);
335         vdev_cache_init(vd);
336
337         return (vd);
338 }
339
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349         vdev_ops_t *ops;
350         char *type;
351         uint64_t guid = 0, islog, nparity;
352         vdev_t *vd;
353
354         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355
356         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357                 return (EINVAL);
358
359         if ((ops = vdev_getops(type)) == NULL)
360                 return (EINVAL);
361
362         /*
363          * If this is a load, get the vdev guid from the nvlist.
364          * Otherwise, vdev_alloc_common() will generate one for us.
365          */
366         if (alloctype == VDEV_ALLOC_LOAD) {
367                 uint64_t label_id;
368
369                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370                     label_id != id)
371                         return (EINVAL);
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         } else if (alloctype == VDEV_ALLOC_SPARE) {
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (EINVAL);
378         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (EINVAL);
381         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (EINVAL);
384         }
385
386         /*
387          * The first allocated vdev must be of type 'root'.
388          */
389         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390                 return (EINVAL);
391
392         /*
393          * Determine whether we're a log vdev.
394          */
395         islog = 0;
396         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398                 return (ENOTSUP);
399
400         /*
401          * Set the nparity property for RAID-Z vdevs.
402          */
403         nparity = -1ULL;
404         if (ops == &vdev_raidz_ops) {
405                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406                     &nparity) == 0) {
407                         /*
408                          * Currently, we can only support 2 parity devices.
409                          */
410                         if (nparity == 0 || nparity > 2)
411                                 return (EINVAL);
412                         /*
413                          * Older versions can only support 1 parity device.
414                          */
415                         if (nparity == 2 &&
416                             spa_version(spa) < SPA_VERSION_RAID6)
417                                 return (ENOTSUP);
418                 } else {
419                         /*
420                          * We require the parity to be specified for SPAs that
421                          * support multiple parity levels.
422                          */
423                         if (spa_version(spa) >= SPA_VERSION_RAID6)
424                                 return (EINVAL);
425                         /*
426                          * Otherwise, we default to 1 parity device for RAID-Z.
427                          */
428                         nparity = 1;
429                 }
430         } else {
431                 nparity = 0;
432         }
433         ASSERT(nparity != -1ULL);
434
435         vd = vdev_alloc_common(spa, id, guid, ops);
436
437         vd->vdev_islog = islog;
438         vd->vdev_nparity = nparity;
439
440         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441                 vd->vdev_path = spa_strdup(vd->vdev_path);
442         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445             &vd->vdev_physpath) == 0)
446                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
449
450         /*
451          * Set the whole_disk property.  If it's not specified, leave the value
452          * as -1.
453          */
454         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455             &vd->vdev_wholedisk) != 0)
456                 vd->vdev_wholedisk = -1ULL;
457
458         /*
459          * Look for the 'not present' flag.  This will only be set if the device
460          * was not present at the time of import.
461          */
462         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463             &vd->vdev_not_present);
464
465         /*
466          * Get the alignment requirement.
467          */
468         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469
470         /*
471          * If we're a top-level vdev, try to load the allocation parameters.
472          */
473         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
474                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
475                     &vd->vdev_ms_array);
476                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
477                     &vd->vdev_ms_shift);
478                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
479                     &vd->vdev_asize);
480         }
481
482         /*
483          * If we're a leaf vdev, try to load the DTL object and other state.
484          */
485         if (vd->vdev_ops->vdev_op_leaf &&
486             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
487             alloctype == VDEV_ALLOC_ROOTPOOL)) {
488                 if (alloctype == VDEV_ALLOC_LOAD) {
489                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
490                             &vd->vdev_dtl_smo.smo_object);
491                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
492                             &vd->vdev_unspare);
493                 }
494
495                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
496                         uint64_t spare = 0;
497
498                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
499                             &spare) == 0 && spare)
500                                 spa_spare_add(vd);
501                 }
502
503                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
504                     &vd->vdev_offline);
505
506                 /*
507                  * When importing a pool, we want to ignore the persistent fault
508                  * state, as the diagnosis made on another system may not be
509                  * valid in the current context.
510                  */
511                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
512                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
513                             &vd->vdev_faulted);
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
515                             &vd->vdev_degraded);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
517                             &vd->vdev_removed);
518                 }
519         }
520
521         /*
522          * Add ourselves to the parent's list of children.
523          */
524         vdev_add_child(parent, vd);
525
526         *vdp = vd;
527
528         return (0);
529 }
530
531 void
532 vdev_free(vdev_t *vd)
533 {
534         spa_t *spa = vd->vdev_spa;
535
536         /*
537          * vdev_free() implies closing the vdev first.  This is simpler than
538          * trying to ensure complicated semantics for all callers.
539          */
540         vdev_close(vd);
541
542         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
543
544         /*
545          * Free all children.
546          */
547         for (int c = 0; c < vd->vdev_children; c++)
548                 vdev_free(vd->vdev_child[c]);
549
550         ASSERT(vd->vdev_child == NULL);
551         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
552
553         /*
554          * Discard allocation state.
555          */
556         if (vd == vd->vdev_top)
557                 vdev_metaslab_fini(vd);
558
559         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
560         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
561         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
562
563         /*
564          * Remove this vdev from its parent's child list.
565          */
566         vdev_remove_child(vd->vdev_parent, vd);
567
568         ASSERT(vd->vdev_parent == NULL);
569
570         /*
571          * Clean up vdev structure.
572          */
573         vdev_queue_fini(vd);
574         vdev_cache_fini(vd);
575
576         if (vd->vdev_path)
577                 spa_strfree(vd->vdev_path);
578         if (vd->vdev_devid)
579                 spa_strfree(vd->vdev_devid);
580         if (vd->vdev_physpath)
581                 spa_strfree(vd->vdev_physpath);
582         if (vd->vdev_fru)
583                 spa_strfree(vd->vdev_fru);
584
585         if (vd->vdev_isspare)
586                 spa_spare_remove(vd);
587         if (vd->vdev_isl2cache)
588                 spa_l2cache_remove(vd);
589
590         txg_list_destroy(&vd->vdev_ms_list);
591         txg_list_destroy(&vd->vdev_dtl_list);
592
593         mutex_enter(&vd->vdev_dtl_lock);
594         for (int t = 0; t < DTL_TYPES; t++) {
595                 space_map_unload(&vd->vdev_dtl[t]);
596                 space_map_destroy(&vd->vdev_dtl[t]);
597         }
598         mutex_exit(&vd->vdev_dtl_lock);
599
600         mutex_destroy(&vd->vdev_dtl_lock);
601         mutex_destroy(&vd->vdev_stat_lock);
602         mutex_destroy(&vd->vdev_probe_lock);
603
604         if (vd == spa->spa_root_vdev)
605                 spa->spa_root_vdev = NULL;
606
607         kmem_free(vd, sizeof (vdev_t));
608 }
609
610 /*
611  * Transfer top-level vdev state from svd to tvd.
612  */
613 static void
614 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
615 {
616         spa_t *spa = svd->vdev_spa;
617         metaslab_t *msp;
618         vdev_t *vd;
619         int t;
620
621         ASSERT(tvd == tvd->vdev_top);
622
623         tvd->vdev_ms_array = svd->vdev_ms_array;
624         tvd->vdev_ms_shift = svd->vdev_ms_shift;
625         tvd->vdev_ms_count = svd->vdev_ms_count;
626
627         svd->vdev_ms_array = 0;
628         svd->vdev_ms_shift = 0;
629         svd->vdev_ms_count = 0;
630
631         tvd->vdev_mg = svd->vdev_mg;
632         tvd->vdev_ms = svd->vdev_ms;
633
634         svd->vdev_mg = NULL;
635         svd->vdev_ms = NULL;
636
637         if (tvd->vdev_mg != NULL)
638                 tvd->vdev_mg->mg_vd = tvd;
639
640         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
641         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
642         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
643
644         svd->vdev_stat.vs_alloc = 0;
645         svd->vdev_stat.vs_space = 0;
646         svd->vdev_stat.vs_dspace = 0;
647
648         for (t = 0; t < TXG_SIZE; t++) {
649                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
650                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
651                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
652                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
653                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
654                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
655         }
656
657         if (list_link_active(&svd->vdev_config_dirty_node)) {
658                 vdev_config_clean(svd);
659                 vdev_config_dirty(tvd);
660         }
661
662         if (list_link_active(&svd->vdev_state_dirty_node)) {
663                 vdev_state_clean(svd);
664                 vdev_state_dirty(tvd);
665         }
666
667         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
668         svd->vdev_deflate_ratio = 0;
669
670         tvd->vdev_islog = svd->vdev_islog;
671         svd->vdev_islog = 0;
672 }
673
674 static void
675 vdev_top_update(vdev_t *tvd, vdev_t *vd)
676 {
677         if (vd == NULL)
678                 return;
679
680         vd->vdev_top = tvd;
681
682         for (int c = 0; c < vd->vdev_children; c++)
683                 vdev_top_update(tvd, vd->vdev_child[c]);
684 }
685
686 /*
687  * Add a mirror/replacing vdev above an existing vdev.
688  */
689 vdev_t *
690 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
691 {
692         spa_t *spa = cvd->vdev_spa;
693         vdev_t *pvd = cvd->vdev_parent;
694         vdev_t *mvd;
695
696         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
697
698         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
699
700         mvd->vdev_asize = cvd->vdev_asize;
701         mvd->vdev_min_asize = cvd->vdev_min_asize;
702         mvd->vdev_ashift = cvd->vdev_ashift;
703         mvd->vdev_state = cvd->vdev_state;
704
705         vdev_remove_child(pvd, cvd);
706         vdev_add_child(pvd, mvd);
707         cvd->vdev_id = mvd->vdev_children;
708         vdev_add_child(mvd, cvd);
709         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
710
711         if (mvd == mvd->vdev_top)
712                 vdev_top_transfer(cvd, mvd);
713
714         return (mvd);
715 }
716
717 /*
718  * Remove a 1-way mirror/replacing vdev from the tree.
719  */
720 void
721 vdev_remove_parent(vdev_t *cvd)
722 {
723         vdev_t *mvd = cvd->vdev_parent;
724         vdev_t *pvd = mvd->vdev_parent;
725
726         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
727
728         ASSERT(mvd->vdev_children == 1);
729         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
730             mvd->vdev_ops == &vdev_replacing_ops ||
731             mvd->vdev_ops == &vdev_spare_ops);
732         cvd->vdev_ashift = mvd->vdev_ashift;
733
734         vdev_remove_child(mvd, cvd);
735         vdev_remove_child(pvd, mvd);
736
737         /*
738          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
739          * Otherwise, we could have detached an offline device, and when we
740          * go to import the pool we'll think we have two top-level vdevs,
741          * instead of a different version of the same top-level vdev.
742          */
743         if (mvd->vdev_top == mvd) {
744                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
745                 cvd->vdev_guid += guid_delta;
746                 cvd->vdev_guid_sum += guid_delta;
747         }
748         cvd->vdev_id = mvd->vdev_id;
749         vdev_add_child(pvd, cvd);
750         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
751
752         if (cvd == cvd->vdev_top)
753                 vdev_top_transfer(mvd, cvd);
754
755         ASSERT(mvd->vdev_children == 0);
756         vdev_free(mvd);
757 }
758
759 int
760 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
761 {
762         spa_t *spa = vd->vdev_spa;
763         objset_t *mos = spa->spa_meta_objset;
764         metaslab_class_t *mc;
765         uint64_t m;
766         uint64_t oldc = vd->vdev_ms_count;
767         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
768         metaslab_t **mspp;
769         int error;
770
771         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
772                 return (0);
773
774         /*
775          * Compute the raidz-deflation ratio.  Note, we hard-code
776          * in 128k (1 << 17) because it is the current "typical" blocksize.
777          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
778          * or we will inconsistently account for existing bp's.
779          */
780         vd->vdev_deflate_ratio = (1 << 17) /
781             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
782
783         ASSERT(oldc <= newc);
784
785         if (vd->vdev_islog)
786                 mc = spa->spa_log_class;
787         else
788                 mc = spa->spa_normal_class;
789
790         if (vd->vdev_mg == NULL)
791                 vd->vdev_mg = metaslab_group_create(mc, vd);
792
793         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
794
795         if (oldc != 0) {
796                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
797                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
798         }
799
800         vd->vdev_ms = mspp;
801         vd->vdev_ms_count = newc;
802
803         for (m = oldc; m < newc; m++) {
804                 space_map_obj_t smo = { 0, 0, 0 };
805                 if (txg == 0) {
806                         uint64_t object = 0;
807                         error = dmu_read(mos, vd->vdev_ms_array,
808                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
809                             DMU_READ_PREFETCH);
810                         if (error)
811                                 return (error);
812                         if (object != 0) {
813                                 dmu_buf_t *db;
814                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
815                                 if (error)
816                                         return (error);
817                                 ASSERT3U(db->db_size, >=, sizeof (smo));
818                                 bcopy(db->db_data, &smo, sizeof (smo));
819                                 ASSERT3U(smo.smo_object, ==, object);
820                                 dmu_buf_rele(db, FTAG);
821                         }
822                 }
823                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
824                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
825         }
826
827         return (0);
828 }
829
830 void
831 vdev_metaslab_fini(vdev_t *vd)
832 {
833         uint64_t m;
834         uint64_t count = vd->vdev_ms_count;
835
836         if (vd->vdev_ms != NULL) {
837                 for (m = 0; m < count; m++)
838                         if (vd->vdev_ms[m] != NULL)
839                                 metaslab_fini(vd->vdev_ms[m]);
840                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
841                 vd->vdev_ms = NULL;
842         }
843 }
844
845 typedef struct vdev_probe_stats {
846         boolean_t       vps_readable;
847         boolean_t       vps_writeable;
848         int             vps_flags;
849 } vdev_probe_stats_t;
850
851 static void
852 vdev_probe_done(zio_t *zio)
853 {
854         spa_t *spa = zio->io_spa;
855         vdev_t *vd = zio->io_vd;
856         vdev_probe_stats_t *vps = zio->io_private;
857
858         ASSERT(vd->vdev_probe_zio != NULL);
859
860         if (zio->io_type == ZIO_TYPE_READ) {
861                 if (zio->io_error == 0)
862                         vps->vps_readable = 1;
863                 if (zio->io_error == 0 && spa_writeable(spa)) {
864                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
865                             zio->io_offset, zio->io_size, zio->io_data,
866                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
867                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
868                 } else {
869                         zio_buf_free(zio->io_data, zio->io_size);
870                 }
871         } else if (zio->io_type == ZIO_TYPE_WRITE) {
872                 if (zio->io_error == 0)
873                         vps->vps_writeable = 1;
874                 zio_buf_free(zio->io_data, zio->io_size);
875         } else if (zio->io_type == ZIO_TYPE_NULL) {
876                 zio_t *pio;
877
878                 vd->vdev_cant_read |= !vps->vps_readable;
879                 vd->vdev_cant_write |= !vps->vps_writeable;
880
881                 if (vdev_readable(vd) &&
882                     (vdev_writeable(vd) || !spa_writeable(spa))) {
883                         zio->io_error = 0;
884                 } else {
885                         ASSERT(zio->io_error != 0);
886                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
887                             spa, vd, NULL, 0, 0);
888                         zio->io_error = ENXIO;
889                 }
890
891                 mutex_enter(&vd->vdev_probe_lock);
892                 ASSERT(vd->vdev_probe_zio == zio);
893                 vd->vdev_probe_zio = NULL;
894                 mutex_exit(&vd->vdev_probe_lock);
895
896                 while ((pio = zio_walk_parents(zio)) != NULL)
897                         if (!vdev_accessible(vd, pio))
898                                 pio->io_error = ENXIO;
899
900                 kmem_free(vps, sizeof (*vps));
901         }
902 }
903
904 /*
905  * Determine whether this device is accessible by reading and writing
906  * to several known locations: the pad regions of each vdev label
907  * but the first (which we leave alone in case it contains a VTOC).
908  */
909 zio_t *
910 vdev_probe(vdev_t *vd, zio_t *zio)
911 {
912         spa_t *spa = vd->vdev_spa;
913         vdev_probe_stats_t *vps = NULL;
914         zio_t *pio;
915
916         ASSERT(vd->vdev_ops->vdev_op_leaf);
917
918         /*
919          * Don't probe the probe.
920          */
921         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
922                 return (NULL);
923
924         /*
925          * To prevent 'probe storms' when a device fails, we create
926          * just one probe i/o at a time.  All zios that want to probe
927          * this vdev will become parents of the probe io.
928          */
929         mutex_enter(&vd->vdev_probe_lock);
930
931         if ((pio = vd->vdev_probe_zio) == NULL) {
932                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
933
934                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
935                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
936                     ZIO_FLAG_TRYHARD;
937
938                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
939                         /*
940                          * vdev_cant_read and vdev_cant_write can only
941                          * transition from TRUE to FALSE when we have the
942                          * SCL_ZIO lock as writer; otherwise they can only
943                          * transition from FALSE to TRUE.  This ensures that
944                          * any zio looking at these values can assume that
945                          * failures persist for the life of the I/O.  That's
946                          * important because when a device has intermittent
947                          * connectivity problems, we want to ensure that
948                          * they're ascribed to the device (ENXIO) and not
949                          * the zio (EIO).
950                          *
951                          * Since we hold SCL_ZIO as writer here, clear both
952                          * values so the probe can reevaluate from first
953                          * principles.
954                          */
955                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
956                         vd->vdev_cant_read = B_FALSE;
957                         vd->vdev_cant_write = B_FALSE;
958                 }
959
960                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
961                     vdev_probe_done, vps,
962                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
963
964                 if (zio != NULL) {
965                         vd->vdev_probe_wanted = B_TRUE;
966                         spa_async_request(spa, SPA_ASYNC_PROBE);
967                 }
968         }
969
970         if (zio != NULL)
971                 zio_add_child(zio, pio);
972
973         mutex_exit(&vd->vdev_probe_lock);
974
975         if (vps == NULL) {
976                 ASSERT(zio != NULL);
977                 return (NULL);
978         }
979
980         for (int l = 1; l < VDEV_LABELS; l++) {
981                 zio_nowait(zio_read_phys(pio, vd,
982                     vdev_label_offset(vd->vdev_psize, l,
983                     offsetof(vdev_label_t, vl_pad2)),
984                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
985                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
986                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
987         }
988
989         if (zio == NULL)
990                 return (pio);
991
992         zio_nowait(pio);
993         return (NULL);
994 }
995
996 /*
997  * Prepare a virtual device for access.
998  */
999 int
1000 vdev_open(vdev_t *vd)
1001 {
1002         spa_t *spa = vd->vdev_spa;
1003         int error;
1004         uint64_t osize = 0;
1005         uint64_t asize, psize;
1006         uint64_t ashift = 0;
1007
1008         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1009
1010         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1011             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1012             vd->vdev_state == VDEV_STATE_OFFLINE);
1013
1014         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1015         vd->vdev_cant_read = B_FALSE;
1016         vd->vdev_cant_write = B_FALSE;
1017         vd->vdev_min_asize = vdev_get_min_asize(vd);
1018
1019         if (!vd->vdev_removed && vd->vdev_faulted) {
1020                 ASSERT(vd->vdev_children == 0);
1021                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1022                     VDEV_AUX_ERR_EXCEEDED);
1023                 return (ENXIO);
1024         } else if (vd->vdev_offline) {
1025                 ASSERT(vd->vdev_children == 0);
1026                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1027                 return (ENXIO);
1028         }
1029
1030         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1031
1032         if (zio_injection_enabled && error == 0)
1033                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1034
1035         if (error) {
1036                 if (vd->vdev_removed &&
1037                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1038                         vd->vdev_removed = B_FALSE;
1039
1040                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1041                     vd->vdev_stat.vs_aux);
1042                 return (error);
1043         }
1044
1045         vd->vdev_removed = B_FALSE;
1046
1047         if (vd->vdev_degraded) {
1048                 ASSERT(vd->vdev_children == 0);
1049                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1050                     VDEV_AUX_ERR_EXCEEDED);
1051         } else {
1052                 vd->vdev_state = VDEV_STATE_HEALTHY;
1053         }
1054
1055         for (int c = 0; c < vd->vdev_children; c++) {
1056                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1057                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1058                             VDEV_AUX_NONE);
1059                         break;
1060                 }
1061         }
1062
1063         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1064
1065         if (vd->vdev_children == 0) {
1066                 if (osize < SPA_MINDEVSIZE) {
1067                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1068                             VDEV_AUX_TOO_SMALL);
1069                         return (EOVERFLOW);
1070                 }
1071                 psize = osize;
1072                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1073         } else {
1074                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1075                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1076                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1077                             VDEV_AUX_TOO_SMALL);
1078                         return (EOVERFLOW);
1079                 }
1080                 psize = 0;
1081                 asize = osize;
1082         }
1083
1084         vd->vdev_psize = psize;
1085
1086         /*
1087          * Make sure the allocatable size hasn't shrunk.
1088          */
1089         if (asize < vd->vdev_min_asize) {
1090                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091                     VDEV_AUX_BAD_LABEL);
1092                 return (EINVAL);
1093         }
1094
1095         if (vd->vdev_asize == 0) {
1096                 /*
1097                  * This is the first-ever open, so use the computed values.
1098                  * For testing purposes, a higher ashift can be requested.
1099                  */
1100                 vd->vdev_asize = asize;
1101                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1102         } else {
1103                 /*
1104                  * Make sure the alignment requirement hasn't increased.
1105                  */
1106                 if (ashift > vd->vdev_top->vdev_ashift) {
1107                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1108                             VDEV_AUX_BAD_LABEL);
1109                         return (EINVAL);
1110                 }
1111         }
1112
1113         /*
1114          * If all children are healthy and the asize has increased,
1115          * then we've experienced dynamic LUN growth.  If automatic
1116          * expansion is enabled then use the additional space.
1117          */
1118         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1119             (vd->vdev_expanding || spa->spa_autoexpand))
1120                 vd->vdev_asize = asize;
1121
1122         vdev_set_min_asize(vd);
1123
1124         /*
1125          * Ensure we can issue some IO before declaring the
1126          * vdev open for business.
1127          */
1128         if (vd->vdev_ops->vdev_op_leaf &&
1129             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1130                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1131                     VDEV_AUX_IO_FAILURE);
1132                 return (error);
1133         }
1134
1135         /*
1136          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1137          * resilver.  But don't do this if we are doing a reopen for a scrub,
1138          * since this would just restart the scrub we are already doing.
1139          */
1140         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1141             vdev_resilver_needed(vd, NULL, NULL))
1142                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1143
1144         return (0);
1145 }
1146
1147 /*
1148  * Called once the vdevs are all opened, this routine validates the label
1149  * contents.  This needs to be done before vdev_load() so that we don't
1150  * inadvertently do repair I/Os to the wrong device.
1151  *
1152  * This function will only return failure if one of the vdevs indicates that it
1153  * has since been destroyed or exported.  This is only possible if
1154  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1155  * will be updated but the function will return 0.
1156  */
1157 int
1158 vdev_validate(vdev_t *vd)
1159 {
1160         spa_t *spa = vd->vdev_spa;
1161         nvlist_t *label;
1162         uint64_t guid, top_guid;
1163         uint64_t state;
1164
1165         for (int c = 0; c < vd->vdev_children; c++)
1166                 if (vdev_validate(vd->vdev_child[c]) != 0)
1167                         return (EBADF);
1168
1169         /*
1170          * If the device has already failed, or was marked offline, don't do
1171          * any further validation.  Otherwise, label I/O will fail and we will
1172          * overwrite the previous state.
1173          */
1174         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1175
1176                 if ((label = vdev_label_read_config(vd)) == NULL) {
1177                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178                             VDEV_AUX_BAD_LABEL);
1179                         return (0);
1180                 }
1181
1182                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1183                     &guid) != 0 || guid != spa_guid(spa)) {
1184                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1185                             VDEV_AUX_CORRUPT_DATA);
1186                         nvlist_free(label);
1187                         return (0);
1188                 }
1189
1190                 /*
1191                  * If this vdev just became a top-level vdev because its
1192                  * sibling was detached, it will have adopted the parent's
1193                  * vdev guid -- but the label may or may not be on disk yet.
1194                  * Fortunately, either version of the label will have the
1195                  * same top guid, so if we're a top-level vdev, we can
1196                  * safely compare to that instead.
1197                  */
1198                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1199                     &guid) != 0 ||
1200                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1201                     &top_guid) != 0 ||
1202                     (vd->vdev_guid != guid &&
1203                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1204                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1205                             VDEV_AUX_CORRUPT_DATA);
1206                         nvlist_free(label);
1207                         return (0);
1208                 }
1209
1210                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1211                     &state) != 0) {
1212                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1213                             VDEV_AUX_CORRUPT_DATA);
1214                         nvlist_free(label);
1215                         return (0);
1216                 }
1217
1218                 nvlist_free(label);
1219
1220                 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1221                     state != POOL_STATE_ACTIVE)
1222                         return (EBADF);
1223
1224                 /*
1225                  * If we were able to open and validate a vdev that was
1226                  * previously marked permanently unavailable, clear that state
1227                  * now.
1228                  */
1229                 if (vd->vdev_not_present)
1230                         vd->vdev_not_present = 0;
1231         }
1232
1233         return (0);
1234 }
1235
1236 /*
1237  * Close a virtual device.
1238  */
1239 void
1240 vdev_close(vdev_t *vd)
1241 {
1242         spa_t *spa = vd->vdev_spa;
1243
1244         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1245
1246         vd->vdev_ops->vdev_op_close(vd);
1247
1248         vdev_cache_purge(vd);
1249
1250         /*
1251          * We record the previous state before we close it, so that if we are
1252          * doing a reopen(), we don't generate FMA ereports if we notice that
1253          * it's still faulted.
1254          */
1255         vd->vdev_prevstate = vd->vdev_state;
1256
1257         if (vd->vdev_offline)
1258                 vd->vdev_state = VDEV_STATE_OFFLINE;
1259         else
1260                 vd->vdev_state = VDEV_STATE_CLOSED;
1261         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1262 }
1263
1264 void
1265 vdev_reopen(vdev_t *vd)
1266 {
1267         spa_t *spa = vd->vdev_spa;
1268
1269         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1270
1271         vdev_close(vd);
1272         (void) vdev_open(vd);
1273
1274         /*
1275          * Call vdev_validate() here to make sure we have the same device.
1276          * Otherwise, a device with an invalid label could be successfully
1277          * opened in response to vdev_reopen().
1278          */
1279         if (vd->vdev_aux) {
1280                 (void) vdev_validate_aux(vd);
1281                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1282                     vd->vdev_aux == &spa->spa_l2cache &&
1283                     !l2arc_vdev_present(vd))
1284                         l2arc_add_vdev(spa, vd);
1285         } else {
1286                 (void) vdev_validate(vd);
1287         }
1288
1289         /*
1290          * Reassess parent vdev's health.
1291          */
1292         vdev_propagate_state(vd);
1293 }
1294
1295 int
1296 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1297 {
1298         int error;
1299
1300         /*
1301          * Normally, partial opens (e.g. of a mirror) are allowed.
1302          * For a create, however, we want to fail the request if
1303          * there are any components we can't open.
1304          */
1305         error = vdev_open(vd);
1306
1307         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1308                 vdev_close(vd);
1309                 return (error ? error : ENXIO);
1310         }
1311
1312         /*
1313          * Recursively initialize all labels.
1314          */
1315         if ((error = vdev_label_init(vd, txg, isreplacing ?
1316             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1317                 vdev_close(vd);
1318                 return (error);
1319         }
1320
1321         return (0);
1322 }
1323
1324 void
1325 vdev_metaslab_set_size(vdev_t *vd)
1326 {
1327         /*
1328          * Aim for roughly 200 metaslabs per vdev.
1329          */
1330         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1331         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1332 }
1333
1334 void
1335 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1336 {
1337         ASSERT(vd == vd->vdev_top);
1338         ASSERT(ISP2(flags));
1339
1340         if (flags & VDD_METASLAB)
1341                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1342
1343         if (flags & VDD_DTL)
1344                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1345
1346         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1347 }
1348
1349 /*
1350  * DTLs.
1351  *
1352  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1353  * the vdev has less than perfect replication.  There are three kinds of DTL:
1354  *
1355  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1356  *
1357  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1358  *
1359  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1360  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1361  *      txgs that was scrubbed.
1362  *
1363  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1364  *      persistent errors or just some device being offline.
1365  *      Unlike the other three, the DTL_OUTAGE map is not generally
1366  *      maintained; it's only computed when needed, typically to
1367  *      determine whether a device can be detached.
1368  *
1369  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1370  * either has the data or it doesn't.
1371  *
1372  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1373  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1374  * if any child is less than fully replicated, then so is its parent.
1375  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1376  * comprising only those txgs which appear in 'maxfaults' or more children;
1377  * those are the txgs we don't have enough replication to read.  For example,
1378  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1379  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1380  * two child DTL_MISSING maps.
1381  *
1382  * It should be clear from the above that to compute the DTLs and outage maps
1383  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1384  * Therefore, that is all we keep on disk.  When loading the pool, or after
1385  * a configuration change, we generate all other DTLs from first principles.
1386  */
1387 void
1388 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1389 {
1390         space_map_t *sm = &vd->vdev_dtl[t];
1391
1392         ASSERT(t < DTL_TYPES);
1393         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1394
1395         mutex_enter(sm->sm_lock);
1396         if (!space_map_contains(sm, txg, size))
1397                 space_map_add(sm, txg, size);
1398         mutex_exit(sm->sm_lock);
1399 }
1400
1401 boolean_t
1402 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1403 {
1404         space_map_t *sm = &vd->vdev_dtl[t];
1405         boolean_t dirty = B_FALSE;
1406
1407         ASSERT(t < DTL_TYPES);
1408         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1409
1410         mutex_enter(sm->sm_lock);
1411         if (sm->sm_space != 0)
1412                 dirty = space_map_contains(sm, txg, size);
1413         mutex_exit(sm->sm_lock);
1414
1415         return (dirty);
1416 }
1417
1418 boolean_t
1419 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1420 {
1421         space_map_t *sm = &vd->vdev_dtl[t];
1422         boolean_t empty;
1423
1424         mutex_enter(sm->sm_lock);
1425         empty = (sm->sm_space == 0);
1426         mutex_exit(sm->sm_lock);
1427
1428         return (empty);
1429 }
1430
1431 /*
1432  * Reassess DTLs after a config change or scrub completion.
1433  */
1434 void
1435 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1436 {
1437         spa_t *spa = vd->vdev_spa;
1438         avl_tree_t reftree;
1439         int minref;
1440
1441         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1442
1443         for (int c = 0; c < vd->vdev_children; c++)
1444                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1445                     scrub_txg, scrub_done);
1446
1447         if (vd == spa->spa_root_vdev)
1448                 return;
1449
1450         if (vd->vdev_ops->vdev_op_leaf) {
1451                 mutex_enter(&vd->vdev_dtl_lock);
1452                 if (scrub_txg != 0 &&
1453                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1454                         /* XXX should check scrub_done? */
1455                         /*
1456                          * We completed a scrub up to scrub_txg.  If we
1457                          * did it without rebooting, then the scrub dtl
1458                          * will be valid, so excise the old region and
1459                          * fold in the scrub dtl.  Otherwise, leave the
1460                          * dtl as-is if there was an error.
1461                          *
1462                          * There's little trick here: to excise the beginning
1463                          * of the DTL_MISSING map, we put it into a reference
1464                          * tree and then add a segment with refcnt -1 that
1465                          * covers the range [0, scrub_txg).  This means
1466                          * that each txg in that range has refcnt -1 or 0.
1467                          * We then add DTL_SCRUB with a refcnt of 2, so that
1468                          * entries in the range [0, scrub_txg) will have a
1469                          * positive refcnt -- either 1 or 2.  We then convert
1470                          * the reference tree into the new DTL_MISSING map.
1471                          */
1472                         space_map_ref_create(&reftree);
1473                         space_map_ref_add_map(&reftree,
1474                             &vd->vdev_dtl[DTL_MISSING], 1);
1475                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1476                         space_map_ref_add_map(&reftree,
1477                             &vd->vdev_dtl[DTL_SCRUB], 2);
1478                         space_map_ref_generate_map(&reftree,
1479                             &vd->vdev_dtl[DTL_MISSING], 1);
1480                         space_map_ref_destroy(&reftree);
1481                 }
1482                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1483                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1484                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1485                 if (scrub_done)
1486                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1487                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1488                 if (!vdev_readable(vd))
1489                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1490                 else
1491                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1492                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1493                 mutex_exit(&vd->vdev_dtl_lock);
1494
1495                 if (txg != 0)
1496                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1497                 return;
1498         }
1499
1500         mutex_enter(&vd->vdev_dtl_lock);
1501         for (int t = 0; t < DTL_TYPES; t++) {
1502                 if (t == DTL_SCRUB)
1503                         continue;                       /* leaf vdevs only */
1504                 if (t == DTL_PARTIAL)
1505                         minref = 1;                     /* i.e. non-zero */
1506                 else if (vd->vdev_nparity != 0)
1507                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1508                 else
1509                         minref = vd->vdev_children;     /* any kind of mirror */
1510                 space_map_ref_create(&reftree);
1511                 for (int c = 0; c < vd->vdev_children; c++) {
1512                         vdev_t *cvd = vd->vdev_child[c];
1513                         mutex_enter(&cvd->vdev_dtl_lock);
1514                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1515                         mutex_exit(&cvd->vdev_dtl_lock);
1516                 }
1517                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1518                 space_map_ref_destroy(&reftree);
1519         }
1520         mutex_exit(&vd->vdev_dtl_lock);
1521 }
1522
1523 static int
1524 vdev_dtl_load(vdev_t *vd)
1525 {
1526         spa_t *spa = vd->vdev_spa;
1527         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1528         objset_t *mos = spa->spa_meta_objset;
1529         dmu_buf_t *db;
1530         int error;
1531
1532         ASSERT(vd->vdev_children == 0);
1533
1534         if (smo->smo_object == 0)
1535                 return (0);
1536
1537         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1538                 return (error);
1539
1540         ASSERT3U(db->db_size, >=, sizeof (*smo));
1541         bcopy(db->db_data, smo, sizeof (*smo));
1542         dmu_buf_rele(db, FTAG);
1543
1544         mutex_enter(&vd->vdev_dtl_lock);
1545         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1546             NULL, SM_ALLOC, smo, mos);
1547         mutex_exit(&vd->vdev_dtl_lock);
1548
1549         return (error);
1550 }
1551
1552 void
1553 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1554 {
1555         spa_t *spa = vd->vdev_spa;
1556         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1557         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1558         objset_t *mos = spa->spa_meta_objset;
1559         space_map_t smsync;
1560         kmutex_t smlock;
1561         dmu_buf_t *db;
1562         dmu_tx_t *tx;
1563
1564         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1565
1566         if (vd->vdev_detached) {
1567                 if (smo->smo_object != 0) {
1568                         int err = dmu_object_free(mos, smo->smo_object, tx);
1569                         ASSERT3U(err, ==, 0);
1570                         smo->smo_object = 0;
1571                 }
1572                 dmu_tx_commit(tx);
1573                 return;
1574         }
1575
1576         if (smo->smo_object == 0) {
1577                 ASSERT(smo->smo_objsize == 0);
1578                 ASSERT(smo->smo_alloc == 0);
1579                 smo->smo_object = dmu_object_alloc(mos,
1580                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1581                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1582                 ASSERT(smo->smo_object != 0);
1583                 vdev_config_dirty(vd->vdev_top);
1584         }
1585
1586         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1587
1588         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1589             &smlock);
1590
1591         mutex_enter(&smlock);
1592
1593         mutex_enter(&vd->vdev_dtl_lock);
1594         space_map_walk(sm, space_map_add, &smsync);
1595         mutex_exit(&vd->vdev_dtl_lock);
1596
1597         space_map_truncate(smo, mos, tx);
1598         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1599
1600         space_map_destroy(&smsync);
1601
1602         mutex_exit(&smlock);
1603         mutex_destroy(&smlock);
1604
1605         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1606         dmu_buf_will_dirty(db, tx);
1607         ASSERT3U(db->db_size, >=, sizeof (*smo));
1608         bcopy(smo, db->db_data, sizeof (*smo));
1609         dmu_buf_rele(db, FTAG);
1610
1611         dmu_tx_commit(tx);
1612 }
1613
1614 /*
1615  * Determine whether the specified vdev can be offlined/detached/removed
1616  * without losing data.
1617  */
1618 boolean_t
1619 vdev_dtl_required(vdev_t *vd)
1620 {
1621         spa_t *spa = vd->vdev_spa;
1622         vdev_t *tvd = vd->vdev_top;
1623         uint8_t cant_read = vd->vdev_cant_read;
1624         boolean_t required;
1625
1626         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1627
1628         if (vd == spa->spa_root_vdev || vd == tvd)
1629                 return (B_TRUE);
1630
1631         /*
1632          * Temporarily mark the device as unreadable, and then determine
1633          * whether this results in any DTL outages in the top-level vdev.
1634          * If not, we can safely offline/detach/remove the device.
1635          */
1636         vd->vdev_cant_read = B_TRUE;
1637         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1638         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1639         vd->vdev_cant_read = cant_read;
1640         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1641
1642         return (required);
1643 }
1644
1645 /*
1646  * Determine if resilver is needed, and if so the txg range.
1647  */
1648 boolean_t
1649 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1650 {
1651         boolean_t needed = B_FALSE;
1652         uint64_t thismin = UINT64_MAX;
1653         uint64_t thismax = 0;
1654
1655         if (vd->vdev_children == 0) {
1656                 mutex_enter(&vd->vdev_dtl_lock);
1657                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1658                     vdev_writeable(vd)) {
1659                         space_seg_t *ss;
1660
1661                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1662                         thismin = ss->ss_start - 1;
1663                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1664                         thismax = ss->ss_end;
1665                         needed = B_TRUE;
1666                 }
1667                 mutex_exit(&vd->vdev_dtl_lock);
1668         } else {
1669                 for (int c = 0; c < vd->vdev_children; c++) {
1670                         vdev_t *cvd = vd->vdev_child[c];
1671                         uint64_t cmin, cmax;
1672
1673                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1674                                 thismin = MIN(thismin, cmin);
1675                                 thismax = MAX(thismax, cmax);
1676                                 needed = B_TRUE;
1677                         }
1678                 }
1679         }
1680
1681         if (needed && minp) {
1682                 *minp = thismin;
1683                 *maxp = thismax;
1684         }
1685         return (needed);
1686 }
1687
1688 void
1689 vdev_load(vdev_t *vd)
1690 {
1691         /*
1692          * Recursively load all children.
1693          */
1694         for (int c = 0; c < vd->vdev_children; c++)
1695                 vdev_load(vd->vdev_child[c]);
1696
1697         /*
1698          * If this is a top-level vdev, initialize its metaslabs.
1699          */
1700         if (vd == vd->vdev_top &&
1701             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1702             vdev_metaslab_init(vd, 0) != 0))
1703                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1704                     VDEV_AUX_CORRUPT_DATA);
1705
1706         /*
1707          * If this is a leaf vdev, load its DTL.
1708          */
1709         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1710                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1711                     VDEV_AUX_CORRUPT_DATA);
1712 }
1713
1714 /*
1715  * The special vdev case is used for hot spares and l2cache devices.  Its
1716  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1717  * we make sure that we can open the underlying device, then try to read the
1718  * label, and make sure that the label is sane and that it hasn't been
1719  * repurposed to another pool.
1720  */
1721 int
1722 vdev_validate_aux(vdev_t *vd)
1723 {
1724         nvlist_t *label;
1725         uint64_t guid, version;
1726         uint64_t state;
1727
1728         if (!vdev_readable(vd))
1729                 return (0);
1730
1731         if ((label = vdev_label_read_config(vd)) == NULL) {
1732                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1733                     VDEV_AUX_CORRUPT_DATA);
1734                 return (-1);
1735         }
1736
1737         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1738             version > SPA_VERSION ||
1739             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1740             guid != vd->vdev_guid ||
1741             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1742                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1743                     VDEV_AUX_CORRUPT_DATA);
1744                 nvlist_free(label);
1745                 return (-1);
1746         }
1747
1748         /*
1749          * We don't actually check the pool state here.  If it's in fact in
1750          * use by another pool, we update this fact on the fly when requested.
1751          */
1752         nvlist_free(label);
1753         return (0);
1754 }
1755
1756 void
1757 vdev_sync_done(vdev_t *vd, uint64_t txg)
1758 {
1759         metaslab_t *msp;
1760
1761         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1762                 metaslab_sync_done(msp, txg);
1763 }
1764
1765 void
1766 vdev_sync(vdev_t *vd, uint64_t txg)
1767 {
1768         spa_t *spa = vd->vdev_spa;
1769         vdev_t *lvd;
1770         metaslab_t *msp;
1771         dmu_tx_t *tx;
1772
1773         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1774                 ASSERT(vd == vd->vdev_top);
1775                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1776                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1777                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1778                 ASSERT(vd->vdev_ms_array != 0);
1779                 vdev_config_dirty(vd);
1780                 dmu_tx_commit(tx);
1781         }
1782
1783         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1784                 metaslab_sync(msp, txg);
1785                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1786         }
1787
1788         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1789                 vdev_dtl_sync(lvd, txg);
1790
1791         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1792 }
1793
1794 uint64_t
1795 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1796 {
1797         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1798 }
1799
1800 /*
1801  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1802  * not be opened, and no I/O is attempted.
1803  */
1804 int
1805 vdev_fault(spa_t *spa, uint64_t guid)
1806 {
1807         vdev_t *vd;
1808
1809         spa_vdev_state_enter(spa);
1810
1811         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1812                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1813
1814         if (!vd->vdev_ops->vdev_op_leaf)
1815                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1816
1817         /*
1818          * Faulted state takes precedence over degraded.
1819          */
1820         vd->vdev_faulted = 1ULL;
1821         vd->vdev_degraded = 0ULL;
1822         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1823
1824         /*
1825          * If marking the vdev as faulted cause the top-level vdev to become
1826          * unavailable, then back off and simply mark the vdev as degraded
1827          * instead.
1828          */
1829         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1830                 vd->vdev_degraded = 1ULL;
1831                 vd->vdev_faulted = 0ULL;
1832
1833                 /*
1834                  * If we reopen the device and it's not dead, only then do we
1835                  * mark it degraded.
1836                  */
1837                 vdev_reopen(vd);
1838
1839                 if (vdev_readable(vd)) {
1840                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1841                             VDEV_AUX_ERR_EXCEEDED);
1842                 }
1843         }
1844
1845         return (spa_vdev_state_exit(spa, vd, 0));
1846 }
1847
1848 /*
1849  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1850  * user that something is wrong.  The vdev continues to operate as normal as far
1851  * as I/O is concerned.
1852  */
1853 int
1854 vdev_degrade(spa_t *spa, uint64_t guid)
1855 {
1856         vdev_t *vd;
1857
1858         spa_vdev_state_enter(spa);
1859
1860         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1861                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1862
1863         if (!vd->vdev_ops->vdev_op_leaf)
1864                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1865
1866         /*
1867          * If the vdev is already faulted, then don't do anything.
1868          */
1869         if (vd->vdev_faulted || vd->vdev_degraded)
1870                 return (spa_vdev_state_exit(spa, NULL, 0));
1871
1872         vd->vdev_degraded = 1ULL;
1873         if (!vdev_is_dead(vd))
1874                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1875                     VDEV_AUX_ERR_EXCEEDED);
1876
1877         return (spa_vdev_state_exit(spa, vd, 0));
1878 }
1879
1880 /*
1881  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1882  * any attached spare device should be detached when the device finishes
1883  * resilvering.  Second, the online should be treated like a 'test' online case,
1884  * so no FMA events are generated if the device fails to open.
1885  */
1886 int
1887 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1888 {
1889         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
1890
1891         spa_vdev_state_enter(spa);
1892
1893         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1894                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1895
1896         if (!vd->vdev_ops->vdev_op_leaf)
1897                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1898
1899         tvd = vd->vdev_top;
1900         vd->vdev_offline = B_FALSE;
1901         vd->vdev_tmpoffline = B_FALSE;
1902         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1903         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1904
1905         /* XXX - L2ARC 1.0 does not support expansion */
1906         if (!vd->vdev_aux) {
1907                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1908                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
1909         }
1910
1911         vdev_reopen(tvd);
1912         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1913
1914         if (!vd->vdev_aux) {
1915                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1916                         pvd->vdev_expanding = B_FALSE;
1917         }
1918
1919         if (newstate)
1920                 *newstate = vd->vdev_state;
1921         if ((flags & ZFS_ONLINE_UNSPARE) &&
1922             !vdev_is_dead(vd) && vd->vdev_parent &&
1923             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1924             vd->vdev_parent->vdev_child[0] == vd)
1925                 vd->vdev_unspare = B_TRUE;
1926
1927         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
1928
1929                 /* XXX - L2ARC 1.0 does not support expansion */
1930                 if (vd->vdev_aux)
1931                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
1932                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1933         }
1934         return (spa_vdev_state_exit(spa, vd, 0));
1935 }
1936
1937 int
1938 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1939 {
1940         vdev_t *vd, *tvd;
1941         int error;
1942
1943         spa_vdev_state_enter(spa);
1944
1945         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1946                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1947
1948         if (!vd->vdev_ops->vdev_op_leaf)
1949                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1950
1951         tvd = vd->vdev_top;
1952
1953         /*
1954          * If the device isn't already offline, try to offline it.
1955          */
1956         if (!vd->vdev_offline) {
1957                 /*
1958                  * If this device has the only valid copy of some data,
1959                  * don't allow it to be offlined. Log devices are always
1960                  * expendable.
1961                  */
1962                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1963                     vdev_dtl_required(vd))
1964                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1965
1966                 /*
1967                  * Offline this device and reopen its top-level vdev.
1968                  * If the top-level vdev is a log device then just offline
1969                  * it. Otherwise, if this action results in the top-level
1970                  * vdev becoming unusable, undo it and fail the request.
1971                  */
1972                 vd->vdev_offline = B_TRUE;
1973                 vdev_reopen(tvd);
1974
1975                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1976                     vdev_is_dead(tvd)) {
1977                         vd->vdev_offline = B_FALSE;
1978                         vdev_reopen(tvd);
1979                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1980                 }
1981         }
1982
1983         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1984
1985         if (!tvd->vdev_islog || !vdev_is_dead(tvd))
1986                 return (spa_vdev_state_exit(spa, vd, 0));
1987
1988         (void) spa_vdev_state_exit(spa, vd, 0);
1989
1990         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1991             NULL, DS_FIND_CHILDREN);
1992         if (error) {
1993                 (void) vdev_online(spa, guid, 0, NULL);
1994                 return (error);
1995         }
1996         /*
1997          * If we successfully offlined the log device then we need to
1998          * sync out the current txg so that the "stubby" block can be
1999          * removed by zil_sync().
2000          */
2001         txg_wait_synced(spa->spa_dsl_pool, 0);
2002         return (0);
2003 }
2004
2005 /*
2006  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2007  * vdev_offline(), we assume the spa config is locked.  We also clear all
2008  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2009  */
2010 void
2011 vdev_clear(spa_t *spa, vdev_t *vd)
2012 {
2013         vdev_t *rvd = spa->spa_root_vdev;
2014
2015         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2016
2017         if (vd == NULL)
2018                 vd = rvd;
2019
2020         vd->vdev_stat.vs_read_errors = 0;
2021         vd->vdev_stat.vs_write_errors = 0;
2022         vd->vdev_stat.vs_checksum_errors = 0;
2023
2024         for (int c = 0; c < vd->vdev_children; c++)
2025                 vdev_clear(spa, vd->vdev_child[c]);
2026
2027         /*
2028          * If we're in the FAULTED state or have experienced failed I/O, then
2029          * clear the persistent state and attempt to reopen the device.  We
2030          * also mark the vdev config dirty, so that the new faulted state is
2031          * written out to disk.
2032          */
2033         if (vd->vdev_faulted || vd->vdev_degraded ||
2034             !vdev_readable(vd) || !vdev_writeable(vd)) {
2035
2036                 vd->vdev_faulted = vd->vdev_degraded = 0;
2037                 vd->vdev_cant_read = B_FALSE;
2038                 vd->vdev_cant_write = B_FALSE;
2039
2040                 vdev_reopen(vd);
2041
2042                 if (vd != rvd)
2043                         vdev_state_dirty(vd->vdev_top);
2044
2045                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2046                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2047
2048                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2049         }
2050 }
2051
2052 boolean_t
2053 vdev_is_dead(vdev_t *vd)
2054 {
2055         return (vd->vdev_state < VDEV_STATE_DEGRADED);
2056 }
2057
2058 boolean_t
2059 vdev_readable(vdev_t *vd)
2060 {
2061         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2062 }
2063
2064 boolean_t
2065 vdev_writeable(vdev_t *vd)
2066 {
2067         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2068 }
2069
2070 boolean_t
2071 vdev_allocatable(vdev_t *vd)
2072 {
2073         uint64_t state = vd->vdev_state;
2074
2075         /*
2076          * We currently allow allocations from vdevs which may be in the
2077          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2078          * fails to reopen then we'll catch it later when we're holding
2079          * the proper locks.  Note that we have to get the vdev state
2080          * in a local variable because although it changes atomically,
2081          * we're asking two separate questions about it.
2082          */
2083         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2084             !vd->vdev_cant_write);
2085 }
2086
2087 boolean_t
2088 vdev_accessible(vdev_t *vd, zio_t *zio)
2089 {
2090         ASSERT(zio->io_vd == vd);
2091
2092         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2093                 return (B_FALSE);
2094
2095         if (zio->io_type == ZIO_TYPE_READ)
2096                 return (!vd->vdev_cant_read);
2097
2098         if (zio->io_type == ZIO_TYPE_WRITE)
2099                 return (!vd->vdev_cant_write);
2100
2101         return (B_TRUE);
2102 }
2103
2104 /*
2105  * Get statistics for the given vdev.
2106  */
2107 void
2108 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2109 {
2110         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2111
2112         mutex_enter(&vd->vdev_stat_lock);
2113         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2114         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2115         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2116         vs->vs_state = vd->vdev_state;
2117         vs->vs_rsize = vdev_get_min_asize(vd);
2118         if (vd->vdev_ops->vdev_op_leaf)
2119                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2120         mutex_exit(&vd->vdev_stat_lock);
2121
2122         /*
2123          * If we're getting stats on the root vdev, aggregate the I/O counts
2124          * over all top-level vdevs (i.e. the direct children of the root).
2125          */
2126         if (vd == rvd) {
2127                 for (int c = 0; c < rvd->vdev_children; c++) {
2128                         vdev_t *cvd = rvd->vdev_child[c];
2129                         vdev_stat_t *cvs = &cvd->vdev_stat;
2130
2131                         mutex_enter(&vd->vdev_stat_lock);
2132                         for (int t = 0; t < ZIO_TYPES; t++) {
2133                                 vs->vs_ops[t] += cvs->vs_ops[t];
2134                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2135                         }
2136                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2137                         mutex_exit(&vd->vdev_stat_lock);
2138                 }
2139         }
2140 }
2141
2142 void
2143 vdev_clear_stats(vdev_t *vd)
2144 {
2145         mutex_enter(&vd->vdev_stat_lock);
2146         vd->vdev_stat.vs_space = 0;
2147         vd->vdev_stat.vs_dspace = 0;
2148         vd->vdev_stat.vs_alloc = 0;
2149         mutex_exit(&vd->vdev_stat_lock);
2150 }
2151
2152 void
2153 vdev_stat_update(zio_t *zio, uint64_t psize)
2154 {
2155         spa_t *spa = zio->io_spa;
2156         vdev_t *rvd = spa->spa_root_vdev;
2157         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2158         vdev_t *pvd;
2159         uint64_t txg = zio->io_txg;
2160         vdev_stat_t *vs = &vd->vdev_stat;
2161         zio_type_t type = zio->io_type;
2162         int flags = zio->io_flags;
2163
2164         /*
2165          * If this i/o is a gang leader, it didn't do any actual work.
2166          */
2167         if (zio->io_gang_tree)
2168                 return;
2169
2170         if (zio->io_error == 0) {
2171                 /*
2172                  * If this is a root i/o, don't count it -- we've already
2173                  * counted the top-level vdevs, and vdev_get_stats() will
2174                  * aggregate them when asked.  This reduces contention on
2175                  * the root vdev_stat_lock and implicitly handles blocks
2176                  * that compress away to holes, for which there is no i/o.
2177                  * (Holes never create vdev children, so all the counters
2178                  * remain zero, which is what we want.)
2179                  *
2180                  * Note: this only applies to successful i/o (io_error == 0)
2181                  * because unlike i/o counts, errors are not additive.
2182                  * When reading a ditto block, for example, failure of
2183                  * one top-level vdev does not imply a root-level error.
2184                  */
2185                 if (vd == rvd)
2186                         return;
2187
2188                 ASSERT(vd == zio->io_vd);
2189
2190                 if (flags & ZIO_FLAG_IO_BYPASS)
2191                         return;
2192
2193                 mutex_enter(&vd->vdev_stat_lock);
2194
2195                 if (flags & ZIO_FLAG_IO_REPAIR) {
2196                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2197                                 vs->vs_scrub_repaired += psize;
2198                         if (flags & ZIO_FLAG_SELF_HEAL)
2199                                 vs->vs_self_healed += psize;
2200                 }
2201
2202                 vs->vs_ops[type]++;
2203                 vs->vs_bytes[type] += psize;
2204
2205                 mutex_exit(&vd->vdev_stat_lock);
2206                 return;
2207         }
2208
2209         if (flags & ZIO_FLAG_SPECULATIVE)
2210                 return;
2211
2212         /*
2213          * If this is an I/O error that is going to be retried, then ignore the
2214          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2215          * hard errors, when in reality they can happen for any number of
2216          * innocuous reasons (bus resets, MPxIO link failure, etc).
2217          */
2218         if (zio->io_error == EIO &&
2219             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2220                 return;
2221
2222         mutex_enter(&vd->vdev_stat_lock);
2223         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2224                 if (zio->io_error == ECKSUM)
2225                         vs->vs_checksum_errors++;
2226                 else
2227                         vs->vs_read_errors++;
2228         }
2229         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2230                 vs->vs_write_errors++;
2231         mutex_exit(&vd->vdev_stat_lock);
2232
2233         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2234             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2235             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2236                 /*
2237                  * This is either a normal write (not a repair), or it's a
2238                  * repair induced by the scrub thread.  In the normal case,
2239                  * we commit the DTL change in the same txg as the block
2240                  * was born.  In the scrub-induced repair case, we know that
2241                  * scrubs run in first-pass syncing context, so we commit
2242                  * the DTL change in spa->spa_syncing_txg.
2243                  *
2244                  * We currently do not make DTL entries for failed spontaneous
2245                  * self-healing writes triggered by normal (non-scrubbing)
2246                  * reads, because we have no transactional context in which to
2247                  * do so -- and it's not clear that it'd be desirable anyway.
2248                  */
2249                 if (vd->vdev_ops->vdev_op_leaf) {
2250                         uint64_t commit_txg = txg;
2251                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2252                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2253                                 ASSERT(spa_sync_pass(spa) == 1);
2254                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2255                                 commit_txg = spa->spa_syncing_txg;
2256                         }
2257                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2258                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2259                                 return;
2260                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2261                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2262                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2263                 }
2264                 if (vd != rvd)
2265                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2266         }
2267 }
2268
2269 void
2270 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2271 {
2272         vdev_stat_t *vs = &vd->vdev_stat;
2273
2274         for (int c = 0; c < vd->vdev_children; c++)
2275                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2276
2277         mutex_enter(&vd->vdev_stat_lock);
2278
2279         if (type == POOL_SCRUB_NONE) {
2280                 /*
2281                  * Update completion and end time.  Leave everything else alone
2282                  * so we can report what happened during the previous scrub.
2283                  */
2284                 vs->vs_scrub_complete = complete;
2285                 vs->vs_scrub_end = gethrestime_sec();
2286         } else {
2287                 vs->vs_scrub_type = type;
2288                 vs->vs_scrub_complete = 0;
2289                 vs->vs_scrub_examined = 0;
2290                 vs->vs_scrub_repaired = 0;
2291                 vs->vs_scrub_start = gethrestime_sec();
2292                 vs->vs_scrub_end = 0;
2293         }
2294
2295         mutex_exit(&vd->vdev_stat_lock);
2296 }
2297
2298 /*
2299  * Update the in-core space usage stats for this vdev and the root vdev.
2300  */
2301 void
2302 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2303     boolean_t update_root)
2304 {
2305         int64_t dspace_delta = space_delta;
2306         spa_t *spa = vd->vdev_spa;
2307         vdev_t *rvd = spa->spa_root_vdev;
2308
2309         ASSERT(vd == vd->vdev_top);
2310
2311         /*
2312          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2313          * factor.  We must calculate this here and not at the root vdev
2314          * because the root vdev's psize-to-asize is simply the max of its
2315          * childrens', thus not accurate enough for us.
2316          */
2317         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2318         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2319         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2320             vd->vdev_deflate_ratio;
2321
2322         mutex_enter(&vd->vdev_stat_lock);
2323         vd->vdev_stat.vs_space += space_delta;
2324         vd->vdev_stat.vs_alloc += alloc_delta;
2325         vd->vdev_stat.vs_dspace += dspace_delta;
2326         mutex_exit(&vd->vdev_stat_lock);
2327
2328         if (update_root) {
2329                 ASSERT(rvd == vd->vdev_parent);
2330                 ASSERT(vd->vdev_ms_count != 0);
2331
2332                 /*
2333                  * Don't count non-normal (e.g. intent log) space as part of
2334                  * the pool's capacity.
2335                  */
2336                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2337                         return;
2338
2339                 mutex_enter(&rvd->vdev_stat_lock);
2340                 rvd->vdev_stat.vs_space += space_delta;
2341                 rvd->vdev_stat.vs_alloc += alloc_delta;
2342                 rvd->vdev_stat.vs_dspace += dspace_delta;
2343                 mutex_exit(&rvd->vdev_stat_lock);
2344         }
2345 }
2346
2347 /*
2348  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2349  * so that it will be written out next time the vdev configuration is synced.
2350  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2351  */
2352 void
2353 vdev_config_dirty(vdev_t *vd)
2354 {
2355         spa_t *spa = vd->vdev_spa;
2356         vdev_t *rvd = spa->spa_root_vdev;
2357         int c;
2358
2359         /*
2360          * If this is an aux vdev (as with l2cache and spare devices), then we
2361          * update the vdev config manually and set the sync flag.
2362          */
2363         if (vd->vdev_aux != NULL) {
2364                 spa_aux_vdev_t *sav = vd->vdev_aux;
2365                 nvlist_t **aux;
2366                 uint_t naux;
2367
2368                 for (c = 0; c < sav->sav_count; c++) {
2369                         if (sav->sav_vdevs[c] == vd)
2370                                 break;
2371                 }
2372
2373                 if (c == sav->sav_count) {
2374                         /*
2375                          * We're being removed.  There's nothing more to do.
2376                          */
2377                         ASSERT(sav->sav_sync == B_TRUE);
2378                         return;
2379                 }
2380
2381                 sav->sav_sync = B_TRUE;
2382
2383                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2384                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2385                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2386                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2387                 }
2388
2389                 ASSERT(c < naux);
2390
2391                 /*
2392                  * Setting the nvlist in the middle if the array is a little
2393                  * sketchy, but it will work.
2394                  */
2395                 nvlist_free(aux[c]);
2396                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2397
2398                 return;
2399         }
2400
2401         /*
2402          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2403          * must either hold SCL_CONFIG as writer, or must be the sync thread
2404          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2405          * so this is sufficient to ensure mutual exclusion.
2406          */
2407         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2408             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2409             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2410
2411         if (vd == rvd) {
2412                 for (c = 0; c < rvd->vdev_children; c++)
2413                         vdev_config_dirty(rvd->vdev_child[c]);
2414         } else {
2415                 ASSERT(vd == vd->vdev_top);
2416
2417                 if (!list_link_active(&vd->vdev_config_dirty_node))
2418                         list_insert_head(&spa->spa_config_dirty_list, vd);
2419         }
2420 }
2421
2422 void
2423 vdev_config_clean(vdev_t *vd)
2424 {
2425         spa_t *spa = vd->vdev_spa;
2426
2427         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2428             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2429             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2430
2431         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2432         list_remove(&spa->spa_config_dirty_list, vd);
2433 }
2434
2435 /*
2436  * Mark a top-level vdev's state as dirty, so that the next pass of
2437  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2438  * the state changes from larger config changes because they require
2439  * much less locking, and are often needed for administrative actions.
2440  */
2441 void
2442 vdev_state_dirty(vdev_t *vd)
2443 {
2444         spa_t *spa = vd->vdev_spa;
2445
2446         ASSERT(vd == vd->vdev_top);
2447
2448         /*
2449          * The state list is protected by the SCL_STATE lock.  The caller
2450          * must either hold SCL_STATE as writer, or must be the sync thread
2451          * (which holds SCL_STATE as reader).  There's only one sync thread,
2452          * so this is sufficient to ensure mutual exclusion.
2453          */
2454         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2455             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2456             spa_config_held(spa, SCL_STATE, RW_READER)));
2457
2458         if (!list_link_active(&vd->vdev_state_dirty_node))
2459                 list_insert_head(&spa->spa_state_dirty_list, vd);
2460 }
2461
2462 void
2463 vdev_state_clean(vdev_t *vd)
2464 {
2465         spa_t *spa = vd->vdev_spa;
2466
2467         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2468             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2469             spa_config_held(spa, SCL_STATE, RW_READER)));
2470
2471         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2472         list_remove(&spa->spa_state_dirty_list, vd);
2473 }
2474
2475 /*
2476  * Propagate vdev state up from children to parent.
2477  */
2478 void
2479 vdev_propagate_state(vdev_t *vd)
2480 {
2481         spa_t *spa = vd->vdev_spa;
2482         vdev_t *rvd = spa->spa_root_vdev;
2483         int degraded = 0, faulted = 0;
2484         int corrupted = 0;
2485         vdev_t *child;
2486
2487         if (vd->vdev_children > 0) {
2488                 for (int c = 0; c < vd->vdev_children; c++) {
2489                         child = vd->vdev_child[c];
2490
2491                         if (!vdev_readable(child) ||
2492                             (!vdev_writeable(child) && spa_writeable(spa))) {
2493                                 /*
2494                                  * Root special: if there is a top-level log
2495                                  * device, treat the root vdev as if it were
2496                                  * degraded.
2497                                  */
2498                                 if (child->vdev_islog && vd == rvd)
2499                                         degraded++;
2500                                 else
2501                                         faulted++;
2502                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2503                                 degraded++;
2504                         }
2505
2506                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2507                                 corrupted++;
2508                 }
2509
2510                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2511
2512                 /*
2513                  * Root special: if there is a top-level vdev that cannot be
2514                  * opened due to corrupted metadata, then propagate the root
2515                  * vdev's aux state as 'corrupt' rather than 'insufficient
2516                  * replicas'.
2517                  */
2518                 if (corrupted && vd == rvd &&
2519                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2520                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2521                             VDEV_AUX_CORRUPT_DATA);
2522         }
2523
2524         if (vd->vdev_parent)
2525                 vdev_propagate_state(vd->vdev_parent);
2526 }
2527
2528 /*
2529  * Set a vdev's state.  If this is during an open, we don't update the parent
2530  * state, because we're in the process of opening children depth-first.
2531  * Otherwise, we propagate the change to the parent.
2532  *
2533  * If this routine places a device in a faulted state, an appropriate ereport is
2534  * generated.
2535  */
2536 void
2537 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2538 {
2539         uint64_t save_state;
2540         spa_t *spa = vd->vdev_spa;
2541
2542         if (state == vd->vdev_state) {
2543                 vd->vdev_stat.vs_aux = aux;
2544                 return;
2545         }
2546
2547         save_state = vd->vdev_state;
2548
2549         vd->vdev_state = state;
2550         vd->vdev_stat.vs_aux = aux;
2551
2552         /*
2553          * If we are setting the vdev state to anything but an open state, then
2554          * always close the underlying device.  Otherwise, we keep accessible
2555          * but invalid devices open forever.  We don't call vdev_close() itself,
2556          * because that implies some extra checks (offline, etc) that we don't
2557          * want here.  This is limited to leaf devices, because otherwise
2558          * closing the device will affect other children.
2559          */
2560         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2561                 vd->vdev_ops->vdev_op_close(vd);
2562
2563         if (vd->vdev_removed &&
2564             state == VDEV_STATE_CANT_OPEN &&
2565             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2566                 /*
2567                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2568                  * device was previously marked removed and someone attempted to
2569                  * reopen it.  If this failed due to a nonexistent device, then
2570                  * keep the device in the REMOVED state.  We also let this be if
2571                  * it is one of our special test online cases, which is only
2572                  * attempting to online the device and shouldn't generate an FMA
2573                  * fault.
2574                  */
2575                 vd->vdev_state = VDEV_STATE_REMOVED;
2576                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2577         } else if (state == VDEV_STATE_REMOVED) {
2578                 /*
2579                  * Indicate to the ZFS DE that this device has been removed, and
2580                  * any recent errors should be ignored.
2581                  */
2582                 zfs_post_remove(spa, vd);
2583                 vd->vdev_removed = B_TRUE;
2584         } else if (state == VDEV_STATE_CANT_OPEN) {
2585                 /*
2586                  * If we fail to open a vdev during an import, we mark it as
2587                  * "not available", which signifies that it was never there to
2588                  * begin with.  Failure to open such a device is not considered
2589                  * an error.
2590                  */
2591                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2592                     vd->vdev_ops->vdev_op_leaf)
2593                         vd->vdev_not_present = 1;
2594
2595                 /*
2596                  * Post the appropriate ereport.  If the 'prevstate' field is
2597                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2598                  * that this is part of a vdev_reopen().  In this case, we don't
2599                  * want to post the ereport if the device was already in the
2600                  * CANT_OPEN state beforehand.
2601                  *
2602                  * If the 'checkremove' flag is set, then this is an attempt to
2603                  * online the device in response to an insertion event.  If we
2604                  * hit this case, then we have detected an insertion event for a
2605                  * faulted or offline device that wasn't in the removed state.
2606                  * In this scenario, we don't post an ereport because we are
2607                  * about to replace the device, or attempt an online with
2608                  * vdev_forcefault, which will generate the fault for us.
2609                  */
2610                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2611                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2612                     vd != spa->spa_root_vdev) {
2613                         const char *class;
2614
2615                         switch (aux) {
2616                         case VDEV_AUX_OPEN_FAILED:
2617                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2618                                 break;
2619                         case VDEV_AUX_CORRUPT_DATA:
2620                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2621                                 break;
2622                         case VDEV_AUX_NO_REPLICAS:
2623                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2624                                 break;
2625                         case VDEV_AUX_BAD_GUID_SUM:
2626                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2627                                 break;
2628                         case VDEV_AUX_TOO_SMALL:
2629                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2630                                 break;
2631                         case VDEV_AUX_BAD_LABEL:
2632                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2633                                 break;
2634                         case VDEV_AUX_IO_FAILURE:
2635                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2636                                 break;
2637                         default:
2638                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2639                         }
2640
2641                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2642                 }
2643
2644                 /* Erase any notion of persistent removed state */
2645                 vd->vdev_removed = B_FALSE;
2646         } else {
2647                 vd->vdev_removed = B_FALSE;
2648         }
2649
2650         if (!isopen && vd->vdev_parent)
2651                 vdev_propagate_state(vd->vdev_parent);
2652 }
2653
2654 /*
2655  * Check the vdev configuration to ensure that it's capable of supporting
2656  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2657  * In addition, only a single top-level vdev is allowed and none of the leaves
2658  * can be wholedisks.
2659  */
2660 boolean_t
2661 vdev_is_bootable(vdev_t *vd)
2662 {
2663         if (!vd->vdev_ops->vdev_op_leaf) {
2664                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2665
2666                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2667                     vd->vdev_children > 1) {
2668                         return (B_FALSE);
2669                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2670                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2671                         return (B_FALSE);
2672                 }
2673         } else if (vd->vdev_wholedisk == 1) {
2674                 return (B_FALSE);
2675         }
2676
2677         for (int c = 0; c < vd->vdev_children; c++) {
2678                 if (!vdev_is_bootable(vd->vdev_child[c]))
2679                         return (B_FALSE);
2680         }
2681         return (B_TRUE);
2682 }
2683
2684 void
2685 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2686 {
2687         uint_t children;
2688         nvlist_t **child;
2689         uint64_t val;
2690         spa_t *spa = vd->vdev_spa;
2691
2692         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2693             &child, &children) == 0) {
2694                 for (int c = 0; c < children; c++)
2695                         vdev_load_log_state(vd->vdev_child[c], child[c]);
2696         }
2697
2698         if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2699             ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2700
2701                 /*
2702                  * It would be nice to call vdev_offline()
2703                  * directly but the pool isn't fully loaded and
2704                  * the txg threads have not been started yet.
2705                  */
2706                 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2707                 vd->vdev_offline = val;
2708                 vdev_reopen(vd->vdev_top);
2709                 spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2710         }
2711 }
2712
2713 /*
2714  * Expand a vdev if possible.
2715  */
2716 void
2717 vdev_expand(vdev_t *vd, uint64_t txg)
2718 {
2719         ASSERT(vd->vdev_top == vd);
2720         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2721
2722         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2723                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
2724                 vdev_config_dirty(vd);
2725         }
2726 }