Fix gcc missing parenthesis warnings
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 /*
45  * Virtual device management.
46  */
47
48 static vdev_ops_t *vdev_ops_table[] = {
49         &vdev_root_ops,
50         &vdev_raidz_ops,
51         &vdev_mirror_ops,
52         &vdev_replacing_ops,
53         &vdev_spare_ops,
54         &vdev_disk_ops,
55         &vdev_file_ops,
56         &vdev_missing_ops,
57         &vdev_hole_ops,
58         NULL
59 };
60
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88         int c;
89
90         for (c = 0; c < vd->vdev_children; c++) {
91                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92                 asize = MAX(asize, csize);
93         }
94
95         return (asize);
96 }
97
98 /*
99  * Get the minimum allocatable size. We define the allocatable size as
100  * the vdev's asize rounded to the nearest metaslab. This allows us to
101  * replace or attach devices which don't have the same physical size but
102  * can still satisfy the same number of allocations.
103  */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107         vdev_t *pvd = vd->vdev_parent;
108
109         /*
110          * The our parent is NULL (inactive spare or cache) or is the root,
111          * just return our own asize.
112          */
113         if (pvd == NULL)
114                 return (vd->vdev_asize);
115
116         /*
117          * The top-level vdev just returns the allocatable size rounded
118          * to the nearest metaslab.
119          */
120         if (vd == vd->vdev_top)
121                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123         /*
124          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125          * so each child must provide at least 1/Nth of its asize.
126          */
127         if (pvd->vdev_ops == &vdev_raidz_ops)
128                 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130         return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136         int c;
137         vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139         for (c = 0; c < vd->vdev_children; c++)
140                 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146         vdev_t *rvd = spa->spa_root_vdev;
147
148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150         if (vdev < rvd->vdev_children) {
151                 ASSERT(rvd->vdev_child[vdev] != NULL);
152                 return (rvd->vdev_child[vdev]);
153         }
154
155         return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161         vdev_t *mvd;
162         int c;
163
164         if (vd->vdev_guid == guid)
165                 return (vd);
166
167         for (c = 0; c < vd->vdev_children; c++)
168                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169                     NULL)
170                         return (mvd);
171
172         return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178         size_t oldsize, newsize;
179         uint64_t id = cvd->vdev_id;
180         vdev_t **newchild;
181
182         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183         ASSERT(cvd->vdev_parent == NULL);
184
185         cvd->vdev_parent = pvd;
186
187         if (pvd == NULL)
188                 return;
189
190         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192         oldsize = pvd->vdev_children * sizeof (vdev_t *);
193         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194         newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196         newchild = kmem_zalloc(newsize, KM_SLEEP);
197         if (pvd->vdev_child != NULL) {
198                 bcopy(pvd->vdev_child, newchild, oldsize);
199                 kmem_free(pvd->vdev_child, oldsize);
200         }
201
202         pvd->vdev_child = newchild;
203         pvd->vdev_child[id] = cvd;
204
205         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208         /*
209          * Walk up all ancestors to update guid sum.
210          */
211         for (; pvd != NULL; pvd = pvd->vdev_parent)
212                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255         vdev_t **newchild, *cvd;
256         int oldc = pvd->vdev_children;
257         int newc;
258         int c;
259
260         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262         for (c = newc = 0; c < oldc; c++)
263                 if (pvd->vdev_child[c])
264                         newc++;
265
266         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
267
268         for (c = newc = 0; c < oldc; c++) {
269                 if ((cvd = pvd->vdev_child[c]) != NULL) {
270                         newchild[newc] = cvd;
271                         cvd->vdev_id = newc++;
272                 }
273         }
274
275         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276         pvd->vdev_child = newchild;
277         pvd->vdev_children = newc;
278 }
279
280 /*
281  * Allocate and minimally initialize a vdev_t.
282  */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286         vdev_t *vd;
287         int t;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294         }
295
296         if (guid == 0 && ops != &vdev_hole_ops) {
297                 if (spa->spa_root_vdev == vd) {
298                         /*
299                          * The root vdev's guid will also be the pool guid,
300                          * which must be unique among all pools.
301                          */
302                         guid = spa_generate_guid(NULL);
303                 } else {
304                         /*
305                          * Any other vdev's guid must be unique within the pool.
306                          */
307                         guid = spa_generate_guid(spa);
308                 }
309                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310         }
311
312         vd->vdev_spa = spa;
313         vd->vdev_id = id;
314         vd->vdev_guid = guid;
315         vd->vdev_guid_sum = guid;
316         vd->vdev_ops = ops;
317         vd->vdev_state = VDEV_STATE_CLOSED;
318         vd->vdev_ishole = (ops == &vdev_hole_ops);
319
320         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
321         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
322         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
323         for (t = 0; t < DTL_TYPES; t++) {
324                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
325                     &vd->vdev_dtl_lock);
326         }
327         txg_list_create(&vd->vdev_ms_list,
328             offsetof(struct metaslab, ms_txg_node));
329         txg_list_create(&vd->vdev_dtl_list,
330             offsetof(struct vdev, vdev_dtl_node));
331         vd->vdev_stat.vs_timestamp = gethrtime();
332         vdev_queue_init(vd);
333         vdev_cache_init(vd);
334
335         return (vd);
336 }
337
338 /*
339  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
340  * creating a new vdev or loading an existing one - the behavior is slightly
341  * different for each case.
342  */
343 int
344 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
345     int alloctype)
346 {
347         vdev_ops_t *ops;
348         char *type;
349         uint64_t guid = 0, islog, nparity;
350         vdev_t *vd;
351
352         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
353
354         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
355                 return (EINVAL);
356
357         if ((ops = vdev_getops(type)) == NULL)
358                 return (EINVAL);
359
360         /*
361          * If this is a load, get the vdev guid from the nvlist.
362          * Otherwise, vdev_alloc_common() will generate one for us.
363          */
364         if (alloctype == VDEV_ALLOC_LOAD) {
365                 uint64_t label_id;
366
367                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
368                     label_id != id)
369                         return (EINVAL);
370
371                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372                         return (EINVAL);
373         } else if (alloctype == VDEV_ALLOC_SPARE) {
374                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375                         return (EINVAL);
376         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378                         return (EINVAL);
379         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         }
383
384         /*
385          * The first allocated vdev must be of type 'root'.
386          */
387         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
388                 return (EINVAL);
389
390         /*
391          * Determine whether we're a log vdev.
392          */
393         islog = 0;
394         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
395         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
396                 return (ENOTSUP);
397
398         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
399                 return (ENOTSUP);
400
401         /*
402          * Set the nparity property for RAID-Z vdevs.
403          */
404         nparity = -1ULL;
405         if (ops == &vdev_raidz_ops) {
406                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
407                     &nparity) == 0) {
408                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
409                                 return (EINVAL);
410                         /*
411                          * Previous versions could only support 1 or 2 parity
412                          * device.
413                          */
414                         if (nparity > 1 &&
415                             spa_version(spa) < SPA_VERSION_RAIDZ2)
416                                 return (ENOTSUP);
417                         if (nparity > 2 &&
418                             spa_version(spa) < SPA_VERSION_RAIDZ3)
419                                 return (ENOTSUP);
420                 } else {
421                         /*
422                          * We require the parity to be specified for SPAs that
423                          * support multiple parity levels.
424                          */
425                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
426                                 return (EINVAL);
427                         /*
428                          * Otherwise, we default to 1 parity device for RAID-Z.
429                          */
430                         nparity = 1;
431                 }
432         } else {
433                 nparity = 0;
434         }
435         ASSERT(nparity != -1ULL);
436
437         vd = vdev_alloc_common(spa, id, guid, ops);
438
439         vd->vdev_islog = islog;
440         vd->vdev_nparity = nparity;
441
442         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443                 vd->vdev_path = spa_strdup(vd->vdev_path);
444         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
446         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447             &vd->vdev_physpath) == 0)
448                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
451
452         /*
453          * Set the whole_disk property.  If it's not specified, leave the value
454          * as -1.
455          */
456         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457             &vd->vdev_wholedisk) != 0)
458                 vd->vdev_wholedisk = -1ULL;
459
460         /*
461          * Look for the 'not present' flag.  This will only be set if the device
462          * was not present at the time of import.
463          */
464         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465             &vd->vdev_not_present);
466
467         /*
468          * Get the alignment requirement.
469          */
470         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471
472         /*
473          * Retrieve the vdev creation time.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
476             &vd->vdev_crtxg);
477
478         /*
479          * If we're a top-level vdev, try to load the allocation parameters.
480          */
481         if (parent && !parent->vdev_parent &&
482             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
483                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
484                     &vd->vdev_ms_array);
485                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
486                     &vd->vdev_ms_shift);
487                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
488                     &vd->vdev_asize);
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
490                     &vd->vdev_removing);
491         }
492
493         if (parent && !parent->vdev_parent) {
494                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
495                     alloctype == VDEV_ALLOC_ADD ||
496                     alloctype == VDEV_ALLOC_SPLIT ||
497                     alloctype == VDEV_ALLOC_ROOTPOOL);
498                 vd->vdev_mg = metaslab_group_create(islog ?
499                     spa_log_class(spa) : spa_normal_class(spa), vd);
500         }
501
502         /*
503          * If we're a leaf vdev, try to load the DTL object and other state.
504          */
505         if (vd->vdev_ops->vdev_op_leaf &&
506             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
507             alloctype == VDEV_ALLOC_ROOTPOOL)) {
508                 if (alloctype == VDEV_ALLOC_LOAD) {
509                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
510                             &vd->vdev_dtl_smo.smo_object);
511                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
512                             &vd->vdev_unspare);
513                 }
514
515                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
516                         uint64_t spare = 0;
517
518                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
519                             &spare) == 0 && spare)
520                                 spa_spare_add(vd);
521                 }
522
523                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
524                     &vd->vdev_offline);
525
526                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
527                     &vd->vdev_resilvering);
528
529                 /*
530                  * When importing a pool, we want to ignore the persistent fault
531                  * state, as the diagnosis made on another system may not be
532                  * valid in the current context.  Local vdevs will
533                  * remain in the faulted state.
534                  */
535                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
536                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
537                             &vd->vdev_faulted);
538                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
539                             &vd->vdev_degraded);
540                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
541                             &vd->vdev_removed);
542
543                         if (vd->vdev_faulted || vd->vdev_degraded) {
544                                 char *aux;
545
546                                 vd->vdev_label_aux =
547                                     VDEV_AUX_ERR_EXCEEDED;
548                                 if (nvlist_lookup_string(nv,
549                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
550                                     strcmp(aux, "external") == 0)
551                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
552                         }
553                 }
554         }
555
556         /*
557          * Add ourselves to the parent's list of children.
558          */
559         vdev_add_child(parent, vd);
560
561         *vdp = vd;
562
563         return (0);
564 }
565
566 void
567 vdev_free(vdev_t *vd)
568 {
569         int c, t;
570         spa_t *spa = vd->vdev_spa;
571
572         /*
573          * vdev_free() implies closing the vdev first.  This is simpler than
574          * trying to ensure complicated semantics for all callers.
575          */
576         vdev_close(vd);
577
578         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
579         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
580
581         /*
582          * Free all children.
583          */
584         for (c = 0; c < vd->vdev_children; c++)
585                 vdev_free(vd->vdev_child[c]);
586
587         ASSERT(vd->vdev_child == NULL);
588         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
589
590         /*
591          * Discard allocation state.
592          */
593         if (vd->vdev_mg != NULL) {
594                 vdev_metaslab_fini(vd);
595                 metaslab_group_destroy(vd->vdev_mg);
596         }
597
598         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
599         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
600         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
601
602         /*
603          * Remove this vdev from its parent's child list.
604          */
605         vdev_remove_child(vd->vdev_parent, vd);
606
607         ASSERT(vd->vdev_parent == NULL);
608
609         /*
610          * Clean up vdev structure.
611          */
612         vdev_queue_fini(vd);
613         vdev_cache_fini(vd);
614
615         if (vd->vdev_path)
616                 spa_strfree(vd->vdev_path);
617         if (vd->vdev_devid)
618                 spa_strfree(vd->vdev_devid);
619         if (vd->vdev_physpath)
620                 spa_strfree(vd->vdev_physpath);
621         if (vd->vdev_fru)
622                 spa_strfree(vd->vdev_fru);
623
624         if (vd->vdev_isspare)
625                 spa_spare_remove(vd);
626         if (vd->vdev_isl2cache)
627                 spa_l2cache_remove(vd);
628
629         txg_list_destroy(&vd->vdev_ms_list);
630         txg_list_destroy(&vd->vdev_dtl_list);
631
632         mutex_enter(&vd->vdev_dtl_lock);
633         for (t = 0; t < DTL_TYPES; t++) {
634                 space_map_unload(&vd->vdev_dtl[t]);
635                 space_map_destroy(&vd->vdev_dtl[t]);
636         }
637         mutex_exit(&vd->vdev_dtl_lock);
638
639         mutex_destroy(&vd->vdev_dtl_lock);
640         mutex_destroy(&vd->vdev_stat_lock);
641         mutex_destroy(&vd->vdev_probe_lock);
642
643         if (vd == spa->spa_root_vdev)
644                 spa->spa_root_vdev = NULL;
645
646         kmem_free(vd, sizeof (vdev_t));
647 }
648
649 /*
650  * Transfer top-level vdev state from svd to tvd.
651  */
652 static void
653 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
654 {
655         spa_t *spa = svd->vdev_spa;
656         metaslab_t *msp;
657         vdev_t *vd;
658         int t;
659
660         ASSERT(tvd == tvd->vdev_top);
661
662         tvd->vdev_ms_array = svd->vdev_ms_array;
663         tvd->vdev_ms_shift = svd->vdev_ms_shift;
664         tvd->vdev_ms_count = svd->vdev_ms_count;
665
666         svd->vdev_ms_array = 0;
667         svd->vdev_ms_shift = 0;
668         svd->vdev_ms_count = 0;
669
670         tvd->vdev_mg = svd->vdev_mg;
671         tvd->vdev_ms = svd->vdev_ms;
672
673         svd->vdev_mg = NULL;
674         svd->vdev_ms = NULL;
675
676         if (tvd->vdev_mg != NULL)
677                 tvd->vdev_mg->mg_vd = tvd;
678
679         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
680         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
681         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
682
683         svd->vdev_stat.vs_alloc = 0;
684         svd->vdev_stat.vs_space = 0;
685         svd->vdev_stat.vs_dspace = 0;
686
687         for (t = 0; t < TXG_SIZE; t++) {
688                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
689                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
690                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
691                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
692                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
693                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
694         }
695
696         if (list_link_active(&svd->vdev_config_dirty_node)) {
697                 vdev_config_clean(svd);
698                 vdev_config_dirty(tvd);
699         }
700
701         if (list_link_active(&svd->vdev_state_dirty_node)) {
702                 vdev_state_clean(svd);
703                 vdev_state_dirty(tvd);
704         }
705
706         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
707         svd->vdev_deflate_ratio = 0;
708
709         tvd->vdev_islog = svd->vdev_islog;
710         svd->vdev_islog = 0;
711 }
712
713 static void
714 vdev_top_update(vdev_t *tvd, vdev_t *vd)
715 {
716         int c;
717
718         if (vd == NULL)
719                 return;
720
721         vd->vdev_top = tvd;
722
723         for (c = 0; c < vd->vdev_children; c++)
724                 vdev_top_update(tvd, vd->vdev_child[c]);
725 }
726
727 /*
728  * Add a mirror/replacing vdev above an existing vdev.
729  */
730 vdev_t *
731 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
732 {
733         spa_t *spa = cvd->vdev_spa;
734         vdev_t *pvd = cvd->vdev_parent;
735         vdev_t *mvd;
736
737         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
738
739         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
740
741         mvd->vdev_asize = cvd->vdev_asize;
742         mvd->vdev_min_asize = cvd->vdev_min_asize;
743         mvd->vdev_ashift = cvd->vdev_ashift;
744         mvd->vdev_state = cvd->vdev_state;
745         mvd->vdev_crtxg = cvd->vdev_crtxg;
746
747         vdev_remove_child(pvd, cvd);
748         vdev_add_child(pvd, mvd);
749         cvd->vdev_id = mvd->vdev_children;
750         vdev_add_child(mvd, cvd);
751         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
752
753         if (mvd == mvd->vdev_top)
754                 vdev_top_transfer(cvd, mvd);
755
756         return (mvd);
757 }
758
759 /*
760  * Remove a 1-way mirror/replacing vdev from the tree.
761  */
762 void
763 vdev_remove_parent(vdev_t *cvd)
764 {
765         vdev_t *mvd = cvd->vdev_parent;
766         vdev_t *pvd = mvd->vdev_parent;
767
768         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
769
770         ASSERT(mvd->vdev_children == 1);
771         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
772             mvd->vdev_ops == &vdev_replacing_ops ||
773             mvd->vdev_ops == &vdev_spare_ops);
774         cvd->vdev_ashift = mvd->vdev_ashift;
775
776         vdev_remove_child(mvd, cvd);
777         vdev_remove_child(pvd, mvd);
778
779         /*
780          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
781          * Otherwise, we could have detached an offline device, and when we
782          * go to import the pool we'll think we have two top-level vdevs,
783          * instead of a different version of the same top-level vdev.
784          */
785         if (mvd->vdev_top == mvd) {
786                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
787                 cvd->vdev_orig_guid = cvd->vdev_guid;
788                 cvd->vdev_guid += guid_delta;
789                 cvd->vdev_guid_sum += guid_delta;
790         }
791         cvd->vdev_id = mvd->vdev_id;
792         vdev_add_child(pvd, cvd);
793         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
794
795         if (cvd == cvd->vdev_top)
796                 vdev_top_transfer(mvd, cvd);
797
798         ASSERT(mvd->vdev_children == 0);
799         vdev_free(mvd);
800 }
801
802 int
803 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
804 {
805         spa_t *spa = vd->vdev_spa;
806         objset_t *mos = spa->spa_meta_objset;
807         uint64_t m;
808         uint64_t oldc = vd->vdev_ms_count;
809         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
810         metaslab_t **mspp;
811         int error;
812
813         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814
815         /*
816          * This vdev is not being allocated from yet or is a hole.
817          */
818         if (vd->vdev_ms_shift == 0)
819                 return (0);
820
821         ASSERT(!vd->vdev_ishole);
822
823         /*
824          * Compute the raidz-deflation ratio.  Note, we hard-code
825          * in 128k (1 << 17) because it is the current "typical" blocksize.
826          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
827          * or we will inconsistently account for existing bp's.
828          */
829         vd->vdev_deflate_ratio = (1 << 17) /
830             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
831
832         ASSERT(oldc <= newc);
833
834         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
835
836         if (oldc != 0) {
837                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
838                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839         }
840
841         vd->vdev_ms = mspp;
842         vd->vdev_ms_count = newc;
843
844         for (m = oldc; m < newc; m++) {
845                 space_map_obj_t smo = { 0, 0, 0 };
846                 if (txg == 0) {
847                         uint64_t object = 0;
848                         error = dmu_read(mos, vd->vdev_ms_array,
849                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
850                             DMU_READ_PREFETCH);
851                         if (error)
852                                 return (error);
853                         if (object != 0) {
854                                 dmu_buf_t *db;
855                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
856                                 if (error)
857                                         return (error);
858                                 ASSERT3U(db->db_size, >=, sizeof (smo));
859                                 bcopy(db->db_data, &smo, sizeof (smo));
860                                 ASSERT3U(smo.smo_object, ==, object);
861                                 dmu_buf_rele(db, FTAG);
862                         }
863                 }
864                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
865                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
866         }
867
868         if (txg == 0)
869                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
870
871         /*
872          * If the vdev is being removed we don't activate
873          * the metaslabs since we want to ensure that no new
874          * allocations are performed on this device.
875          */
876         if (oldc == 0 && !vd->vdev_removing)
877                 metaslab_group_activate(vd->vdev_mg);
878
879         if (txg == 0)
880                 spa_config_exit(spa, SCL_ALLOC, FTAG);
881
882         return (0);
883 }
884
885 void
886 vdev_metaslab_fini(vdev_t *vd)
887 {
888         uint64_t m;
889         uint64_t count = vd->vdev_ms_count;
890
891         if (vd->vdev_ms != NULL) {
892                 metaslab_group_passivate(vd->vdev_mg);
893                 for (m = 0; m < count; m++)
894                         if (vd->vdev_ms[m] != NULL)
895                                 metaslab_fini(vd->vdev_ms[m]);
896                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
897                 vd->vdev_ms = NULL;
898         }
899 }
900
901 typedef struct vdev_probe_stats {
902         boolean_t       vps_readable;
903         boolean_t       vps_writeable;
904         int             vps_flags;
905 } vdev_probe_stats_t;
906
907 static void
908 vdev_probe_done(zio_t *zio)
909 {
910         spa_t *spa = zio->io_spa;
911         vdev_t *vd = zio->io_vd;
912         vdev_probe_stats_t *vps = zio->io_private;
913
914         ASSERT(vd->vdev_probe_zio != NULL);
915
916         if (zio->io_type == ZIO_TYPE_READ) {
917                 if (zio->io_error == 0)
918                         vps->vps_readable = 1;
919                 if (zio->io_error == 0 && spa_writeable(spa)) {
920                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
921                             zio->io_offset, zio->io_size, zio->io_data,
922                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
923                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
924                 } else {
925                         zio_buf_free(zio->io_data, zio->io_size);
926                 }
927         } else if (zio->io_type == ZIO_TYPE_WRITE) {
928                 if (zio->io_error == 0)
929                         vps->vps_writeable = 1;
930                 zio_buf_free(zio->io_data, zio->io_size);
931         } else if (zio->io_type == ZIO_TYPE_NULL) {
932                 zio_t *pio;
933
934                 vd->vdev_cant_read |= !vps->vps_readable;
935                 vd->vdev_cant_write |= !vps->vps_writeable;
936
937                 if (vdev_readable(vd) &&
938                     (vdev_writeable(vd) || !spa_writeable(spa))) {
939                         zio->io_error = 0;
940                 } else {
941                         ASSERT(zio->io_error != 0);
942                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
943                             spa, vd, NULL, 0, 0);
944                         zio->io_error = ENXIO;
945                 }
946
947                 mutex_enter(&vd->vdev_probe_lock);
948                 ASSERT(vd->vdev_probe_zio == zio);
949                 vd->vdev_probe_zio = NULL;
950                 mutex_exit(&vd->vdev_probe_lock);
951
952                 while ((pio = zio_walk_parents(zio)) != NULL)
953                         if (!vdev_accessible(vd, pio))
954                                 pio->io_error = ENXIO;
955
956                 kmem_free(vps, sizeof (*vps));
957         }
958 }
959
960 /*
961  * Determine whether this device is accessible by reading and writing
962  * to several known locations: the pad regions of each vdev label
963  * but the first (which we leave alone in case it contains a VTOC).
964  */
965 zio_t *
966 vdev_probe(vdev_t *vd, zio_t *zio)
967 {
968         spa_t *spa = vd->vdev_spa;
969         vdev_probe_stats_t *vps = NULL;
970         zio_t *pio;
971         int l;
972
973         ASSERT(vd->vdev_ops->vdev_op_leaf);
974
975         /*
976          * Don't probe the probe.
977          */
978         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
979                 return (NULL);
980
981         /*
982          * To prevent 'probe storms' when a device fails, we create
983          * just one probe i/o at a time.  All zios that want to probe
984          * this vdev will become parents of the probe io.
985          */
986         mutex_enter(&vd->vdev_probe_lock);
987
988         if ((pio = vd->vdev_probe_zio) == NULL) {
989                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
990
991                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
992                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
993                     ZIO_FLAG_TRYHARD;
994
995                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
996                         /*
997                          * vdev_cant_read and vdev_cant_write can only
998                          * transition from TRUE to FALSE when we have the
999                          * SCL_ZIO lock as writer; otherwise they can only
1000                          * transition from FALSE to TRUE.  This ensures that
1001                          * any zio looking at these values can assume that
1002                          * failures persist for the life of the I/O.  That's
1003                          * important because when a device has intermittent
1004                          * connectivity problems, we want to ensure that
1005                          * they're ascribed to the device (ENXIO) and not
1006                          * the zio (EIO).
1007                          *
1008                          * Since we hold SCL_ZIO as writer here, clear both
1009                          * values so the probe can reevaluate from first
1010                          * principles.
1011                          */
1012                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1013                         vd->vdev_cant_read = B_FALSE;
1014                         vd->vdev_cant_write = B_FALSE;
1015                 }
1016
1017                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1018                     vdev_probe_done, vps,
1019                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1020
1021                 /*
1022                  * We can't change the vdev state in this context, so we
1023                  * kick off an async task to do it on our behalf.
1024                  */
1025                 if (zio != NULL) {
1026                         vd->vdev_probe_wanted = B_TRUE;
1027                         spa_async_request(spa, SPA_ASYNC_PROBE);
1028                 }
1029         }
1030
1031         if (zio != NULL)
1032                 zio_add_child(zio, pio);
1033
1034         mutex_exit(&vd->vdev_probe_lock);
1035
1036         if (vps == NULL) {
1037                 ASSERT(zio != NULL);
1038                 return (NULL);
1039         }
1040
1041         for (l = 1; l < VDEV_LABELS; l++) {
1042                 zio_nowait(zio_read_phys(pio, vd,
1043                     vdev_label_offset(vd->vdev_psize, l,
1044                     offsetof(vdev_label_t, vl_pad2)),
1045                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1046                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1047                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1048         }
1049
1050         if (zio == NULL)
1051                 return (pio);
1052
1053         zio_nowait(pio);
1054         return (NULL);
1055 }
1056
1057 static void
1058 vdev_open_child(void *arg)
1059 {
1060         vdev_t *vd = arg;
1061
1062         vd->vdev_open_thread = curthread;
1063         vd->vdev_open_error = vdev_open(vd);
1064         vd->vdev_open_thread = NULL;
1065 }
1066
1067 boolean_t
1068 vdev_uses_zvols(vdev_t *vd)
1069 {
1070         int c;
1071
1072         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073             strlen(ZVOL_DIR)) == 0)
1074                 return (B_TRUE);
1075         for (c = 0; c < vd->vdev_children; c++)
1076                 if (vdev_uses_zvols(vd->vdev_child[c]))
1077                         return (B_TRUE);
1078         return (B_FALSE);
1079 }
1080
1081 void
1082 vdev_open_children(vdev_t *vd)
1083 {
1084         taskq_t *tq;
1085         int children = vd->vdev_children;
1086         int c;
1087
1088         /*
1089          * in order to handle pools on top of zvols, do the opens
1090          * in a single thread so that the same thread holds the
1091          * spa_namespace_lock
1092          */
1093         if (vdev_uses_zvols(vd)) {
1094                 for (c = 0; c < children; c++)
1095                         vd->vdev_child[c]->vdev_open_error =
1096                             vdev_open(vd->vdev_child[c]);
1097                 return;
1098         }
1099         tq = taskq_create("vdev_open", children, minclsyspri,
1100             children, children, TASKQ_PREPOPULATE);
1101
1102         for (c = 0; c < children; c++)
1103                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1104                     TQ_SLEEP) != 0);
1105
1106         taskq_destroy(tq);
1107 }
1108
1109 /*
1110  * Prepare a virtual device for access.
1111  */
1112 int
1113 vdev_open(vdev_t *vd)
1114 {
1115         spa_t *spa = vd->vdev_spa;
1116         int error;
1117         uint64_t osize = 0;
1118         uint64_t asize, psize;
1119         uint64_t ashift = 0;
1120         int c;
1121
1122         ASSERT(vd->vdev_open_thread == curthread ||
1123             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1124         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126             vd->vdev_state == VDEV_STATE_OFFLINE);
1127
1128         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1129         vd->vdev_cant_read = B_FALSE;
1130         vd->vdev_cant_write = B_FALSE;
1131         vd->vdev_min_asize = vdev_get_min_asize(vd);
1132
1133         /*
1134          * If this vdev is not removed, check its fault status.  If it's
1135          * faulted, bail out of the open.
1136          */
1137         if (!vd->vdev_removed && vd->vdev_faulted) {
1138                 ASSERT(vd->vdev_children == 0);
1139                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1141                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1142                     vd->vdev_label_aux);
1143                 return (ENXIO);
1144         } else if (vd->vdev_offline) {
1145                 ASSERT(vd->vdev_children == 0);
1146                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147                 return (ENXIO);
1148         }
1149
1150         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1151
1152         /*
1153          * Reset the vdev_reopening flag so that we actually close
1154          * the vdev on error.
1155          */
1156         vd->vdev_reopening = B_FALSE;
1157         if (zio_injection_enabled && error == 0)
1158                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1159
1160         if (error) {
1161                 if (vd->vdev_removed &&
1162                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163                         vd->vdev_removed = B_FALSE;
1164
1165                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166                     vd->vdev_stat.vs_aux);
1167                 return (error);
1168         }
1169
1170         vd->vdev_removed = B_FALSE;
1171
1172         /*
1173          * Recheck the faulted flag now that we have confirmed that
1174          * the vdev is accessible.  If we're faulted, bail.
1175          */
1176         if (vd->vdev_faulted) {
1177                 ASSERT(vd->vdev_children == 0);
1178                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181                     vd->vdev_label_aux);
1182                 return (ENXIO);
1183         }
1184
1185         if (vd->vdev_degraded) {
1186                 ASSERT(vd->vdev_children == 0);
1187                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188                     VDEV_AUX_ERR_EXCEEDED);
1189         } else {
1190                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1191         }
1192
1193         /*
1194          * For hole or missing vdevs we just return success.
1195          */
1196         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197                 return (0);
1198
1199         for (c = 0; c < vd->vdev_children; c++) {
1200                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1201                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202                             VDEV_AUX_NONE);
1203                         break;
1204                 }
1205         }
1206
1207         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1208
1209         if (vd->vdev_children == 0) {
1210                 if (osize < SPA_MINDEVSIZE) {
1211                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212                             VDEV_AUX_TOO_SMALL);
1213                         return (EOVERFLOW);
1214                 }
1215                 psize = osize;
1216                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1217         } else {
1218                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1219                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1220                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221                             VDEV_AUX_TOO_SMALL);
1222                         return (EOVERFLOW);
1223                 }
1224                 psize = 0;
1225                 asize = osize;
1226         }
1227
1228         vd->vdev_psize = psize;
1229
1230         /*
1231          * Make sure the allocatable size hasn't shrunk.
1232          */
1233         if (asize < vd->vdev_min_asize) {
1234                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235                     VDEV_AUX_BAD_LABEL);
1236                 return (EINVAL);
1237         }
1238
1239         if (vd->vdev_asize == 0) {
1240                 /*
1241                  * This is the first-ever open, so use the computed values.
1242                  * For testing purposes, a higher ashift can be requested.
1243                  */
1244                 vd->vdev_asize = asize;
1245                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1246         } else {
1247                 /*
1248                  * Make sure the alignment requirement hasn't increased.
1249                  */
1250                 if (ashift > vd->vdev_top->vdev_ashift) {
1251                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252                             VDEV_AUX_BAD_LABEL);
1253                         return (EINVAL);
1254                 }
1255         }
1256
1257         /*
1258          * If all children are healthy and the asize has increased,
1259          * then we've experienced dynamic LUN growth.  If automatic
1260          * expansion is enabled then use the additional space.
1261          */
1262         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1263             (vd->vdev_expanding || spa->spa_autoexpand))
1264                 vd->vdev_asize = asize;
1265
1266         vdev_set_min_asize(vd);
1267
1268         /*
1269          * Ensure we can issue some IO before declaring the
1270          * vdev open for business.
1271          */
1272         if (vd->vdev_ops->vdev_op_leaf &&
1273             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1274                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275                     VDEV_AUX_ERR_EXCEEDED);
1276                 return (error);
1277         }
1278
1279         /*
1280          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1281          * resilver.  But don't do this if we are doing a reopen for a scrub,
1282          * since this would just restart the scrub we are already doing.
1283          */
1284         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1285             vdev_resilver_needed(vd, NULL, NULL))
1286                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1287
1288         return (0);
1289 }
1290
1291 /*
1292  * Called once the vdevs are all opened, this routine validates the label
1293  * contents.  This needs to be done before vdev_load() so that we don't
1294  * inadvertently do repair I/Os to the wrong device.
1295  *
1296  * This function will only return failure if one of the vdevs indicates that it
1297  * has since been destroyed or exported.  This is only possible if
1298  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1299  * will be updated but the function will return 0.
1300  */
1301 int
1302 vdev_validate(vdev_t *vd)
1303 {
1304         spa_t *spa = vd->vdev_spa;
1305         nvlist_t *label;
1306         uint64_t guid = 0, top_guid;
1307         uint64_t state;
1308         int c;
1309
1310         for (c = 0; c < vd->vdev_children; c++)
1311                 if (vdev_validate(vd->vdev_child[c]) != 0)
1312                         return (EBADF);
1313
1314         /*
1315          * If the device has already failed, or was marked offline, don't do
1316          * any further validation.  Otherwise, label I/O will fail and we will
1317          * overwrite the previous state.
1318          */
1319         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1320                 uint64_t aux_guid = 0;
1321                 nvlist_t *nvl;
1322
1323                 if ((label = vdev_label_read_config(vd)) == NULL) {
1324                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325                             VDEV_AUX_BAD_LABEL);
1326                         return (0);
1327                 }
1328
1329                 /*
1330                  * Determine if this vdev has been split off into another
1331                  * pool.  If so, then refuse to open it.
1332                  */
1333                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1334                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1335                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1336                             VDEV_AUX_SPLIT_POOL);
1337                         nvlist_free(label);
1338                         return (0);
1339                 }
1340
1341                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1342                     &guid) != 0 || guid != spa_guid(spa)) {
1343                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1344                             VDEV_AUX_CORRUPT_DATA);
1345                         nvlist_free(label);
1346                         return (0);
1347                 }
1348
1349                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1350                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1351                     &aux_guid) != 0)
1352                         aux_guid = 0;
1353
1354                 /*
1355                  * If this vdev just became a top-level vdev because its
1356                  * sibling was detached, it will have adopted the parent's
1357                  * vdev guid -- but the label may or may not be on disk yet.
1358                  * Fortunately, either version of the label will have the
1359                  * same top guid, so if we're a top-level vdev, we can
1360                  * safely compare to that instead.
1361                  *
1362                  * If we split this vdev off instead, then we also check the
1363                  * original pool's guid.  We don't want to consider the vdev
1364                  * corrupt if it is partway through a split operation.
1365                  */
1366                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1367                     &guid) != 0 ||
1368                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1369                     &top_guid) != 0 ||
1370                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1371                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1372                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1373                             VDEV_AUX_CORRUPT_DATA);
1374                         nvlist_free(label);
1375                         return (0);
1376                 }
1377
1378                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1379                     &state) != 0) {
1380                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381                             VDEV_AUX_CORRUPT_DATA);
1382                         nvlist_free(label);
1383                         return (0);
1384                 }
1385
1386                 nvlist_free(label);
1387
1388                 /*
1389                  * If this is a verbatim import, no need to check the
1390                  * state of the pool.
1391                  */
1392                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1393                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1394                     state != POOL_STATE_ACTIVE)
1395                         return (EBADF);
1396
1397                 /*
1398                  * If we were able to open and validate a vdev that was
1399                  * previously marked permanently unavailable, clear that state
1400                  * now.
1401                  */
1402                 if (vd->vdev_not_present)
1403                         vd->vdev_not_present = 0;
1404         }
1405
1406         return (0);
1407 }
1408
1409 /*
1410  * Close a virtual device.
1411  */
1412 void
1413 vdev_close(vdev_t *vd)
1414 {
1415         spa_t *spa = vd->vdev_spa;
1416         vdev_t *pvd = vd->vdev_parent;
1417
1418         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1419
1420         /*
1421          * If our parent is reopening, then we are as well, unless we are
1422          * going offline.
1423          */
1424         if (pvd != NULL && pvd->vdev_reopening)
1425                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1426
1427         vd->vdev_ops->vdev_op_close(vd);
1428
1429         vdev_cache_purge(vd);
1430
1431         /*
1432          * We record the previous state before we close it, so that if we are
1433          * doing a reopen(), we don't generate FMA ereports if we notice that
1434          * it's still faulted.
1435          */
1436         vd->vdev_prevstate = vd->vdev_state;
1437
1438         if (vd->vdev_offline)
1439                 vd->vdev_state = VDEV_STATE_OFFLINE;
1440         else
1441                 vd->vdev_state = VDEV_STATE_CLOSED;
1442         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1443 }
1444
1445 void
1446 vdev_hold(vdev_t *vd)
1447 {
1448         spa_t *spa = vd->vdev_spa;
1449         int c;
1450
1451         ASSERT(spa_is_root(spa));
1452         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1453                 return;
1454
1455         for (c = 0; c < vd->vdev_children; c++)
1456                 vdev_hold(vd->vdev_child[c]);
1457
1458         if (vd->vdev_ops->vdev_op_leaf)
1459                 vd->vdev_ops->vdev_op_hold(vd);
1460 }
1461
1462 void
1463 vdev_rele(vdev_t *vd)
1464 {
1465         int c;
1466
1467         ASSERT(spa_is_root(vd->vdev_spa));
1468         for (c = 0; c < vd->vdev_children; c++)
1469                 vdev_rele(vd->vdev_child[c]);
1470
1471         if (vd->vdev_ops->vdev_op_leaf)
1472                 vd->vdev_ops->vdev_op_rele(vd);
1473 }
1474
1475 /*
1476  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1477  * reopen leaf vdevs which had previously been opened as they might deadlock
1478  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1479  * If the leaf has never been opened then open it, as usual.
1480  */
1481 void
1482 vdev_reopen(vdev_t *vd)
1483 {
1484         spa_t *spa = vd->vdev_spa;
1485
1486         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1487
1488         /* set the reopening flag unless we're taking the vdev offline */
1489         vd->vdev_reopening = !vd->vdev_offline;
1490         vdev_close(vd);
1491         (void) vdev_open(vd);
1492
1493         /*
1494          * Call vdev_validate() here to make sure we have the same device.
1495          * Otherwise, a device with an invalid label could be successfully
1496          * opened in response to vdev_reopen().
1497          */
1498         if (vd->vdev_aux) {
1499                 (void) vdev_validate_aux(vd);
1500                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1501                     vd->vdev_aux == &spa->spa_l2cache &&
1502                     !l2arc_vdev_present(vd))
1503                         l2arc_add_vdev(spa, vd);
1504         } else {
1505                 (void) vdev_validate(vd);
1506         }
1507
1508         /*
1509          * Reassess parent vdev's health.
1510          */
1511         vdev_propagate_state(vd);
1512 }
1513
1514 int
1515 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1516 {
1517         int error;
1518
1519         /*
1520          * Normally, partial opens (e.g. of a mirror) are allowed.
1521          * For a create, however, we want to fail the request if
1522          * there are any components we can't open.
1523          */
1524         error = vdev_open(vd);
1525
1526         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1527                 vdev_close(vd);
1528                 return (error ? error : ENXIO);
1529         }
1530
1531         /*
1532          * Recursively initialize all labels.
1533          */
1534         if ((error = vdev_label_init(vd, txg, isreplacing ?
1535             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1536                 vdev_close(vd);
1537                 return (error);
1538         }
1539
1540         return (0);
1541 }
1542
1543 void
1544 vdev_metaslab_set_size(vdev_t *vd)
1545 {
1546         /*
1547          * Aim for roughly 200 metaslabs per vdev.
1548          */
1549         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1550         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1551 }
1552
1553 void
1554 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1555 {
1556         ASSERT(vd == vd->vdev_top);
1557         ASSERT(!vd->vdev_ishole);
1558         ASSERT(ISP2(flags));
1559         ASSERT(spa_writeable(vd->vdev_spa));
1560
1561         if (flags & VDD_METASLAB)
1562                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1563
1564         if (flags & VDD_DTL)
1565                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1566
1567         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1568 }
1569
1570 /*
1571  * DTLs.
1572  *
1573  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1574  * the vdev has less than perfect replication.  There are four kinds of DTL:
1575  *
1576  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1577  *
1578  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1579  *
1580  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1581  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1582  *      txgs that was scrubbed.
1583  *
1584  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1585  *      persistent errors or just some device being offline.
1586  *      Unlike the other three, the DTL_OUTAGE map is not generally
1587  *      maintained; it's only computed when needed, typically to
1588  *      determine whether a device can be detached.
1589  *
1590  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1591  * either has the data or it doesn't.
1592  *
1593  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1594  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1595  * if any child is less than fully replicated, then so is its parent.
1596  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1597  * comprising only those txgs which appear in 'maxfaults' or more children;
1598  * those are the txgs we don't have enough replication to read.  For example,
1599  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1600  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1601  * two child DTL_MISSING maps.
1602  *
1603  * It should be clear from the above that to compute the DTLs and outage maps
1604  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1605  * Therefore, that is all we keep on disk.  When loading the pool, or after
1606  * a configuration change, we generate all other DTLs from first principles.
1607  */
1608 void
1609 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1610 {
1611         space_map_t *sm = &vd->vdev_dtl[t];
1612
1613         ASSERT(t < DTL_TYPES);
1614         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1615         ASSERT(spa_writeable(vd->vdev_spa));
1616
1617         mutex_enter(sm->sm_lock);
1618         if (!space_map_contains(sm, txg, size))
1619                 space_map_add(sm, txg, size);
1620         mutex_exit(sm->sm_lock);
1621 }
1622
1623 boolean_t
1624 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1625 {
1626         space_map_t *sm = &vd->vdev_dtl[t];
1627         boolean_t dirty = B_FALSE;
1628
1629         ASSERT(t < DTL_TYPES);
1630         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1631
1632         mutex_enter(sm->sm_lock);
1633         if (sm->sm_space != 0)
1634                 dirty = space_map_contains(sm, txg, size);
1635         mutex_exit(sm->sm_lock);
1636
1637         return (dirty);
1638 }
1639
1640 boolean_t
1641 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1642 {
1643         space_map_t *sm = &vd->vdev_dtl[t];
1644         boolean_t empty;
1645
1646         mutex_enter(sm->sm_lock);
1647         empty = (sm->sm_space == 0);
1648         mutex_exit(sm->sm_lock);
1649
1650         return (empty);
1651 }
1652
1653 /*
1654  * Reassess DTLs after a config change or scrub completion.
1655  */
1656 void
1657 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1658 {
1659         spa_t *spa = vd->vdev_spa;
1660         avl_tree_t reftree;
1661         int c, t, minref;
1662
1663         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1664
1665         for (c = 0; c < vd->vdev_children; c++)
1666                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1667                     scrub_txg, scrub_done);
1668
1669         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1670                 return;
1671
1672         if (vd->vdev_ops->vdev_op_leaf) {
1673                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1674
1675                 mutex_enter(&vd->vdev_dtl_lock);
1676                 if (scrub_txg != 0 &&
1677                     (spa->spa_scrub_started ||
1678                     (scn && scn->scn_phys.scn_errors == 0))) {
1679                         /*
1680                          * We completed a scrub up to scrub_txg.  If we
1681                          * did it without rebooting, then the scrub dtl
1682                          * will be valid, so excise the old region and
1683                          * fold in the scrub dtl.  Otherwise, leave the
1684                          * dtl as-is if there was an error.
1685                          *
1686                          * There's little trick here: to excise the beginning
1687                          * of the DTL_MISSING map, we put it into a reference
1688                          * tree and then add a segment with refcnt -1 that
1689                          * covers the range [0, scrub_txg).  This means
1690                          * that each txg in that range has refcnt -1 or 0.
1691                          * We then add DTL_SCRUB with a refcnt of 2, so that
1692                          * entries in the range [0, scrub_txg) will have a
1693                          * positive refcnt -- either 1 or 2.  We then convert
1694                          * the reference tree into the new DTL_MISSING map.
1695                          */
1696                         space_map_ref_create(&reftree);
1697                         space_map_ref_add_map(&reftree,
1698                             &vd->vdev_dtl[DTL_MISSING], 1);
1699                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1700                         space_map_ref_add_map(&reftree,
1701                             &vd->vdev_dtl[DTL_SCRUB], 2);
1702                         space_map_ref_generate_map(&reftree,
1703                             &vd->vdev_dtl[DTL_MISSING], 1);
1704                         space_map_ref_destroy(&reftree);
1705                 }
1706                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1707                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1708                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1709                 if (scrub_done)
1710                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1711                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1712                 if (!vdev_readable(vd))
1713                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1714                 else
1715                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1716                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1717                 mutex_exit(&vd->vdev_dtl_lock);
1718
1719                 if (txg != 0)
1720                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1721                 return;
1722         }
1723
1724         mutex_enter(&vd->vdev_dtl_lock);
1725         for (t = 0; t < DTL_TYPES; t++) {
1726                 /* account for child's outage in parent's missing map */
1727                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1728                 if (t == DTL_SCRUB)
1729                         continue;                       /* leaf vdevs only */
1730                 if (t == DTL_PARTIAL)
1731                         minref = 1;                     /* i.e. non-zero */
1732                 else if (vd->vdev_nparity != 0)
1733                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1734                 else
1735                         minref = vd->vdev_children;     /* any kind of mirror */
1736                 space_map_ref_create(&reftree);
1737                 for (c = 0; c < vd->vdev_children; c++) {
1738                         vdev_t *cvd = vd->vdev_child[c];
1739                         mutex_enter(&cvd->vdev_dtl_lock);
1740                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1741                         mutex_exit(&cvd->vdev_dtl_lock);
1742                 }
1743                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1744                 space_map_ref_destroy(&reftree);
1745         }
1746         mutex_exit(&vd->vdev_dtl_lock);
1747 }
1748
1749 static int
1750 vdev_dtl_load(vdev_t *vd)
1751 {
1752         spa_t *spa = vd->vdev_spa;
1753         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1754         objset_t *mos = spa->spa_meta_objset;
1755         dmu_buf_t *db;
1756         int error;
1757
1758         ASSERT(vd->vdev_children == 0);
1759
1760         if (smo->smo_object == 0)
1761                 return (0);
1762
1763         ASSERT(!vd->vdev_ishole);
1764
1765         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1766                 return (error);
1767
1768         ASSERT3U(db->db_size, >=, sizeof (*smo));
1769         bcopy(db->db_data, smo, sizeof (*smo));
1770         dmu_buf_rele(db, FTAG);
1771
1772         mutex_enter(&vd->vdev_dtl_lock);
1773         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1774             NULL, SM_ALLOC, smo, mos);
1775         mutex_exit(&vd->vdev_dtl_lock);
1776
1777         return (error);
1778 }
1779
1780 void
1781 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1782 {
1783         spa_t *spa = vd->vdev_spa;
1784         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1785         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1786         objset_t *mos = spa->spa_meta_objset;
1787         space_map_t smsync;
1788         kmutex_t smlock;
1789         dmu_buf_t *db;
1790         dmu_tx_t *tx;
1791
1792         ASSERT(!vd->vdev_ishole);
1793
1794         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1795
1796         if (vd->vdev_detached) {
1797                 if (smo->smo_object != 0) {
1798                         int err = dmu_object_free(mos, smo->smo_object, tx);
1799                         ASSERT3U(err, ==, 0);
1800                         smo->smo_object = 0;
1801                 }
1802                 dmu_tx_commit(tx);
1803                 return;
1804         }
1805
1806         if (smo->smo_object == 0) {
1807                 ASSERT(smo->smo_objsize == 0);
1808                 ASSERT(smo->smo_alloc == 0);
1809                 smo->smo_object = dmu_object_alloc(mos,
1810                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1811                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1812                 ASSERT(smo->smo_object != 0);
1813                 vdev_config_dirty(vd->vdev_top);
1814         }
1815
1816         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1817
1818         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1819             &smlock);
1820
1821         mutex_enter(&smlock);
1822
1823         mutex_enter(&vd->vdev_dtl_lock);
1824         space_map_walk(sm, space_map_add, &smsync);
1825         mutex_exit(&vd->vdev_dtl_lock);
1826
1827         space_map_truncate(smo, mos, tx);
1828         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1829
1830         space_map_destroy(&smsync);
1831
1832         mutex_exit(&smlock);
1833         mutex_destroy(&smlock);
1834
1835         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1836         dmu_buf_will_dirty(db, tx);
1837         ASSERT3U(db->db_size, >=, sizeof (*smo));
1838         bcopy(smo, db->db_data, sizeof (*smo));
1839         dmu_buf_rele(db, FTAG);
1840
1841         dmu_tx_commit(tx);
1842 }
1843
1844 /*
1845  * Determine whether the specified vdev can be offlined/detached/removed
1846  * without losing data.
1847  */
1848 boolean_t
1849 vdev_dtl_required(vdev_t *vd)
1850 {
1851         spa_t *spa = vd->vdev_spa;
1852         vdev_t *tvd = vd->vdev_top;
1853         uint8_t cant_read = vd->vdev_cant_read;
1854         boolean_t required;
1855
1856         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1857
1858         if (vd == spa->spa_root_vdev || vd == tvd)
1859                 return (B_TRUE);
1860
1861         /*
1862          * Temporarily mark the device as unreadable, and then determine
1863          * whether this results in any DTL outages in the top-level vdev.
1864          * If not, we can safely offline/detach/remove the device.
1865          */
1866         vd->vdev_cant_read = B_TRUE;
1867         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1868         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1869         vd->vdev_cant_read = cant_read;
1870         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1871
1872         if (!required && zio_injection_enabled)
1873                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1874
1875         return (required);
1876 }
1877
1878 /*
1879  * Determine if resilver is needed, and if so the txg range.
1880  */
1881 boolean_t
1882 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1883 {
1884         boolean_t needed = B_FALSE;
1885         uint64_t thismin = UINT64_MAX;
1886         uint64_t thismax = 0;
1887         int c;
1888
1889         if (vd->vdev_children == 0) {
1890                 mutex_enter(&vd->vdev_dtl_lock);
1891                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1892                     vdev_writeable(vd)) {
1893                         space_seg_t *ss;
1894
1895                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1896                         thismin = ss->ss_start - 1;
1897                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1898                         thismax = ss->ss_end;
1899                         needed = B_TRUE;
1900                 }
1901                 mutex_exit(&vd->vdev_dtl_lock);
1902         } else {
1903                 for (c = 0; c < vd->vdev_children; c++) {
1904                         vdev_t *cvd = vd->vdev_child[c];
1905                         uint64_t cmin, cmax;
1906
1907                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1908                                 thismin = MIN(thismin, cmin);
1909                                 thismax = MAX(thismax, cmax);
1910                                 needed = B_TRUE;
1911                         }
1912                 }
1913         }
1914
1915         if (needed && minp) {
1916                 *minp = thismin;
1917                 *maxp = thismax;
1918         }
1919         return (needed);
1920 }
1921
1922 void
1923 vdev_load(vdev_t *vd)
1924 {
1925         int c;
1926
1927         /*
1928          * Recursively load all children.
1929          */
1930         for (c = 0; c < vd->vdev_children; c++)
1931                 vdev_load(vd->vdev_child[c]);
1932
1933         /*
1934          * If this is a top-level vdev, initialize its metaslabs.
1935          */
1936         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1937             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1938             vdev_metaslab_init(vd, 0) != 0))
1939                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1940                     VDEV_AUX_CORRUPT_DATA);
1941
1942         /*
1943          * If this is a leaf vdev, load its DTL.
1944          */
1945         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1946                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1947                     VDEV_AUX_CORRUPT_DATA);
1948 }
1949
1950 /*
1951  * The special vdev case is used for hot spares and l2cache devices.  Its
1952  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1953  * we make sure that we can open the underlying device, then try to read the
1954  * label, and make sure that the label is sane and that it hasn't been
1955  * repurposed to another pool.
1956  */
1957 int
1958 vdev_validate_aux(vdev_t *vd)
1959 {
1960         nvlist_t *label;
1961         uint64_t guid, version;
1962         uint64_t state;
1963
1964         if (!vdev_readable(vd))
1965                 return (0);
1966
1967         if ((label = vdev_label_read_config(vd)) == NULL) {
1968                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1969                     VDEV_AUX_CORRUPT_DATA);
1970                 return (-1);
1971         }
1972
1973         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1974             version > SPA_VERSION ||
1975             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1976             guid != vd->vdev_guid ||
1977             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1978                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1979                     VDEV_AUX_CORRUPT_DATA);
1980                 nvlist_free(label);
1981                 return (-1);
1982         }
1983
1984         /*
1985          * We don't actually check the pool state here.  If it's in fact in
1986          * use by another pool, we update this fact on the fly when requested.
1987          */
1988         nvlist_free(label);
1989         return (0);
1990 }
1991
1992 void
1993 vdev_remove(vdev_t *vd, uint64_t txg)
1994 {
1995         spa_t *spa = vd->vdev_spa;
1996         objset_t *mos = spa->spa_meta_objset;
1997         dmu_tx_t *tx;
1998         int m;
1999
2000         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2001
2002         if (vd->vdev_dtl_smo.smo_object) {
2003                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2004                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2005                 vd->vdev_dtl_smo.smo_object = 0;
2006         }
2007
2008         if (vd->vdev_ms != NULL) {
2009                 for (m = 0; m < vd->vdev_ms_count; m++) {
2010                         metaslab_t *msp = vd->vdev_ms[m];
2011
2012                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2013                                 continue;
2014
2015                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2016                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2017                         msp->ms_smo.smo_object = 0;
2018                 }
2019         }
2020
2021         if (vd->vdev_ms_array) {
2022                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2023                 vd->vdev_ms_array = 0;
2024                 vd->vdev_ms_shift = 0;
2025         }
2026         dmu_tx_commit(tx);
2027 }
2028
2029 void
2030 vdev_sync_done(vdev_t *vd, uint64_t txg)
2031 {
2032         metaslab_t *msp;
2033         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2034
2035         ASSERT(!vd->vdev_ishole);
2036
2037         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2038                 metaslab_sync_done(msp, txg);
2039
2040         if (reassess)
2041                 metaslab_sync_reassess(vd->vdev_mg);
2042 }
2043
2044 void
2045 vdev_sync(vdev_t *vd, uint64_t txg)
2046 {
2047         spa_t *spa = vd->vdev_spa;
2048         vdev_t *lvd;
2049         metaslab_t *msp;
2050         dmu_tx_t *tx;
2051
2052         ASSERT(!vd->vdev_ishole);
2053
2054         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2055                 ASSERT(vd == vd->vdev_top);
2056                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2057                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2058                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2059                 ASSERT(vd->vdev_ms_array != 0);
2060                 vdev_config_dirty(vd);
2061                 dmu_tx_commit(tx);
2062         }
2063
2064         /*
2065          * Remove the metadata associated with this vdev once it's empty.
2066          */
2067         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2068                 vdev_remove(vd, txg);
2069
2070         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2071                 metaslab_sync(msp, txg);
2072                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2073         }
2074
2075         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2076                 vdev_dtl_sync(lvd, txg);
2077
2078         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2079 }
2080
2081 uint64_t
2082 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2083 {
2084         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2085 }
2086
2087 /*
2088  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2089  * not be opened, and no I/O is attempted.
2090  */
2091 int
2092 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2093 {
2094         vdev_t *vd, *tvd;
2095
2096         spa_vdev_state_enter(spa, SCL_NONE);
2097
2098         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2099                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2100
2101         if (!vd->vdev_ops->vdev_op_leaf)
2102                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2103
2104         tvd = vd->vdev_top;
2105
2106         /*
2107          * We don't directly use the aux state here, but if we do a
2108          * vdev_reopen(), we need this value to be present to remember why we
2109          * were faulted.
2110          */
2111         vd->vdev_label_aux = aux;
2112
2113         /*
2114          * Faulted state takes precedence over degraded.
2115          */
2116         vd->vdev_delayed_close = B_FALSE;
2117         vd->vdev_faulted = 1ULL;
2118         vd->vdev_degraded = 0ULL;
2119         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2120
2121         /*
2122          * If this device has the only valid copy of the data, then
2123          * back off and simply mark the vdev as degraded instead.
2124          */
2125         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2126                 vd->vdev_degraded = 1ULL;
2127                 vd->vdev_faulted = 0ULL;
2128
2129                 /*
2130                  * If we reopen the device and it's not dead, only then do we
2131                  * mark it degraded.
2132                  */
2133                 vdev_reopen(tvd);
2134
2135                 if (vdev_readable(vd))
2136                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2137         }
2138
2139         return (spa_vdev_state_exit(spa, vd, 0));
2140 }
2141
2142 /*
2143  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2144  * user that something is wrong.  The vdev continues to operate as normal as far
2145  * as I/O is concerned.
2146  */
2147 int
2148 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2149 {
2150         vdev_t *vd;
2151
2152         spa_vdev_state_enter(spa, SCL_NONE);
2153
2154         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2155                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2156
2157         if (!vd->vdev_ops->vdev_op_leaf)
2158                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2159
2160         /*
2161          * If the vdev is already faulted, then don't do anything.
2162          */
2163         if (vd->vdev_faulted || vd->vdev_degraded)
2164                 return (spa_vdev_state_exit(spa, NULL, 0));
2165
2166         vd->vdev_degraded = 1ULL;
2167         if (!vdev_is_dead(vd))
2168                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2169                     aux);
2170
2171         return (spa_vdev_state_exit(spa, vd, 0));
2172 }
2173
2174 /*
2175  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2176  * any attached spare device should be detached when the device finishes
2177  * resilvering.  Second, the online should be treated like a 'test' online case,
2178  * so no FMA events are generated if the device fails to open.
2179  */
2180 int
2181 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2182 {
2183         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2184
2185         spa_vdev_state_enter(spa, SCL_NONE);
2186
2187         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2188                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2189
2190         if (!vd->vdev_ops->vdev_op_leaf)
2191                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2192
2193         tvd = vd->vdev_top;
2194         vd->vdev_offline = B_FALSE;
2195         vd->vdev_tmpoffline = B_FALSE;
2196         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2197         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2198
2199         /* XXX - L2ARC 1.0 does not support expansion */
2200         if (!vd->vdev_aux) {
2201                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2203         }
2204
2205         vdev_reopen(tvd);
2206         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2207
2208         if (!vd->vdev_aux) {
2209                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2210                         pvd->vdev_expanding = B_FALSE;
2211         }
2212
2213         if (newstate)
2214                 *newstate = vd->vdev_state;
2215         if ((flags & ZFS_ONLINE_UNSPARE) &&
2216             !vdev_is_dead(vd) && vd->vdev_parent &&
2217             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2218             vd->vdev_parent->vdev_child[0] == vd)
2219                 vd->vdev_unspare = B_TRUE;
2220
2221         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2222
2223                 /* XXX - L2ARC 1.0 does not support expansion */
2224                 if (vd->vdev_aux)
2225                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2226                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2227         }
2228         return (spa_vdev_state_exit(spa, vd, 0));
2229 }
2230
2231 static int
2232 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2233 {
2234         vdev_t *vd, *tvd;
2235         int error = 0;
2236         uint64_t generation;
2237         metaslab_group_t *mg;
2238
2239 top:
2240         spa_vdev_state_enter(spa, SCL_ALLOC);
2241
2242         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2243                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2244
2245         if (!vd->vdev_ops->vdev_op_leaf)
2246                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2247
2248         tvd = vd->vdev_top;
2249         mg = tvd->vdev_mg;
2250         generation = spa->spa_config_generation + 1;
2251
2252         /*
2253          * If the device isn't already offline, try to offline it.
2254          */
2255         if (!vd->vdev_offline) {
2256                 /*
2257                  * If this device has the only valid copy of some data,
2258                  * don't allow it to be offlined. Log devices are always
2259                  * expendable.
2260                  */
2261                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2262                     vdev_dtl_required(vd))
2263                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2264
2265                 /*
2266                  * If the top-level is a slog and it has had allocations
2267                  * then proceed.  We check that the vdev's metaslab group
2268                  * is not NULL since it's possible that we may have just
2269                  * added this vdev but not yet initialized its metaslabs.
2270                  */
2271                 if (tvd->vdev_islog && mg != NULL) {
2272                         /*
2273                          * Prevent any future allocations.
2274                          */
2275                         metaslab_group_passivate(mg);
2276                         (void) spa_vdev_state_exit(spa, vd, 0);
2277
2278                         error = spa_offline_log(spa);
2279
2280                         spa_vdev_state_enter(spa, SCL_ALLOC);
2281
2282                         /*
2283                          * Check to see if the config has changed.
2284                          */
2285                         if (error || generation != spa->spa_config_generation) {
2286                                 metaslab_group_activate(mg);
2287                                 if (error)
2288                                         return (spa_vdev_state_exit(spa,
2289                                             vd, error));
2290                                 (void) spa_vdev_state_exit(spa, vd, 0);
2291                                 goto top;
2292                         }
2293                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2294                 }
2295
2296                 /*
2297                  * Offline this device and reopen its top-level vdev.
2298                  * If the top-level vdev is a log device then just offline
2299                  * it. Otherwise, if this action results in the top-level
2300                  * vdev becoming unusable, undo it and fail the request.
2301                  */
2302                 vd->vdev_offline = B_TRUE;
2303                 vdev_reopen(tvd);
2304
2305                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2306                     vdev_is_dead(tvd)) {
2307                         vd->vdev_offline = B_FALSE;
2308                         vdev_reopen(tvd);
2309                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2310                 }
2311
2312                 /*
2313                  * Add the device back into the metaslab rotor so that
2314                  * once we online the device it's open for business.
2315                  */
2316                 if (tvd->vdev_islog && mg != NULL)
2317                         metaslab_group_activate(mg);
2318         }
2319
2320         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2321
2322         return (spa_vdev_state_exit(spa, vd, 0));
2323 }
2324
2325 int
2326 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2327 {
2328         int error;
2329
2330         mutex_enter(&spa->spa_vdev_top_lock);
2331         error = vdev_offline_locked(spa, guid, flags);
2332         mutex_exit(&spa->spa_vdev_top_lock);
2333
2334         return (error);
2335 }
2336
2337 /*
2338  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2339  * vdev_offline(), we assume the spa config is locked.  We also clear all
2340  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2341  */
2342 void
2343 vdev_clear(spa_t *spa, vdev_t *vd)
2344 {
2345         vdev_t *rvd = spa->spa_root_vdev;
2346         int c;
2347
2348         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2349
2350         if (vd == NULL)
2351                 vd = rvd;
2352
2353         vd->vdev_stat.vs_read_errors = 0;
2354         vd->vdev_stat.vs_write_errors = 0;
2355         vd->vdev_stat.vs_checksum_errors = 0;
2356
2357         for (c = 0; c < vd->vdev_children; c++)
2358                 vdev_clear(spa, vd->vdev_child[c]);
2359
2360         /*
2361          * If we're in the FAULTED state or have experienced failed I/O, then
2362          * clear the persistent state and attempt to reopen the device.  We
2363          * also mark the vdev config dirty, so that the new faulted state is
2364          * written out to disk.
2365          */
2366         if (vd->vdev_faulted || vd->vdev_degraded ||
2367             !vdev_readable(vd) || !vdev_writeable(vd)) {
2368
2369                 /*
2370                  * When reopening in reponse to a clear event, it may be due to
2371                  * a fmadm repair request.  In this case, if the device is
2372                  * still broken, we want to still post the ereport again.
2373                  */
2374                 vd->vdev_forcefault = B_TRUE;
2375
2376                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2377                 vd->vdev_cant_read = B_FALSE;
2378                 vd->vdev_cant_write = B_FALSE;
2379
2380                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2381
2382                 vd->vdev_forcefault = B_FALSE;
2383
2384                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2385                         vdev_state_dirty(vd->vdev_top);
2386
2387                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2388                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2389
2390                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2391         }
2392
2393         /*
2394          * When clearing a FMA-diagnosed fault, we always want to
2395          * unspare the device, as we assume that the original spare was
2396          * done in response to the FMA fault.
2397          */
2398         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2399             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2400             vd->vdev_parent->vdev_child[0] == vd)
2401                 vd->vdev_unspare = B_TRUE;
2402 }
2403
2404 boolean_t
2405 vdev_is_dead(vdev_t *vd)
2406 {
2407         /*
2408          * Holes and missing devices are always considered "dead".
2409          * This simplifies the code since we don't have to check for
2410          * these types of devices in the various code paths.
2411          * Instead we rely on the fact that we skip over dead devices
2412          * before issuing I/O to them.
2413          */
2414         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2415             vd->vdev_ops == &vdev_missing_ops);
2416 }
2417
2418 boolean_t
2419 vdev_readable(vdev_t *vd)
2420 {
2421         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2422 }
2423
2424 boolean_t
2425 vdev_writeable(vdev_t *vd)
2426 {
2427         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2428 }
2429
2430 boolean_t
2431 vdev_allocatable(vdev_t *vd)
2432 {
2433         uint64_t state = vd->vdev_state;
2434
2435         /*
2436          * We currently allow allocations from vdevs which may be in the
2437          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2438          * fails to reopen then we'll catch it later when we're holding
2439          * the proper locks.  Note that we have to get the vdev state
2440          * in a local variable because although it changes atomically,
2441          * we're asking two separate questions about it.
2442          */
2443         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2444             !vd->vdev_cant_write && !vd->vdev_ishole);
2445 }
2446
2447 boolean_t
2448 vdev_accessible(vdev_t *vd, zio_t *zio)
2449 {
2450         ASSERT(zio->io_vd == vd);
2451
2452         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2453                 return (B_FALSE);
2454
2455         if (zio->io_type == ZIO_TYPE_READ)
2456                 return (!vd->vdev_cant_read);
2457
2458         if (zio->io_type == ZIO_TYPE_WRITE)
2459                 return (!vd->vdev_cant_write);
2460
2461         return (B_TRUE);
2462 }
2463
2464 /*
2465  * Get statistics for the given vdev.
2466  */
2467 void
2468 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2469 {
2470         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2471         int c, t;
2472
2473         mutex_enter(&vd->vdev_stat_lock);
2474         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2475         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2476         vs->vs_state = vd->vdev_state;
2477         vs->vs_rsize = vdev_get_min_asize(vd);
2478         if (vd->vdev_ops->vdev_op_leaf)
2479                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2480         mutex_exit(&vd->vdev_stat_lock);
2481
2482         /*
2483          * If we're getting stats on the root vdev, aggregate the I/O counts
2484          * over all top-level vdevs (i.e. the direct children of the root).
2485          */
2486         if (vd == rvd) {
2487                 for (c = 0; c < rvd->vdev_children; c++) {
2488                         vdev_t *cvd = rvd->vdev_child[c];
2489                         vdev_stat_t *cvs = &cvd->vdev_stat;
2490
2491                         mutex_enter(&vd->vdev_stat_lock);
2492                         for (t = 0; t < ZIO_TYPES; t++) {
2493                                 vs->vs_ops[t] += cvs->vs_ops[t];
2494                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2495                         }
2496                         cvs->vs_scan_removing = cvd->vdev_removing;
2497                         mutex_exit(&vd->vdev_stat_lock);
2498                 }
2499         }
2500 }
2501
2502 void
2503 vdev_clear_stats(vdev_t *vd)
2504 {
2505         mutex_enter(&vd->vdev_stat_lock);
2506         vd->vdev_stat.vs_space = 0;
2507         vd->vdev_stat.vs_dspace = 0;
2508         vd->vdev_stat.vs_alloc = 0;
2509         mutex_exit(&vd->vdev_stat_lock);
2510 }
2511
2512 void
2513 vdev_scan_stat_init(vdev_t *vd)
2514 {
2515         vdev_stat_t *vs = &vd->vdev_stat;
2516         int c;
2517
2518         for (c = 0; c < vd->vdev_children; c++)
2519                 vdev_scan_stat_init(vd->vdev_child[c]);
2520
2521         mutex_enter(&vd->vdev_stat_lock);
2522         vs->vs_scan_processed = 0;
2523         mutex_exit(&vd->vdev_stat_lock);
2524 }
2525
2526 void
2527 vdev_stat_update(zio_t *zio, uint64_t psize)
2528 {
2529         spa_t *spa = zio->io_spa;
2530         vdev_t *rvd = spa->spa_root_vdev;
2531         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2532         vdev_t *pvd;
2533         uint64_t txg = zio->io_txg;
2534         vdev_stat_t *vs = &vd->vdev_stat;
2535         zio_type_t type = zio->io_type;
2536         int flags = zio->io_flags;
2537
2538         /*
2539          * If this i/o is a gang leader, it didn't do any actual work.
2540          */
2541         if (zio->io_gang_tree)
2542                 return;
2543
2544         if (zio->io_error == 0) {
2545                 /*
2546                  * If this is a root i/o, don't count it -- we've already
2547                  * counted the top-level vdevs, and vdev_get_stats() will
2548                  * aggregate them when asked.  This reduces contention on
2549                  * the root vdev_stat_lock and implicitly handles blocks
2550                  * that compress away to holes, for which there is no i/o.
2551                  * (Holes never create vdev children, so all the counters
2552                  * remain zero, which is what we want.)
2553                  *
2554                  * Note: this only applies to successful i/o (io_error == 0)
2555                  * because unlike i/o counts, errors are not additive.
2556                  * When reading a ditto block, for example, failure of
2557                  * one top-level vdev does not imply a root-level error.
2558                  */
2559                 if (vd == rvd)
2560                         return;
2561
2562                 ASSERT(vd == zio->io_vd);
2563
2564                 if (flags & ZIO_FLAG_IO_BYPASS)
2565                         return;
2566
2567                 mutex_enter(&vd->vdev_stat_lock);
2568
2569                 if (flags & ZIO_FLAG_IO_REPAIR) {
2570                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2571                                 dsl_scan_phys_t *scn_phys =
2572                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2573                                 uint64_t *processed = &scn_phys->scn_processed;
2574
2575                                 /* XXX cleanup? */
2576                                 if (vd->vdev_ops->vdev_op_leaf)
2577                                         atomic_add_64(processed, psize);
2578                                 vs->vs_scan_processed += psize;
2579                         }
2580
2581                         if (flags & ZIO_FLAG_SELF_HEAL)
2582                                 vs->vs_self_healed += psize;
2583                 }
2584
2585                 vs->vs_ops[type]++;
2586                 vs->vs_bytes[type] += psize;
2587
2588                 mutex_exit(&vd->vdev_stat_lock);
2589                 return;
2590         }
2591
2592         if (flags & ZIO_FLAG_SPECULATIVE)
2593                 return;
2594
2595         /*
2596          * If this is an I/O error that is going to be retried, then ignore the
2597          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2598          * hard errors, when in reality they can happen for any number of
2599          * innocuous reasons (bus resets, MPxIO link failure, etc).
2600          */
2601         if (zio->io_error == EIO &&
2602             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2603                 return;
2604
2605         /*
2606          * Intent logs writes won't propagate their error to the root
2607          * I/O so don't mark these types of failures as pool-level
2608          * errors.
2609          */
2610         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2611                 return;
2612
2613         mutex_enter(&vd->vdev_stat_lock);
2614         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2615                 if (zio->io_error == ECKSUM)
2616                         vs->vs_checksum_errors++;
2617                 else
2618                         vs->vs_read_errors++;
2619         }
2620         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2621                 vs->vs_write_errors++;
2622         mutex_exit(&vd->vdev_stat_lock);
2623
2624         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2625             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2626             (flags & ZIO_FLAG_SCAN_THREAD) ||
2627             spa->spa_claiming)) {
2628                 /*
2629                  * This is either a normal write (not a repair), or it's
2630                  * a repair induced by the scrub thread, or it's a repair
2631                  * made by zil_claim() during spa_load() in the first txg.
2632                  * In the normal case, we commit the DTL change in the same
2633                  * txg as the block was born.  In the scrub-induced repair
2634                  * case, we know that scrubs run in first-pass syncing context,
2635                  * so we commit the DTL change in spa_syncing_txg(spa).
2636                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2637                  *
2638                  * We currently do not make DTL entries for failed spontaneous
2639                  * self-healing writes triggered by normal (non-scrubbing)
2640                  * reads, because we have no transactional context in which to
2641                  * do so -- and it's not clear that it'd be desirable anyway.
2642                  */
2643                 if (vd->vdev_ops->vdev_op_leaf) {
2644                         uint64_t commit_txg = txg;
2645                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2646                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2647                                 ASSERT(spa_sync_pass(spa) == 1);
2648                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2649                                 commit_txg = spa_syncing_txg(spa);
2650                         } else if (spa->spa_claiming) {
2651                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2652                                 commit_txg = spa_first_txg(spa);
2653                         }
2654                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2655                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2656                                 return;
2657                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2658                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2659                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2660                 }
2661                 if (vd != rvd)
2662                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2663         }
2664 }
2665
2666 /*
2667  * Update the in-core space usage stats for this vdev, its metaslab class,
2668  * and the root vdev.
2669  */
2670 void
2671 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2672     int64_t space_delta)
2673 {
2674         int64_t dspace_delta = space_delta;
2675         spa_t *spa = vd->vdev_spa;
2676         vdev_t *rvd = spa->spa_root_vdev;
2677         metaslab_group_t *mg = vd->vdev_mg;
2678         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2679
2680         ASSERT(vd == vd->vdev_top);
2681
2682         /*
2683          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2684          * factor.  We must calculate this here and not at the root vdev
2685          * because the root vdev's psize-to-asize is simply the max of its
2686          * childrens', thus not accurate enough for us.
2687          */
2688         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2689         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2690         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2691             vd->vdev_deflate_ratio;
2692
2693         mutex_enter(&vd->vdev_stat_lock);
2694         vd->vdev_stat.vs_alloc += alloc_delta;
2695         vd->vdev_stat.vs_space += space_delta;
2696         vd->vdev_stat.vs_dspace += dspace_delta;
2697         mutex_exit(&vd->vdev_stat_lock);
2698
2699         if (mc == spa_normal_class(spa)) {
2700                 mutex_enter(&rvd->vdev_stat_lock);
2701                 rvd->vdev_stat.vs_alloc += alloc_delta;
2702                 rvd->vdev_stat.vs_space += space_delta;
2703                 rvd->vdev_stat.vs_dspace += dspace_delta;
2704                 mutex_exit(&rvd->vdev_stat_lock);
2705         }
2706
2707         if (mc != NULL) {
2708                 ASSERT(rvd == vd->vdev_parent);
2709                 ASSERT(vd->vdev_ms_count != 0);
2710
2711                 metaslab_class_space_update(mc,
2712                     alloc_delta, defer_delta, space_delta, dspace_delta);
2713         }
2714 }
2715
2716 /*
2717  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2718  * so that it will be written out next time the vdev configuration is synced.
2719  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2720  */
2721 void
2722 vdev_config_dirty(vdev_t *vd)
2723 {
2724         spa_t *spa = vd->vdev_spa;
2725         vdev_t *rvd = spa->spa_root_vdev;
2726         int c;
2727
2728         ASSERT(spa_writeable(spa));
2729
2730         /*
2731          * If this is an aux vdev (as with l2cache and spare devices), then we
2732          * update the vdev config manually and set the sync flag.
2733          */
2734         if (vd->vdev_aux != NULL) {
2735                 spa_aux_vdev_t *sav = vd->vdev_aux;
2736                 nvlist_t **aux;
2737                 uint_t naux;
2738
2739                 for (c = 0; c < sav->sav_count; c++) {
2740                         if (sav->sav_vdevs[c] == vd)
2741                                 break;
2742                 }
2743
2744                 if (c == sav->sav_count) {
2745                         /*
2746                          * We're being removed.  There's nothing more to do.
2747                          */
2748                         ASSERT(sav->sav_sync == B_TRUE);
2749                         return;
2750                 }
2751
2752                 sav->sav_sync = B_TRUE;
2753
2754                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2755                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2756                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2757                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2758                 }
2759
2760                 ASSERT(c < naux);
2761
2762                 /*
2763                  * Setting the nvlist in the middle if the array is a little
2764                  * sketchy, but it will work.
2765                  */
2766                 nvlist_free(aux[c]);
2767                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2768
2769                 return;
2770         }
2771
2772         /*
2773          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2774          * must either hold SCL_CONFIG as writer, or must be the sync thread
2775          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2776          * so this is sufficient to ensure mutual exclusion.
2777          */
2778         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2779             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2780             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2781
2782         if (vd == rvd) {
2783                 for (c = 0; c < rvd->vdev_children; c++)
2784                         vdev_config_dirty(rvd->vdev_child[c]);
2785         } else {
2786                 ASSERT(vd == vd->vdev_top);
2787
2788                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2789                     !vd->vdev_ishole)
2790                         list_insert_head(&spa->spa_config_dirty_list, vd);
2791         }
2792 }
2793
2794 void
2795 vdev_config_clean(vdev_t *vd)
2796 {
2797         spa_t *spa = vd->vdev_spa;
2798
2799         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2800             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2801             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2802
2803         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2804         list_remove(&spa->spa_config_dirty_list, vd);
2805 }
2806
2807 /*
2808  * Mark a top-level vdev's state as dirty, so that the next pass of
2809  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2810  * the state changes from larger config changes because they require
2811  * much less locking, and are often needed for administrative actions.
2812  */
2813 void
2814 vdev_state_dirty(vdev_t *vd)
2815 {
2816         spa_t *spa = vd->vdev_spa;
2817
2818         ASSERT(spa_writeable(spa));
2819         ASSERT(vd == vd->vdev_top);
2820
2821         /*
2822          * The state list is protected by the SCL_STATE lock.  The caller
2823          * must either hold SCL_STATE as writer, or must be the sync thread
2824          * (which holds SCL_STATE as reader).  There's only one sync thread,
2825          * so this is sufficient to ensure mutual exclusion.
2826          */
2827         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2828             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2829             spa_config_held(spa, SCL_STATE, RW_READER)));
2830
2831         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2832                 list_insert_head(&spa->spa_state_dirty_list, vd);
2833 }
2834
2835 void
2836 vdev_state_clean(vdev_t *vd)
2837 {
2838         spa_t *spa = vd->vdev_spa;
2839
2840         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2841             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2842             spa_config_held(spa, SCL_STATE, RW_READER)));
2843
2844         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2845         list_remove(&spa->spa_state_dirty_list, vd);
2846 }
2847
2848 /*
2849  * Propagate vdev state up from children to parent.
2850  */
2851 void
2852 vdev_propagate_state(vdev_t *vd)
2853 {
2854         spa_t *spa = vd->vdev_spa;
2855         vdev_t *rvd = spa->spa_root_vdev;
2856         int degraded = 0, faulted = 0;
2857         int corrupted = 0;
2858         vdev_t *child;
2859         int c;
2860
2861         if (vd->vdev_children > 0) {
2862                 for (c = 0; c < vd->vdev_children; c++) {
2863                         child = vd->vdev_child[c];
2864
2865                         /*
2866                          * Don't factor holes into the decision.
2867                          */
2868                         if (child->vdev_ishole)
2869                                 continue;
2870
2871                         if (!vdev_readable(child) ||
2872                             (!vdev_writeable(child) && spa_writeable(spa))) {
2873                                 /*
2874                                  * Root special: if there is a top-level log
2875                                  * device, treat the root vdev as if it were
2876                                  * degraded.
2877                                  */
2878                                 if (child->vdev_islog && vd == rvd)
2879                                         degraded++;
2880                                 else
2881                                         faulted++;
2882                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2883                                 degraded++;
2884                         }
2885
2886                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2887                                 corrupted++;
2888                 }
2889
2890                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2891
2892                 /*
2893                  * Root special: if there is a top-level vdev that cannot be
2894                  * opened due to corrupted metadata, then propagate the root
2895                  * vdev's aux state as 'corrupt' rather than 'insufficient
2896                  * replicas'.
2897                  */
2898                 if (corrupted && vd == rvd &&
2899                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2900                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2901                             VDEV_AUX_CORRUPT_DATA);
2902         }
2903
2904         if (vd->vdev_parent)
2905                 vdev_propagate_state(vd->vdev_parent);
2906 }
2907
2908 /*
2909  * Set a vdev's state.  If this is during an open, we don't update the parent
2910  * state, because we're in the process of opening children depth-first.
2911  * Otherwise, we propagate the change to the parent.
2912  *
2913  * If this routine places a device in a faulted state, an appropriate ereport is
2914  * generated.
2915  */
2916 void
2917 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2918 {
2919         uint64_t save_state;
2920         spa_t *spa = vd->vdev_spa;
2921
2922         if (state == vd->vdev_state) {
2923                 vd->vdev_stat.vs_aux = aux;
2924                 return;
2925         }
2926
2927         save_state = vd->vdev_state;
2928
2929         vd->vdev_state = state;
2930         vd->vdev_stat.vs_aux = aux;
2931
2932         /*
2933          * If we are setting the vdev state to anything but an open state, then
2934          * always close the underlying device unless the device has requested
2935          * a delayed close (i.e. we're about to remove or fault the device).
2936          * Otherwise, we keep accessible but invalid devices open forever.
2937          * We don't call vdev_close() itself, because that implies some extra
2938          * checks (offline, etc) that we don't want here.  This is limited to
2939          * leaf devices, because otherwise closing the device will affect other
2940          * children.
2941          */
2942         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2943             vd->vdev_ops->vdev_op_leaf)
2944                 vd->vdev_ops->vdev_op_close(vd);
2945
2946         /*
2947          * If we have brought this vdev back into service, we need
2948          * to notify fmd so that it can gracefully repair any outstanding
2949          * cases due to a missing device.  We do this in all cases, even those
2950          * that probably don't correlate to a repaired fault.  This is sure to
2951          * catch all cases, and we let the zfs-retire agent sort it out.  If
2952          * this is a transient state it's OK, as the retire agent will
2953          * double-check the state of the vdev before repairing it.
2954          */
2955         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2956             vd->vdev_prevstate != state)
2957                 zfs_post_state_change(spa, vd);
2958
2959         if (vd->vdev_removed &&
2960             state == VDEV_STATE_CANT_OPEN &&
2961             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2962                 /*
2963                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2964                  * device was previously marked removed and someone attempted to
2965                  * reopen it.  If this failed due to a nonexistent device, then
2966                  * keep the device in the REMOVED state.  We also let this be if
2967                  * it is one of our special test online cases, which is only
2968                  * attempting to online the device and shouldn't generate an FMA
2969                  * fault.
2970                  */
2971                 vd->vdev_state = VDEV_STATE_REMOVED;
2972                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2973         } else if (state == VDEV_STATE_REMOVED) {
2974                 vd->vdev_removed = B_TRUE;
2975         } else if (state == VDEV_STATE_CANT_OPEN) {
2976                 /*
2977                  * If we fail to open a vdev during an import or recovery, we
2978                  * mark it as "not available", which signifies that it was
2979                  * never there to begin with.  Failure to open such a device
2980                  * is not considered an error.
2981                  */
2982                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2983                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2984                     vd->vdev_ops->vdev_op_leaf)
2985                         vd->vdev_not_present = 1;
2986
2987                 /*
2988                  * Post the appropriate ereport.  If the 'prevstate' field is
2989                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2990                  * that this is part of a vdev_reopen().  In this case, we don't
2991                  * want to post the ereport if the device was already in the
2992                  * CANT_OPEN state beforehand.
2993                  *
2994                  * If the 'checkremove' flag is set, then this is an attempt to
2995                  * online the device in response to an insertion event.  If we
2996                  * hit this case, then we have detected an insertion event for a
2997                  * faulted or offline device that wasn't in the removed state.
2998                  * In this scenario, we don't post an ereport because we are
2999                  * about to replace the device, or attempt an online with
3000                  * vdev_forcefault, which will generate the fault for us.
3001                  */
3002                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3003                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3004                     vd != spa->spa_root_vdev) {
3005                         const char *class;
3006
3007                         switch (aux) {
3008                         case VDEV_AUX_OPEN_FAILED:
3009                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3010                                 break;
3011                         case VDEV_AUX_CORRUPT_DATA:
3012                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3013                                 break;
3014                         case VDEV_AUX_NO_REPLICAS:
3015                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3016                                 break;
3017                         case VDEV_AUX_BAD_GUID_SUM:
3018                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3019                                 break;
3020                         case VDEV_AUX_TOO_SMALL:
3021                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3022                                 break;
3023                         case VDEV_AUX_BAD_LABEL:
3024                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3025                                 break;
3026                         default:
3027                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3028                         }
3029
3030                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3031                 }
3032
3033                 /* Erase any notion of persistent removed state */
3034                 vd->vdev_removed = B_FALSE;
3035         } else {
3036                 vd->vdev_removed = B_FALSE;
3037         }
3038
3039         if (!isopen && vd->vdev_parent)
3040                 vdev_propagate_state(vd->vdev_parent);
3041 }
3042
3043 /*
3044  * Check the vdev configuration to ensure that it's capable of supporting
3045  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3046  * In addition, only a single top-level vdev is allowed and none of the leaves
3047  * can be wholedisks.
3048  */
3049 boolean_t
3050 vdev_is_bootable(vdev_t *vd)
3051 {
3052         int c;
3053
3054         if (!vd->vdev_ops->vdev_op_leaf) {
3055                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3056
3057                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3058                     vd->vdev_children > 1) {
3059                         return (B_FALSE);
3060                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3061                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3062                         return (B_FALSE);
3063                 }
3064         } else if (vd->vdev_wholedisk == 1) {
3065                 return (B_FALSE);
3066         }
3067
3068         for (c = 0; c < vd->vdev_children; c++) {
3069                 if (!vdev_is_bootable(vd->vdev_child[c]))
3070                         return (B_FALSE);
3071         }
3072         return (B_TRUE);
3073 }
3074
3075 /*
3076  * Load the state from the original vdev tree (ovd) which
3077  * we've retrieved from the MOS config object. If the original
3078  * vdev was offline or faulted then we transfer that state to the
3079  * device in the current vdev tree (nvd).
3080  */
3081 void
3082 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3083 {
3084         int c;
3085
3086         ASSERT(nvd->vdev_top->vdev_islog);
3087         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3088         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3089
3090         for (c = 0; c < nvd->vdev_children; c++)
3091                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3092
3093         if (nvd->vdev_ops->vdev_op_leaf) {
3094                 /*
3095                  * Restore the persistent vdev state
3096                  */
3097                 nvd->vdev_offline = ovd->vdev_offline;
3098                 nvd->vdev_faulted = ovd->vdev_faulted;
3099                 nvd->vdev_degraded = ovd->vdev_degraded;
3100                 nvd->vdev_removed = ovd->vdev_removed;
3101         }
3102 }
3103
3104 /*
3105  * Determine if a log device has valid content.  If the vdev was
3106  * removed or faulted in the MOS config then we know that
3107  * the content on the log device has already been written to the pool.
3108  */
3109 boolean_t
3110 vdev_log_state_valid(vdev_t *vd)
3111 {
3112         int c;
3113
3114         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3115             !vd->vdev_removed)
3116                 return (B_TRUE);
3117
3118         for (c = 0; c < vd->vdev_children; c++)
3119                 if (vdev_log_state_valid(vd->vdev_child[c]))
3120                         return (B_TRUE);
3121
3122         return (B_FALSE);
3123 }
3124
3125 /*
3126  * Expand a vdev if possible.
3127  */
3128 void
3129 vdev_expand(vdev_t *vd, uint64_t txg)
3130 {
3131         ASSERT(vd->vdev_top == vd);
3132         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3133
3134         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3135                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3136                 vdev_config_dirty(vd);
3137         }
3138 }
3139
3140 /*
3141  * Split a vdev.
3142  */
3143 void
3144 vdev_split(vdev_t *vd)
3145 {
3146         vdev_t *cvd, *pvd = vd->vdev_parent;
3147
3148         vdev_remove_child(pvd, vd);
3149         vdev_compact_children(pvd);
3150
3151         cvd = pvd->vdev_child[0];
3152         if (pvd->vdev_children == 1) {
3153                 vdev_remove_parent(cvd);
3154                 cvd->vdev_splitting = B_TRUE;
3155         }
3156         vdev_propagate_state(cvd);
3157 }