Rebase master to b105
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42
43 /*
44  * Virtual device management.
45  */
46
47 static vdev_ops_t *vdev_ops_table[] = {
48         &vdev_root_ops,
49         &vdev_raidz_ops,
50         &vdev_mirror_ops,
51         &vdev_replacing_ops,
52         &vdev_spare_ops,
53         &vdev_disk_ops,
54         &vdev_file_ops,
55         &vdev_missing_ops,
56         NULL
57 };
58
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
61
62 /*
63  * Given a vdev type, return the appropriate ops vector.
64  */
65 static vdev_ops_t *
66 vdev_getops(const char *type)
67 {
68         vdev_ops_t *ops, **opspp;
69
70         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71                 if (strcmp(ops->vdev_op_type, type) == 0)
72                         break;
73
74         return (ops);
75 }
76
77 /*
78  * Default asize function: return the MAX of psize with the asize of
79  * all children.  This is what's used by anything other than RAID-Z.
80  */
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
83 {
84         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85         uint64_t csize;
86         uint64_t c;
87
88         for (c = 0; c < vd->vdev_children; c++) {
89                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90                 asize = MAX(asize, csize);
91         }
92
93         return (asize);
94 }
95
96 /*
97  * Get the replaceable or attachable device size.
98  * If the parent is a mirror or raidz, the replaceable size is the minimum
99  * psize of all its children. For the rest, just return our own psize.
100  *
101  * e.g.
102  *                      psize   rsize
103  * root                 -       -
104  *      mirror/raidz    -       -
105  *          disk1       20g     20g
106  *          disk2       40g     20g
107  *      disk3           80g     80g
108  */
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
111 {
112         vdev_t *pvd, *cvd;
113         uint64_t c, rsize;
114
115         pvd = vd->vdev_parent;
116
117         /*
118          * If our parent is NULL or the root, just return our own psize.
119          */
120         if (pvd == NULL || pvd->vdev_parent == NULL)
121                 return (vd->vdev_psize);
122
123         rsize = 0;
124
125         for (c = 0; c < pvd->vdev_children; c++) {
126                 cvd = pvd->vdev_child[c];
127                 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
128         }
129
130         return (rsize);
131 }
132
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
135 {
136         vdev_t *rvd = spa->spa_root_vdev;
137
138         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
139
140         if (vdev < rvd->vdev_children) {
141                 ASSERT(rvd->vdev_child[vdev] != NULL);
142                 return (rvd->vdev_child[vdev]);
143         }
144
145         return (NULL);
146 }
147
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151         int c;
152         vdev_t *mvd;
153
154         if (vd->vdev_guid == guid)
155                 return (vd);
156
157         for (c = 0; c < vd->vdev_children; c++)
158                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159                     NULL)
160                         return (mvd);
161
162         return (NULL);
163 }
164
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168         size_t oldsize, newsize;
169         uint64_t id = cvd->vdev_id;
170         vdev_t **newchild;
171
172         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173         ASSERT(cvd->vdev_parent == NULL);
174
175         cvd->vdev_parent = pvd;
176
177         if (pvd == NULL)
178                 return;
179
180         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181
182         oldsize = pvd->vdev_children * sizeof (vdev_t *);
183         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184         newsize = pvd->vdev_children * sizeof (vdev_t *);
185
186         newchild = kmem_zalloc(newsize, KM_SLEEP);
187         if (pvd->vdev_child != NULL) {
188                 bcopy(pvd->vdev_child, newchild, oldsize);
189                 kmem_free(pvd->vdev_child, oldsize);
190         }
191
192         pvd->vdev_child = newchild;
193         pvd->vdev_child[id] = cvd;
194
195         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197
198         /*
199          * Walk up all ancestors to update guid sum.
200          */
201         for (; pvd != NULL; pvd = pvd->vdev_parent)
202                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203
204         if (cvd->vdev_ops->vdev_op_leaf)
205                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211         int c;
212         uint_t id = cvd->vdev_id;
213
214         ASSERT(cvd->vdev_parent == pvd);
215
216         if (pvd == NULL)
217                 return;
218
219         ASSERT(id < pvd->vdev_children);
220         ASSERT(pvd->vdev_child[id] == cvd);
221
222         pvd->vdev_child[id] = NULL;
223         cvd->vdev_parent = NULL;
224
225         for (c = 0; c < pvd->vdev_children; c++)
226                 if (pvd->vdev_child[c])
227                         break;
228
229         if (c == pvd->vdev_children) {
230                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231                 pvd->vdev_child = NULL;
232                 pvd->vdev_children = 0;
233         }
234
235         /*
236          * Walk up all ancestors to update guid sum.
237          */
238         for (; pvd != NULL; pvd = pvd->vdev_parent)
239                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240
241         if (cvd->vdev_ops->vdev_op_leaf)
242                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251         vdev_t **newchild, *cvd;
252         int oldc = pvd->vdev_children;
253         int newc, c;
254
255         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
256
257         for (c = newc = 0; c < oldc; c++)
258                 if (pvd->vdev_child[c])
259                         newc++;
260
261         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262
263         for (c = newc = 0; c < oldc; c++) {
264                 if ((cvd = pvd->vdev_child[c]) != NULL) {
265                         newchild[newc] = cvd;
266                         cvd->vdev_id = newc++;
267                 }
268         }
269
270         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271         pvd->vdev_child = newchild;
272         pvd->vdev_children = newc;
273 }
274
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281         vdev_t *vd;
282
283         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284
285         if (spa->spa_root_vdev == NULL) {
286                 ASSERT(ops == &vdev_root_ops);
287                 spa->spa_root_vdev = vd;
288         }
289
290         if (guid == 0) {
291                 if (spa->spa_root_vdev == vd) {
292                         /*
293                          * The root vdev's guid will also be the pool guid,
294                          * which must be unique among all pools.
295                          */
296                         while (guid == 0 || spa_guid_exists(guid, 0))
297                                 guid = spa_get_random(-1ULL);
298                 } else {
299                         /*
300                          * Any other vdev's guid must be unique within the pool.
301                          */
302                         while (guid == 0 ||
303                             spa_guid_exists(spa_guid(spa), guid))
304                                 guid = spa_get_random(-1ULL);
305                 }
306                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307         }
308
309         vd->vdev_spa = spa;
310         vd->vdev_id = id;
311         vd->vdev_guid = guid;
312         vd->vdev_guid_sum = guid;
313         vd->vdev_ops = ops;
314         vd->vdev_state = VDEV_STATE_CLOSED;
315
316         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319         for (int t = 0; t < DTL_TYPES; t++) {
320                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
321                     &vd->vdev_dtl_lock);
322         }
323         txg_list_create(&vd->vdev_ms_list,
324             offsetof(struct metaslab, ms_txg_node));
325         txg_list_create(&vd->vdev_dtl_list,
326             offsetof(struct vdev, vdev_dtl_node));
327         vd->vdev_stat.vs_timestamp = gethrtime();
328         vdev_queue_init(vd);
329         vdev_cache_init(vd);
330
331         return (vd);
332 }
333
334 /*
335  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
336  * creating a new vdev or loading an existing one - the behavior is slightly
337  * different for each case.
338  */
339 int
340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
341     int alloctype)
342 {
343         vdev_ops_t *ops;
344         char *type;
345         uint64_t guid = 0, islog, nparity;
346         vdev_t *vd;
347
348         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
349
350         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
351                 return (EINVAL);
352
353         if ((ops = vdev_getops(type)) == NULL)
354                 return (EINVAL);
355
356         /*
357          * If this is a load, get the vdev guid from the nvlist.
358          * Otherwise, vdev_alloc_common() will generate one for us.
359          */
360         if (alloctype == VDEV_ALLOC_LOAD) {
361                 uint64_t label_id;
362
363                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
364                     label_id != id)
365                         return (EINVAL);
366
367                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
368                         return (EINVAL);
369         } else if (alloctype == VDEV_ALLOC_SPARE) {
370                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371                         return (EINVAL);
372         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         }
376
377         /*
378          * The first allocated vdev must be of type 'root'.
379          */
380         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
381                 return (EINVAL);
382
383         /*
384          * Determine whether we're a log vdev.
385          */
386         islog = 0;
387         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
388         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
389                 return (ENOTSUP);
390
391         /*
392          * Set the nparity property for RAID-Z vdevs.
393          */
394         nparity = -1ULL;
395         if (ops == &vdev_raidz_ops) {
396                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
397                     &nparity) == 0) {
398                         /*
399                          * Currently, we can only support 2 parity devices.
400                          */
401                         if (nparity == 0 || nparity > 2)
402                                 return (EINVAL);
403                         /*
404                          * Older versions can only support 1 parity device.
405                          */
406                         if (nparity == 2 &&
407                             spa_version(spa) < SPA_VERSION_RAID6)
408                                 return (ENOTSUP);
409                 } else {
410                         /*
411                          * We require the parity to be specified for SPAs that
412                          * support multiple parity levels.
413                          */
414                         if (spa_version(spa) >= SPA_VERSION_RAID6)
415                                 return (EINVAL);
416                         /*
417                          * Otherwise, we default to 1 parity device for RAID-Z.
418                          */
419                         nparity = 1;
420                 }
421         } else {
422                 nparity = 0;
423         }
424         ASSERT(nparity != -1ULL);
425
426         vd = vdev_alloc_common(spa, id, guid, ops);
427
428         vd->vdev_islog = islog;
429         vd->vdev_nparity = nparity;
430
431         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
432                 vd->vdev_path = spa_strdup(vd->vdev_path);
433         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
434                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
435         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
436             &vd->vdev_physpath) == 0)
437                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
438
439         /*
440          * Set the whole_disk property.  If it's not specified, leave the value
441          * as -1.
442          */
443         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
444             &vd->vdev_wholedisk) != 0)
445                 vd->vdev_wholedisk = -1ULL;
446
447         /*
448          * Look for the 'not present' flag.  This will only be set if the device
449          * was not present at the time of import.
450          */
451         if (!spa->spa_import_faulted)
452                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
453                     &vd->vdev_not_present);
454
455         /*
456          * Get the alignment requirement.
457          */
458         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
459
460         /*
461          * If we're a top-level vdev, try to load the allocation parameters.
462          */
463         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
464                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
465                     &vd->vdev_ms_array);
466                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
467                     &vd->vdev_ms_shift);
468                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
469                     &vd->vdev_asize);
470         }
471
472         /*
473          * If we're a leaf vdev, try to load the DTL object and other state.
474          */
475         if (vd->vdev_ops->vdev_op_leaf &&
476             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
477                 if (alloctype == VDEV_ALLOC_LOAD) {
478                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
479                             &vd->vdev_dtl_smo.smo_object);
480                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
481                             &vd->vdev_unspare);
482                 }
483                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
484                     &vd->vdev_offline);
485
486                 /*
487                  * When importing a pool, we want to ignore the persistent fault
488                  * state, as the diagnosis made on another system may not be
489                  * valid in the current context.
490                  */
491                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
492                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
493                             &vd->vdev_faulted);
494                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
495                             &vd->vdev_degraded);
496                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
497                             &vd->vdev_removed);
498                 }
499         }
500
501         /*
502          * Add ourselves to the parent's list of children.
503          */
504         vdev_add_child(parent, vd);
505
506         *vdp = vd;
507
508         return (0);
509 }
510
511 void
512 vdev_free(vdev_t *vd)
513 {
514         int c;
515         spa_t *spa = vd->vdev_spa;
516
517         /*
518          * vdev_free() implies closing the vdev first.  This is simpler than
519          * trying to ensure complicated semantics for all callers.
520          */
521         vdev_close(vd);
522
523         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
524
525         /*
526          * Free all children.
527          */
528         for (c = 0; c < vd->vdev_children; c++)
529                 vdev_free(vd->vdev_child[c]);
530
531         ASSERT(vd->vdev_child == NULL);
532         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533
534         /*
535          * Discard allocation state.
536          */
537         if (vd == vd->vdev_top)
538                 vdev_metaslab_fini(vd);
539
540         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
541         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543
544         /*
545          * Remove this vdev from its parent's child list.
546          */
547         vdev_remove_child(vd->vdev_parent, vd);
548
549         ASSERT(vd->vdev_parent == NULL);
550
551         /*
552          * Clean up vdev structure.
553          */
554         vdev_queue_fini(vd);
555         vdev_cache_fini(vd);
556
557         if (vd->vdev_path)
558                 spa_strfree(vd->vdev_path);
559         if (vd->vdev_devid)
560                 spa_strfree(vd->vdev_devid);
561         if (vd->vdev_physpath)
562                 spa_strfree(vd->vdev_physpath);
563
564         if (vd->vdev_isspare)
565                 spa_spare_remove(vd);
566         if (vd->vdev_isl2cache)
567                 spa_l2cache_remove(vd);
568
569         txg_list_destroy(&vd->vdev_ms_list);
570         txg_list_destroy(&vd->vdev_dtl_list);
571
572         mutex_enter(&vd->vdev_dtl_lock);
573         for (int t = 0; t < DTL_TYPES; t++) {
574                 space_map_unload(&vd->vdev_dtl[t]);
575                 space_map_destroy(&vd->vdev_dtl[t]);
576         }
577         mutex_exit(&vd->vdev_dtl_lock);
578
579         mutex_destroy(&vd->vdev_dtl_lock);
580         mutex_destroy(&vd->vdev_stat_lock);
581         mutex_destroy(&vd->vdev_probe_lock);
582
583         if (vd == spa->spa_root_vdev)
584                 spa->spa_root_vdev = NULL;
585
586         kmem_free(vd, sizeof (vdev_t));
587 }
588
589 /*
590  * Transfer top-level vdev state from svd to tvd.
591  */
592 static void
593 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
594 {
595         spa_t *spa = svd->vdev_spa;
596         metaslab_t *msp;
597         vdev_t *vd;
598         int t;
599
600         ASSERT(tvd == tvd->vdev_top);
601
602         tvd->vdev_ms_array = svd->vdev_ms_array;
603         tvd->vdev_ms_shift = svd->vdev_ms_shift;
604         tvd->vdev_ms_count = svd->vdev_ms_count;
605
606         svd->vdev_ms_array = 0;
607         svd->vdev_ms_shift = 0;
608         svd->vdev_ms_count = 0;
609
610         tvd->vdev_mg = svd->vdev_mg;
611         tvd->vdev_ms = svd->vdev_ms;
612
613         svd->vdev_mg = NULL;
614         svd->vdev_ms = NULL;
615
616         if (tvd->vdev_mg != NULL)
617                 tvd->vdev_mg->mg_vd = tvd;
618
619         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
620         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
621         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
622
623         svd->vdev_stat.vs_alloc = 0;
624         svd->vdev_stat.vs_space = 0;
625         svd->vdev_stat.vs_dspace = 0;
626
627         for (t = 0; t < TXG_SIZE; t++) {
628                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
629                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
630                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
631                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
632                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
633                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
634         }
635
636         if (list_link_active(&svd->vdev_config_dirty_node)) {
637                 vdev_config_clean(svd);
638                 vdev_config_dirty(tvd);
639         }
640
641         if (list_link_active(&svd->vdev_state_dirty_node)) {
642                 vdev_state_clean(svd);
643                 vdev_state_dirty(tvd);
644         }
645
646         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
647         svd->vdev_deflate_ratio = 0;
648
649         tvd->vdev_islog = svd->vdev_islog;
650         svd->vdev_islog = 0;
651 }
652
653 static void
654 vdev_top_update(vdev_t *tvd, vdev_t *vd)
655 {
656         int c;
657
658         if (vd == NULL)
659                 return;
660
661         vd->vdev_top = tvd;
662
663         for (c = 0; c < vd->vdev_children; c++)
664                 vdev_top_update(tvd, vd->vdev_child[c]);
665 }
666
667 /*
668  * Add a mirror/replacing vdev above an existing vdev.
669  */
670 vdev_t *
671 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
672 {
673         spa_t *spa = cvd->vdev_spa;
674         vdev_t *pvd = cvd->vdev_parent;
675         vdev_t *mvd;
676
677         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
678
679         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
680
681         mvd->vdev_asize = cvd->vdev_asize;
682         mvd->vdev_ashift = cvd->vdev_ashift;
683         mvd->vdev_state = cvd->vdev_state;
684
685         vdev_remove_child(pvd, cvd);
686         vdev_add_child(pvd, mvd);
687         cvd->vdev_id = mvd->vdev_children;
688         vdev_add_child(mvd, cvd);
689         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
690
691         if (mvd == mvd->vdev_top)
692                 vdev_top_transfer(cvd, mvd);
693
694         return (mvd);
695 }
696
697 /*
698  * Remove a 1-way mirror/replacing vdev from the tree.
699  */
700 void
701 vdev_remove_parent(vdev_t *cvd)
702 {
703         vdev_t *mvd = cvd->vdev_parent;
704         vdev_t *pvd = mvd->vdev_parent;
705
706         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
707
708         ASSERT(mvd->vdev_children == 1);
709         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
710             mvd->vdev_ops == &vdev_replacing_ops ||
711             mvd->vdev_ops == &vdev_spare_ops);
712         cvd->vdev_ashift = mvd->vdev_ashift;
713
714         vdev_remove_child(mvd, cvd);
715         vdev_remove_child(pvd, mvd);
716
717         /*
718          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
719          * Otherwise, we could have detached an offline device, and when we
720          * go to import the pool we'll think we have two top-level vdevs,
721          * instead of a different version of the same top-level vdev.
722          */
723         if (mvd->vdev_top == mvd) {
724                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
725                 cvd->vdev_guid += guid_delta;
726                 cvd->vdev_guid_sum += guid_delta;
727         }
728         cvd->vdev_id = mvd->vdev_id;
729         vdev_add_child(pvd, cvd);
730         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
731
732         if (cvd == cvd->vdev_top)
733                 vdev_top_transfer(mvd, cvd);
734
735         ASSERT(mvd->vdev_children == 0);
736         vdev_free(mvd);
737 }
738
739 int
740 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
741 {
742         spa_t *spa = vd->vdev_spa;
743         objset_t *mos = spa->spa_meta_objset;
744         metaslab_class_t *mc;
745         uint64_t m;
746         uint64_t oldc = vd->vdev_ms_count;
747         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
748         metaslab_t **mspp;
749         int error;
750
751         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
752                 return (0);
753
754         ASSERT(oldc <= newc);
755
756         if (vd->vdev_islog)
757                 mc = spa->spa_log_class;
758         else
759                 mc = spa->spa_normal_class;
760
761         if (vd->vdev_mg == NULL)
762                 vd->vdev_mg = metaslab_group_create(mc, vd);
763
764         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
765
766         if (oldc != 0) {
767                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
768                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
769         }
770
771         vd->vdev_ms = mspp;
772         vd->vdev_ms_count = newc;
773
774         for (m = oldc; m < newc; m++) {
775                 space_map_obj_t smo = { 0, 0, 0 };
776                 if (txg == 0) {
777                         uint64_t object = 0;
778                         error = dmu_read(mos, vd->vdev_ms_array,
779                             m * sizeof (uint64_t), sizeof (uint64_t), &object);
780                         if (error)
781                                 return (error);
782                         if (object != 0) {
783                                 dmu_buf_t *db;
784                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
785                                 if (error)
786                                         return (error);
787                                 ASSERT3U(db->db_size, >=, sizeof (smo));
788                                 bcopy(db->db_data, &smo, sizeof (smo));
789                                 ASSERT3U(smo.smo_object, ==, object);
790                                 dmu_buf_rele(db, FTAG);
791                         }
792                 }
793                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
794                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
795         }
796
797         return (0);
798 }
799
800 void
801 vdev_metaslab_fini(vdev_t *vd)
802 {
803         uint64_t m;
804         uint64_t count = vd->vdev_ms_count;
805
806         if (vd->vdev_ms != NULL) {
807                 for (m = 0; m < count; m++)
808                         if (vd->vdev_ms[m] != NULL)
809                                 metaslab_fini(vd->vdev_ms[m]);
810                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
811                 vd->vdev_ms = NULL;
812         }
813 }
814
815 typedef struct vdev_probe_stats {
816         boolean_t       vps_readable;
817         boolean_t       vps_writeable;
818         int             vps_flags;
819         zio_t           *vps_root;
820         vdev_t          *vps_vd;
821 } vdev_probe_stats_t;
822
823 static void
824 vdev_probe_done(zio_t *zio)
825 {
826         spa_t *spa = zio->io_spa;
827         vdev_probe_stats_t *vps = zio->io_private;
828         vdev_t *vd = vps->vps_vd;
829
830         if (zio->io_type == ZIO_TYPE_READ) {
831                 ASSERT(zio->io_vd == vd);
832                 if (zio->io_error == 0)
833                         vps->vps_readable = 1;
834                 if (zio->io_error == 0 && spa_writeable(spa)) {
835                         zio_nowait(zio_write_phys(vps->vps_root, vd,
836                             zio->io_offset, zio->io_size, zio->io_data,
837                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
838                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
839                 } else {
840                         zio_buf_free(zio->io_data, zio->io_size);
841                 }
842         } else if (zio->io_type == ZIO_TYPE_WRITE) {
843                 ASSERT(zio->io_vd == vd);
844                 if (zio->io_error == 0)
845                         vps->vps_writeable = 1;
846                 zio_buf_free(zio->io_data, zio->io_size);
847         } else if (zio->io_type == ZIO_TYPE_NULL) {
848                 ASSERT(zio->io_vd == NULL);
849                 ASSERT(zio == vps->vps_root);
850
851                 vd->vdev_cant_read |= !vps->vps_readable;
852                 vd->vdev_cant_write |= !vps->vps_writeable;
853
854                 if (vdev_readable(vd) &&
855                     (vdev_writeable(vd) || !spa_writeable(spa))) {
856                         zio->io_error = 0;
857                 } else {
858                         ASSERT(zio->io_error != 0);
859                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
860                             spa, vd, NULL, 0, 0);
861                         zio->io_error = ENXIO;
862                 }
863                 kmem_free(vps, sizeof (*vps));
864         }
865 }
866
867 /*
868  * Determine whether this device is accessible by reading and writing
869  * to several known locations: the pad regions of each vdev label
870  * but the first (which we leave alone in case it contains a VTOC).
871  */
872 zio_t *
873 vdev_probe(vdev_t *vd, zio_t *pio)
874 {
875         spa_t *spa = vd->vdev_spa;
876         vdev_probe_stats_t *vps;
877         zio_t *zio;
878
879         vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
880
881         vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
882             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
883
884         if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
885                 /*
886                  * vdev_cant_read and vdev_cant_write can only transition
887                  * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
888                  * otherwise they can only transition from FALSE to TRUE.
889                  * This ensures that any zio looking at these values can
890                  * assume that failures persist for the life of the I/O.
891                  * That's important because when a device has intermittent
892                  * connectivity problems, we want to ensure that they're
893                  * ascribed to the device (ENXIO) and not the zio (EIO).
894                  *
895                  * Since we hold SCL_ZIO as writer here, clear both values
896                  * so the probe can reevaluate from first principles.
897                  */
898                 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
899                 vd->vdev_cant_read = B_FALSE;
900                 vd->vdev_cant_write = B_FALSE;
901         }
902
903         ASSERT(vd->vdev_ops->vdev_op_leaf);
904
905         zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
906
907         vps->vps_root = zio;
908         vps->vps_vd = vd;
909
910         for (int l = 1; l < VDEV_LABELS; l++) {
911                 zio_nowait(zio_read_phys(zio, vd,
912                     vdev_label_offset(vd->vdev_psize, l,
913                     offsetof(vdev_label_t, vl_pad)),
914                     VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
915                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
916                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
917         }
918
919         return (zio);
920 }
921
922 /*
923  * Prepare a virtual device for access.
924  */
925 int
926 vdev_open(vdev_t *vd)
927 {
928         spa_t *spa = vd->vdev_spa;
929         int error;
930         int c;
931         uint64_t osize = 0;
932         uint64_t asize, psize;
933         uint64_t ashift = 0;
934
935         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
936
937         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
938             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
939             vd->vdev_state == VDEV_STATE_OFFLINE);
940
941         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
942
943         if (!vd->vdev_removed && vd->vdev_faulted) {
944                 ASSERT(vd->vdev_children == 0);
945                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
946                     VDEV_AUX_ERR_EXCEEDED);
947                 return (ENXIO);
948         } else if (vd->vdev_offline) {
949                 ASSERT(vd->vdev_children == 0);
950                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
951                 return (ENXIO);
952         }
953
954         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
955
956         if (zio_injection_enabled && error == 0)
957                 error = zio_handle_device_injection(vd, ENXIO);
958
959         if (error) {
960                 if (vd->vdev_removed &&
961                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
962                         vd->vdev_removed = B_FALSE;
963
964                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
965                     vd->vdev_stat.vs_aux);
966                 return (error);
967         }
968
969         vd->vdev_removed = B_FALSE;
970
971         if (vd->vdev_degraded) {
972                 ASSERT(vd->vdev_children == 0);
973                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
974                     VDEV_AUX_ERR_EXCEEDED);
975         } else {
976                 vd->vdev_state = VDEV_STATE_HEALTHY;
977         }
978
979         for (c = 0; c < vd->vdev_children; c++)
980                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
981                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
982                             VDEV_AUX_NONE);
983                         break;
984                 }
985
986         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
987
988         if (vd->vdev_children == 0) {
989                 if (osize < SPA_MINDEVSIZE) {
990                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
991                             VDEV_AUX_TOO_SMALL);
992                         return (EOVERFLOW);
993                 }
994                 psize = osize;
995                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
996         } else {
997                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
998                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
999                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1000                             VDEV_AUX_TOO_SMALL);
1001                         return (EOVERFLOW);
1002                 }
1003                 psize = 0;
1004                 asize = osize;
1005         }
1006
1007         vd->vdev_psize = psize;
1008
1009         if (vd->vdev_asize == 0) {
1010                 /*
1011                  * This is the first-ever open, so use the computed values.
1012                  * For testing purposes, a higher ashift can be requested.
1013                  */
1014                 vd->vdev_asize = asize;
1015                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1016         } else {
1017                 /*
1018                  * Make sure the alignment requirement hasn't increased.
1019                  */
1020                 if (ashift > vd->vdev_top->vdev_ashift) {
1021                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1022                             VDEV_AUX_BAD_LABEL);
1023                         return (EINVAL);
1024                 }
1025
1026                 /*
1027                  * Make sure the device hasn't shrunk.
1028                  */
1029                 if (asize < vd->vdev_asize) {
1030                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1031                             VDEV_AUX_BAD_LABEL);
1032                         return (EINVAL);
1033                 }
1034
1035                 /*
1036                  * If all children are healthy and the asize has increased,
1037                  * then we've experienced dynamic LUN growth.
1038                  */
1039                 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1040                     asize > vd->vdev_asize) {
1041                         vd->vdev_asize = asize;
1042                 }
1043         }
1044
1045         /*
1046          * Ensure we can issue some IO before declaring the
1047          * vdev open for business.
1048          */
1049         if (vd->vdev_ops->vdev_op_leaf &&
1050             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1051                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1052                     VDEV_AUX_IO_FAILURE);
1053                 return (error);
1054         }
1055
1056         /*
1057          * If this is a top-level vdev, compute the raidz-deflation
1058          * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1059          * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1060          * changes, this algorithm must never change, or we will
1061          * inconsistently account for existing bp's.
1062          */
1063         if (vd->vdev_top == vd) {
1064                 vd->vdev_deflate_ratio = (1<<17) /
1065                     (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1066         }
1067
1068         /*
1069          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1070          * resilver.  But don't do this if we are doing a reopen for a scrub,
1071          * since this would just restart the scrub we are already doing.
1072          */
1073         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1074             vdev_resilver_needed(vd, NULL, NULL))
1075                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1076
1077         return (0);
1078 }
1079
1080 /*
1081  * Called once the vdevs are all opened, this routine validates the label
1082  * contents.  This needs to be done before vdev_load() so that we don't
1083  * inadvertently do repair I/Os to the wrong device.
1084  *
1085  * This function will only return failure if one of the vdevs indicates that it
1086  * has since been destroyed or exported.  This is only possible if
1087  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1088  * will be updated but the function will return 0.
1089  */
1090 int
1091 vdev_validate(vdev_t *vd)
1092 {
1093         spa_t *spa = vd->vdev_spa;
1094         int c;
1095         nvlist_t *label;
1096         uint64_t guid, top_guid;
1097         uint64_t state;
1098
1099         for (c = 0; c < vd->vdev_children; c++)
1100                 if (vdev_validate(vd->vdev_child[c]) != 0)
1101                         return (EBADF);
1102
1103         /*
1104          * If the device has already failed, or was marked offline, don't do
1105          * any further validation.  Otherwise, label I/O will fail and we will
1106          * overwrite the previous state.
1107          */
1108         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1109
1110                 if ((label = vdev_label_read_config(vd)) == NULL) {
1111                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112                             VDEV_AUX_BAD_LABEL);
1113                         return (0);
1114                 }
1115
1116                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1117                     &guid) != 0 || guid != spa_guid(spa)) {
1118                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1119                             VDEV_AUX_CORRUPT_DATA);
1120                         nvlist_free(label);
1121                         return (0);
1122                 }
1123
1124                 /*
1125                  * If this vdev just became a top-level vdev because its
1126                  * sibling was detached, it will have adopted the parent's
1127                  * vdev guid -- but the label may or may not be on disk yet.
1128                  * Fortunately, either version of the label will have the
1129                  * same top guid, so if we're a top-level vdev, we can
1130                  * safely compare to that instead.
1131                  */
1132                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1133                     &guid) != 0 ||
1134                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1135                     &top_guid) != 0 ||
1136                     (vd->vdev_guid != guid &&
1137                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1138                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1139                             VDEV_AUX_CORRUPT_DATA);
1140                         nvlist_free(label);
1141                         return (0);
1142                 }
1143
1144                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1145                     &state) != 0) {
1146                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1147                             VDEV_AUX_CORRUPT_DATA);
1148                         nvlist_free(label);
1149                         return (0);
1150                 }
1151
1152                 nvlist_free(label);
1153
1154                 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1155                     state != POOL_STATE_ACTIVE)
1156                         return (EBADF);
1157
1158                 /*
1159                  * If we were able to open and validate a vdev that was
1160                  * previously marked permanently unavailable, clear that state
1161                  * now.
1162                  */
1163                 if (vd->vdev_not_present)
1164                         vd->vdev_not_present = 0;
1165         }
1166
1167         return (0);
1168 }
1169
1170 /*
1171  * Close a virtual device.
1172  */
1173 void
1174 vdev_close(vdev_t *vd)
1175 {
1176         spa_t *spa = vd->vdev_spa;
1177
1178         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1179
1180         vd->vdev_ops->vdev_op_close(vd);
1181
1182         vdev_cache_purge(vd);
1183
1184         /*
1185          * We record the previous state before we close it, so  that if we are
1186          * doing a reopen(), we don't generate FMA ereports if we notice that
1187          * it's still faulted.
1188          */
1189         vd->vdev_prevstate = vd->vdev_state;
1190
1191         if (vd->vdev_offline)
1192                 vd->vdev_state = VDEV_STATE_OFFLINE;
1193         else
1194                 vd->vdev_state = VDEV_STATE_CLOSED;
1195         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1196 }
1197
1198 void
1199 vdev_reopen(vdev_t *vd)
1200 {
1201         spa_t *spa = vd->vdev_spa;
1202
1203         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1204
1205         vdev_close(vd);
1206         (void) vdev_open(vd);
1207
1208         /*
1209          * Call vdev_validate() here to make sure we have the same device.
1210          * Otherwise, a device with an invalid label could be successfully
1211          * opened in response to vdev_reopen().
1212          */
1213         if (vd->vdev_aux) {
1214                 (void) vdev_validate_aux(vd);
1215                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1216                     !l2arc_vdev_present(vd)) {
1217                         uint64_t size = vdev_get_rsize(vd);
1218                         l2arc_add_vdev(spa, vd,
1219                             VDEV_LABEL_START_SIZE,
1220                             size - VDEV_LABEL_START_SIZE);
1221                 }
1222         } else {
1223                 (void) vdev_validate(vd);
1224         }
1225
1226         /*
1227          * Reassess parent vdev's health.
1228          */
1229         vdev_propagate_state(vd);
1230 }
1231
1232 int
1233 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1234 {
1235         int error;
1236
1237         /*
1238          * Normally, partial opens (e.g. of a mirror) are allowed.
1239          * For a create, however, we want to fail the request if
1240          * there are any components we can't open.
1241          */
1242         error = vdev_open(vd);
1243
1244         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1245                 vdev_close(vd);
1246                 return (error ? error : ENXIO);
1247         }
1248
1249         /*
1250          * Recursively initialize all labels.
1251          */
1252         if ((error = vdev_label_init(vd, txg, isreplacing ?
1253             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1254                 vdev_close(vd);
1255                 return (error);
1256         }
1257
1258         return (0);
1259 }
1260
1261 /*
1262  * The is the latter half of vdev_create().  It is distinct because it
1263  * involves initiating transactions in order to do metaslab creation.
1264  * For creation, we want to try to create all vdevs at once and then undo it
1265  * if anything fails; this is much harder if we have pending transactions.
1266  */
1267 void
1268 vdev_init(vdev_t *vd, uint64_t txg)
1269 {
1270         /*
1271          * Aim for roughly 200 metaslabs per vdev.
1272          */
1273         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1274         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1275
1276         /*
1277          * Initialize the vdev's metaslabs.  This can't fail because
1278          * there's nothing to read when creating all new metaslabs.
1279          */
1280         VERIFY(vdev_metaslab_init(vd, txg) == 0);
1281 }
1282
1283 void
1284 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1285 {
1286         ASSERT(vd == vd->vdev_top);
1287         ASSERT(ISP2(flags));
1288
1289         if (flags & VDD_METASLAB)
1290                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1291
1292         if (flags & VDD_DTL)
1293                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1294
1295         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1296 }
1297
1298 /*
1299  * DTLs.
1300  *
1301  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1302  * the vdev has less than perfect replication.  There are three kinds of DTL:
1303  *
1304  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1305  *
1306  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1307  *
1308  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1309  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1310  *      txgs that was scrubbed.
1311  *
1312  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1313  *      persistent errors or just some device being offline.
1314  *      Unlike the other three, the DTL_OUTAGE map is not generally
1315  *      maintained; it's only computed when needed, typically to
1316  *      determine whether a device can be detached.
1317  *
1318  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1319  * either has the data or it doesn't.
1320  *
1321  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1322  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1323  * if any child is less than fully replicated, then so is its parent.
1324  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1325  * comprising only those txgs which appear in 'maxfaults' or more children;
1326  * those are the txgs we don't have enough replication to read.  For example,
1327  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1328  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1329  * two child DTL_MISSING maps.
1330  *
1331  * It should be clear from the above that to compute the DTLs and outage maps
1332  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1333  * Therefore, that is all we keep on disk.  When loading the pool, or after
1334  * a configuration change, we generate all other DTLs from first principles.
1335  */
1336 void
1337 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1338 {
1339         space_map_t *sm = &vd->vdev_dtl[t];
1340
1341         ASSERT(t < DTL_TYPES);
1342         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1343
1344         mutex_enter(sm->sm_lock);
1345         if (!space_map_contains(sm, txg, size))
1346                 space_map_add(sm, txg, size);
1347         mutex_exit(sm->sm_lock);
1348 }
1349
1350 boolean_t
1351 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1352 {
1353         space_map_t *sm = &vd->vdev_dtl[t];
1354         boolean_t dirty = B_FALSE;
1355
1356         ASSERT(t < DTL_TYPES);
1357         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1358
1359         mutex_enter(sm->sm_lock);
1360         if (sm->sm_space != 0)
1361                 dirty = space_map_contains(sm, txg, size);
1362         mutex_exit(sm->sm_lock);
1363
1364         return (dirty);
1365 }
1366
1367 boolean_t
1368 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1369 {
1370         space_map_t *sm = &vd->vdev_dtl[t];
1371         boolean_t empty;
1372
1373         mutex_enter(sm->sm_lock);
1374         empty = (sm->sm_space == 0);
1375         mutex_exit(sm->sm_lock);
1376
1377         return (empty);
1378 }
1379
1380 /*
1381  * Reassess DTLs after a config change or scrub completion.
1382  */
1383 void
1384 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1385 {
1386         spa_t *spa = vd->vdev_spa;
1387         avl_tree_t reftree;
1388         int minref;
1389
1390         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1391
1392         for (int c = 0; c < vd->vdev_children; c++)
1393                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1394                     scrub_txg, scrub_done);
1395
1396         if (vd == spa->spa_root_vdev)
1397                 return;
1398
1399         if (vd->vdev_ops->vdev_op_leaf) {
1400                 mutex_enter(&vd->vdev_dtl_lock);
1401                 if (scrub_txg != 0 &&
1402                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1403                         /* XXX should check scrub_done? */
1404                         /*
1405                          * We completed a scrub up to scrub_txg.  If we
1406                          * did it without rebooting, then the scrub dtl
1407                          * will be valid, so excise the old region and
1408                          * fold in the scrub dtl.  Otherwise, leave the
1409                          * dtl as-is if there was an error.
1410                          *
1411                          * There's little trick here: to excise the beginning
1412                          * of the DTL_MISSING map, we put it into a reference
1413                          * tree and then add a segment with refcnt -1 that
1414                          * covers the range [0, scrub_txg).  This means
1415                          * that each txg in that range has refcnt -1 or 0.
1416                          * We then add DTL_SCRUB with a refcnt of 2, so that
1417                          * entries in the range [0, scrub_txg) will have a
1418                          * positive refcnt -- either 1 or 2.  We then convert
1419                          * the reference tree into the new DTL_MISSING map.
1420                          */
1421                         space_map_ref_create(&reftree);
1422                         space_map_ref_add_map(&reftree,
1423                             &vd->vdev_dtl[DTL_MISSING], 1);
1424                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1425                         space_map_ref_add_map(&reftree,
1426                             &vd->vdev_dtl[DTL_SCRUB], 2);
1427                         space_map_ref_generate_map(&reftree,
1428                             &vd->vdev_dtl[DTL_MISSING], 1);
1429                         space_map_ref_destroy(&reftree);
1430                 }
1431                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1432                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1433                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1434                 if (scrub_done)
1435                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1436                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1437                 if (!vdev_readable(vd))
1438                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1439                 else
1440                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1441                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1442                 mutex_exit(&vd->vdev_dtl_lock);
1443
1444                 if (txg != 0)
1445                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1446                 return;
1447         }
1448
1449         mutex_enter(&vd->vdev_dtl_lock);
1450         for (int t = 0; t < DTL_TYPES; t++) {
1451                 if (t == DTL_SCRUB)
1452                         continue;                       /* leaf vdevs only */
1453                 if (t == DTL_PARTIAL)
1454                         minref = 1;                     /* i.e. non-zero */
1455                 else if (vd->vdev_nparity != 0)
1456                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1457                 else
1458                         minref = vd->vdev_children;     /* any kind of mirror */
1459                 space_map_ref_create(&reftree);
1460                 for (int c = 0; c < vd->vdev_children; c++) {
1461                         vdev_t *cvd = vd->vdev_child[c];
1462                         mutex_enter(&cvd->vdev_dtl_lock);
1463                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1464                         mutex_exit(&cvd->vdev_dtl_lock);
1465                 }
1466                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1467                 space_map_ref_destroy(&reftree);
1468         }
1469         mutex_exit(&vd->vdev_dtl_lock);
1470 }
1471
1472 static int
1473 vdev_dtl_load(vdev_t *vd)
1474 {
1475         spa_t *spa = vd->vdev_spa;
1476         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1477         objset_t *mos = spa->spa_meta_objset;
1478         dmu_buf_t *db;
1479         int error;
1480
1481         ASSERT(vd->vdev_children == 0);
1482
1483         if (smo->smo_object == 0)
1484                 return (0);
1485
1486         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1487                 return (error);
1488
1489         ASSERT3U(db->db_size, >=, sizeof (*smo));
1490         bcopy(db->db_data, smo, sizeof (*smo));
1491         dmu_buf_rele(db, FTAG);
1492
1493         mutex_enter(&vd->vdev_dtl_lock);
1494         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1495             NULL, SM_ALLOC, smo, mos);
1496         mutex_exit(&vd->vdev_dtl_lock);
1497
1498         return (error);
1499 }
1500
1501 void
1502 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1503 {
1504         spa_t *spa = vd->vdev_spa;
1505         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1506         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1507         objset_t *mos = spa->spa_meta_objset;
1508         space_map_t smsync;
1509         kmutex_t smlock;
1510         dmu_buf_t *db;
1511         dmu_tx_t *tx;
1512
1513         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1514
1515         if (vd->vdev_detached) {
1516                 if (smo->smo_object != 0) {
1517                         int err = dmu_object_free(mos, smo->smo_object, tx);
1518                         ASSERT3U(err, ==, 0);
1519                         smo->smo_object = 0;
1520                 }
1521                 dmu_tx_commit(tx);
1522                 return;
1523         }
1524
1525         if (smo->smo_object == 0) {
1526                 ASSERT(smo->smo_objsize == 0);
1527                 ASSERT(smo->smo_alloc == 0);
1528                 smo->smo_object = dmu_object_alloc(mos,
1529                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1530                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1531                 ASSERT(smo->smo_object != 0);
1532                 vdev_config_dirty(vd->vdev_top);
1533         }
1534
1535         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1536
1537         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1538             &smlock);
1539
1540         mutex_enter(&smlock);
1541
1542         mutex_enter(&vd->vdev_dtl_lock);
1543         space_map_walk(sm, space_map_add, &smsync);
1544         mutex_exit(&vd->vdev_dtl_lock);
1545
1546         space_map_truncate(smo, mos, tx);
1547         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1548
1549         space_map_destroy(&smsync);
1550
1551         mutex_exit(&smlock);
1552         mutex_destroy(&smlock);
1553
1554         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1555         dmu_buf_will_dirty(db, tx);
1556         ASSERT3U(db->db_size, >=, sizeof (*smo));
1557         bcopy(smo, db->db_data, sizeof (*smo));
1558         dmu_buf_rele(db, FTAG);
1559
1560         dmu_tx_commit(tx);
1561 }
1562
1563 /*
1564  * Determine whether the specified vdev can be offlined/detached/removed
1565  * without losing data.
1566  */
1567 boolean_t
1568 vdev_dtl_required(vdev_t *vd)
1569 {
1570         spa_t *spa = vd->vdev_spa;
1571         vdev_t *tvd = vd->vdev_top;
1572         uint8_t cant_read = vd->vdev_cant_read;
1573         boolean_t required;
1574
1575         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1576
1577         if (vd == spa->spa_root_vdev || vd == tvd)
1578                 return (B_TRUE);
1579
1580         /*
1581          * Temporarily mark the device as unreadable, and then determine
1582          * whether this results in any DTL outages in the top-level vdev.
1583          * If not, we can safely offline/detach/remove the device.
1584          */
1585         vd->vdev_cant_read = B_TRUE;
1586         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1587         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1588         vd->vdev_cant_read = cant_read;
1589         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1590
1591         return (required);
1592 }
1593
1594 /*
1595  * Determine if resilver is needed, and if so the txg range.
1596  */
1597 boolean_t
1598 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1599 {
1600         boolean_t needed = B_FALSE;
1601         uint64_t thismin = UINT64_MAX;
1602         uint64_t thismax = 0;
1603
1604         if (vd->vdev_children == 0) {
1605                 mutex_enter(&vd->vdev_dtl_lock);
1606                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1607                     vdev_writeable(vd)) {
1608                         space_seg_t *ss;
1609
1610                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1611                         thismin = ss->ss_start - 1;
1612                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1613                         thismax = ss->ss_end;
1614                         needed = B_TRUE;
1615                 }
1616                 mutex_exit(&vd->vdev_dtl_lock);
1617         } else {
1618                 for (int c = 0; c < vd->vdev_children; c++) {
1619                         vdev_t *cvd = vd->vdev_child[c];
1620                         uint64_t cmin, cmax;
1621
1622                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1623                                 thismin = MIN(thismin, cmin);
1624                                 thismax = MAX(thismax, cmax);
1625                                 needed = B_TRUE;
1626                         }
1627                 }
1628         }
1629
1630         if (needed && minp) {
1631                 *minp = thismin;
1632                 *maxp = thismax;
1633         }
1634         return (needed);
1635 }
1636
1637 void
1638 vdev_load(vdev_t *vd)
1639 {
1640         /*
1641          * Recursively load all children.
1642          */
1643         for (int c = 0; c < vd->vdev_children; c++)
1644                 vdev_load(vd->vdev_child[c]);
1645
1646         /*
1647          * If this is a top-level vdev, initialize its metaslabs.
1648          */
1649         if (vd == vd->vdev_top &&
1650             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1651             vdev_metaslab_init(vd, 0) != 0))
1652                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1653                     VDEV_AUX_CORRUPT_DATA);
1654
1655         /*
1656          * If this is a leaf vdev, load its DTL.
1657          */
1658         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1659                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1660                     VDEV_AUX_CORRUPT_DATA);
1661 }
1662
1663 /*
1664  * The special vdev case is used for hot spares and l2cache devices.  Its
1665  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1666  * we make sure that we can open the underlying device, then try to read the
1667  * label, and make sure that the label is sane and that it hasn't been
1668  * repurposed to another pool.
1669  */
1670 int
1671 vdev_validate_aux(vdev_t *vd)
1672 {
1673         nvlist_t *label;
1674         uint64_t guid, version;
1675         uint64_t state;
1676
1677         if (!vdev_readable(vd))
1678                 return (0);
1679
1680         if ((label = vdev_label_read_config(vd)) == NULL) {
1681                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1682                     VDEV_AUX_CORRUPT_DATA);
1683                 return (-1);
1684         }
1685
1686         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1687             version > SPA_VERSION ||
1688             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1689             guid != vd->vdev_guid ||
1690             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1691                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692                     VDEV_AUX_CORRUPT_DATA);
1693                 nvlist_free(label);
1694                 return (-1);
1695         }
1696
1697         /*
1698          * We don't actually check the pool state here.  If it's in fact in
1699          * use by another pool, we update this fact on the fly when requested.
1700          */
1701         nvlist_free(label);
1702         return (0);
1703 }
1704
1705 void
1706 vdev_sync_done(vdev_t *vd, uint64_t txg)
1707 {
1708         metaslab_t *msp;
1709
1710         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1711                 metaslab_sync_done(msp, txg);
1712 }
1713
1714 void
1715 vdev_sync(vdev_t *vd, uint64_t txg)
1716 {
1717         spa_t *spa = vd->vdev_spa;
1718         vdev_t *lvd;
1719         metaslab_t *msp;
1720         dmu_tx_t *tx;
1721
1722         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1723                 ASSERT(vd == vd->vdev_top);
1724                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1725                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1726                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1727                 ASSERT(vd->vdev_ms_array != 0);
1728                 vdev_config_dirty(vd);
1729                 dmu_tx_commit(tx);
1730         }
1731
1732         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1733                 metaslab_sync(msp, txg);
1734                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1735         }
1736
1737         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1738                 vdev_dtl_sync(lvd, txg);
1739
1740         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1741 }
1742
1743 uint64_t
1744 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1745 {
1746         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1747 }
1748
1749 /*
1750  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1751  * not be opened, and no I/O is attempted.
1752  */
1753 int
1754 vdev_fault(spa_t *spa, uint64_t guid)
1755 {
1756         vdev_t *vd;
1757
1758         spa_vdev_state_enter(spa);
1759
1760         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1761                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1762
1763         if (!vd->vdev_ops->vdev_op_leaf)
1764                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1765
1766         /*
1767          * Faulted state takes precedence over degraded.
1768          */
1769         vd->vdev_faulted = 1ULL;
1770         vd->vdev_degraded = 0ULL;
1771         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1772
1773         /*
1774          * If marking the vdev as faulted cause the top-level vdev to become
1775          * unavailable, then back off and simply mark the vdev as degraded
1776          * instead.
1777          */
1778         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1779                 vd->vdev_degraded = 1ULL;
1780                 vd->vdev_faulted = 0ULL;
1781
1782                 /*
1783                  * If we reopen the device and it's not dead, only then do we
1784                  * mark it degraded.
1785                  */
1786                 vdev_reopen(vd);
1787
1788                 if (vdev_readable(vd)) {
1789                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1790                             VDEV_AUX_ERR_EXCEEDED);
1791                 }
1792         }
1793
1794         return (spa_vdev_state_exit(spa, vd, 0));
1795 }
1796
1797 /*
1798  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1799  * user that something is wrong.  The vdev continues to operate as normal as far
1800  * as I/O is concerned.
1801  */
1802 int
1803 vdev_degrade(spa_t *spa, uint64_t guid)
1804 {
1805         vdev_t *vd;
1806
1807         spa_vdev_state_enter(spa);
1808
1809         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1810                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1811
1812         if (!vd->vdev_ops->vdev_op_leaf)
1813                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1814
1815         /*
1816          * If the vdev is already faulted, then don't do anything.
1817          */
1818         if (vd->vdev_faulted || vd->vdev_degraded)
1819                 return (spa_vdev_state_exit(spa, NULL, 0));
1820
1821         vd->vdev_degraded = 1ULL;
1822         if (!vdev_is_dead(vd))
1823                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1824                     VDEV_AUX_ERR_EXCEEDED);
1825
1826         return (spa_vdev_state_exit(spa, vd, 0));
1827 }
1828
1829 /*
1830  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1831  * any attached spare device should be detached when the device finishes
1832  * resilvering.  Second, the online should be treated like a 'test' online case,
1833  * so no FMA events are generated if the device fails to open.
1834  */
1835 int
1836 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1837 {
1838         vdev_t *vd;
1839
1840         spa_vdev_state_enter(spa);
1841
1842         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1843                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1844
1845         if (!vd->vdev_ops->vdev_op_leaf)
1846                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1847
1848         vd->vdev_offline = B_FALSE;
1849         vd->vdev_tmpoffline = B_FALSE;
1850         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1851         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1852         vdev_reopen(vd->vdev_top);
1853         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1854
1855         if (newstate)
1856                 *newstate = vd->vdev_state;
1857         if ((flags & ZFS_ONLINE_UNSPARE) &&
1858             !vdev_is_dead(vd) && vd->vdev_parent &&
1859             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1860             vd->vdev_parent->vdev_child[0] == vd)
1861                 vd->vdev_unspare = B_TRUE;
1862
1863         return (spa_vdev_state_exit(spa, vd, 0));
1864 }
1865
1866 int
1867 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1868 {
1869         vdev_t *vd;
1870
1871         spa_vdev_state_enter(spa);
1872
1873         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1874                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1875
1876         if (!vd->vdev_ops->vdev_op_leaf)
1877                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1878
1879         /*
1880          * If the device isn't already offline, try to offline it.
1881          */
1882         if (!vd->vdev_offline) {
1883                 /*
1884                  * If this device has the only valid copy of some data,
1885                  * don't allow it to be offlined.
1886                  */
1887                 if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1888                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1889
1890                 /*
1891                  * Offline this device and reopen its top-level vdev.
1892                  * If this action results in the top-level vdev becoming
1893                  * unusable, undo it and fail the request.
1894                  */
1895                 vd->vdev_offline = B_TRUE;
1896                 vdev_reopen(vd->vdev_top);
1897                 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1898                         vd->vdev_offline = B_FALSE;
1899                         vdev_reopen(vd->vdev_top);
1900                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1901                 }
1902         }
1903
1904         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1905
1906         return (spa_vdev_state_exit(spa, vd, 0));
1907 }
1908
1909 /*
1910  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1911  * vdev_offline(), we assume the spa config is locked.  We also clear all
1912  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1913  */
1914 void
1915 vdev_clear(spa_t *spa, vdev_t *vd)
1916 {
1917         vdev_t *rvd = spa->spa_root_vdev;
1918
1919         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1920
1921         if (vd == NULL)
1922                 vd = rvd;
1923
1924         vd->vdev_stat.vs_read_errors = 0;
1925         vd->vdev_stat.vs_write_errors = 0;
1926         vd->vdev_stat.vs_checksum_errors = 0;
1927
1928         for (int c = 0; c < vd->vdev_children; c++)
1929                 vdev_clear(spa, vd->vdev_child[c]);
1930
1931         /*
1932          * If we're in the FAULTED state or have experienced failed I/O, then
1933          * clear the persistent state and attempt to reopen the device.  We
1934          * also mark the vdev config dirty, so that the new faulted state is
1935          * written out to disk.
1936          */
1937         if (vd->vdev_faulted || vd->vdev_degraded ||
1938             !vdev_readable(vd) || !vdev_writeable(vd)) {
1939
1940                 vd->vdev_faulted = vd->vdev_degraded = 0;
1941                 vd->vdev_cant_read = B_FALSE;
1942                 vd->vdev_cant_write = B_FALSE;
1943
1944                 vdev_reopen(vd);
1945
1946                 if (vd != rvd)
1947                         vdev_state_dirty(vd->vdev_top);
1948
1949                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1950                         spa_async_request(spa, SPA_ASYNC_RESILVER);
1951
1952                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1953         }
1954 }
1955
1956 boolean_t
1957 vdev_is_dead(vdev_t *vd)
1958 {
1959         return (vd->vdev_state < VDEV_STATE_DEGRADED);
1960 }
1961
1962 boolean_t
1963 vdev_readable(vdev_t *vd)
1964 {
1965         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
1966 }
1967
1968 boolean_t
1969 vdev_writeable(vdev_t *vd)
1970 {
1971         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1972 }
1973
1974 boolean_t
1975 vdev_allocatable(vdev_t *vd)
1976 {
1977         uint64_t state = vd->vdev_state;
1978
1979         /*
1980          * We currently allow allocations from vdevs which may be in the
1981          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
1982          * fails to reopen then we'll catch it later when we're holding
1983          * the proper locks.  Note that we have to get the vdev state
1984          * in a local variable because although it changes atomically,
1985          * we're asking two separate questions about it.
1986          */
1987         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
1988             !vd->vdev_cant_write);
1989 }
1990
1991 boolean_t
1992 vdev_accessible(vdev_t *vd, zio_t *zio)
1993 {
1994         ASSERT(zio->io_vd == vd);
1995
1996         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
1997                 return (B_FALSE);
1998
1999         if (zio->io_type == ZIO_TYPE_READ)
2000                 return (!vd->vdev_cant_read);
2001
2002         if (zio->io_type == ZIO_TYPE_WRITE)
2003                 return (!vd->vdev_cant_write);
2004
2005         return (B_TRUE);
2006 }
2007
2008 /*
2009  * Get statistics for the given vdev.
2010  */
2011 void
2012 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2013 {
2014         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2015
2016         mutex_enter(&vd->vdev_stat_lock);
2017         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2018         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2019         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2020         vs->vs_state = vd->vdev_state;
2021         vs->vs_rsize = vdev_get_rsize(vd);
2022         mutex_exit(&vd->vdev_stat_lock);
2023
2024         /*
2025          * If we're getting stats on the root vdev, aggregate the I/O counts
2026          * over all top-level vdevs (i.e. the direct children of the root).
2027          */
2028         if (vd == rvd) {
2029                 for (int c = 0; c < rvd->vdev_children; c++) {
2030                         vdev_t *cvd = rvd->vdev_child[c];
2031                         vdev_stat_t *cvs = &cvd->vdev_stat;
2032
2033                         mutex_enter(&vd->vdev_stat_lock);
2034                         for (int t = 0; t < ZIO_TYPES; t++) {
2035                                 vs->vs_ops[t] += cvs->vs_ops[t];
2036                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2037                         }
2038                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2039                         mutex_exit(&vd->vdev_stat_lock);
2040                 }
2041         }
2042 }
2043
2044 void
2045 vdev_clear_stats(vdev_t *vd)
2046 {
2047         mutex_enter(&vd->vdev_stat_lock);
2048         vd->vdev_stat.vs_space = 0;
2049         vd->vdev_stat.vs_dspace = 0;
2050         vd->vdev_stat.vs_alloc = 0;
2051         mutex_exit(&vd->vdev_stat_lock);
2052 }
2053
2054 void
2055 vdev_stat_update(zio_t *zio, uint64_t psize)
2056 {
2057         spa_t *spa = zio->io_spa;
2058         vdev_t *rvd = spa->spa_root_vdev;
2059         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2060         vdev_t *pvd;
2061         uint64_t txg = zio->io_txg;
2062         vdev_stat_t *vs = &vd->vdev_stat;
2063         zio_type_t type = zio->io_type;
2064         int flags = zio->io_flags;
2065
2066         /*
2067          * If this i/o is a gang leader, it didn't do any actual work.
2068          */
2069         if (zio->io_gang_tree)
2070                 return;
2071
2072         if (zio->io_error == 0) {
2073                 /*
2074                  * If this is a root i/o, don't count it -- we've already
2075                  * counted the top-level vdevs, and vdev_get_stats() will
2076                  * aggregate them when asked.  This reduces contention on
2077                  * the root vdev_stat_lock and implicitly handles blocks
2078                  * that compress away to holes, for which there is no i/o.
2079                  * (Holes never create vdev children, so all the counters
2080                  * remain zero, which is what we want.)
2081                  *
2082                  * Note: this only applies to successful i/o (io_error == 0)
2083                  * because unlike i/o counts, errors are not additive.
2084                  * When reading a ditto block, for example, failure of
2085                  * one top-level vdev does not imply a root-level error.
2086                  */
2087                 if (vd == rvd)
2088                         return;
2089
2090                 ASSERT(vd == zio->io_vd);
2091
2092                 if (flags & ZIO_FLAG_IO_BYPASS)
2093                         return;
2094
2095                 mutex_enter(&vd->vdev_stat_lock);
2096
2097                 if (flags & ZIO_FLAG_IO_REPAIR) {
2098                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2099                                 vs->vs_scrub_repaired += psize;
2100                         if (flags & ZIO_FLAG_SELF_HEAL)
2101                                 vs->vs_self_healed += psize;
2102                 }
2103
2104                 vs->vs_ops[type]++;
2105                 vs->vs_bytes[type] += psize;
2106
2107                 mutex_exit(&vd->vdev_stat_lock);
2108                 return;
2109         }
2110
2111         if (flags & ZIO_FLAG_SPECULATIVE)
2112                 return;
2113
2114         mutex_enter(&vd->vdev_stat_lock);
2115         if (type == ZIO_TYPE_READ) {
2116                 if (zio->io_error == ECKSUM)
2117                         vs->vs_checksum_errors++;
2118                 else
2119                         vs->vs_read_errors++;
2120         }
2121         if (type == ZIO_TYPE_WRITE)
2122                 vs->vs_write_errors++;
2123         mutex_exit(&vd->vdev_stat_lock);
2124
2125         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2126             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2127             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2128                 /*
2129                  * This is either a normal write (not a repair), or it's a
2130                  * repair induced by the scrub thread.  In the normal case,
2131                  * we commit the DTL change in the same txg as the block
2132                  * was born.  In the scrub-induced repair case, we know that
2133                  * scrubs run in first-pass syncing context, so we commit
2134                  * the DTL change in spa->spa_syncing_txg.
2135                  *
2136                  * We currently do not make DTL entries for failed spontaneous
2137                  * self-healing writes triggered by normal (non-scrubbing)
2138                  * reads, because we have no transactional context in which to
2139                  * do so -- and it's not clear that it'd be desirable anyway.
2140                  */
2141                 if (vd->vdev_ops->vdev_op_leaf) {
2142                         uint64_t commit_txg = txg;
2143                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2144                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2145                                 ASSERT(spa_sync_pass(spa) == 1);
2146                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2147                                 commit_txg = spa->spa_syncing_txg;
2148                         }
2149                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2150                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2151                                 return;
2152                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2153                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2154                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2155                 }
2156                 if (vd != rvd)
2157                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2158         }
2159 }
2160
2161 void
2162 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2163 {
2164         int c;
2165         vdev_stat_t *vs = &vd->vdev_stat;
2166
2167         for (c = 0; c < vd->vdev_children; c++)
2168                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2169
2170         mutex_enter(&vd->vdev_stat_lock);
2171
2172         if (type == POOL_SCRUB_NONE) {
2173                 /*
2174                  * Update completion and end time.  Leave everything else alone
2175                  * so we can report what happened during the previous scrub.
2176                  */
2177                 vs->vs_scrub_complete = complete;
2178                 vs->vs_scrub_end = gethrestime_sec();
2179         } else {
2180                 vs->vs_scrub_type = type;
2181                 vs->vs_scrub_complete = 0;
2182                 vs->vs_scrub_examined = 0;
2183                 vs->vs_scrub_repaired = 0;
2184                 vs->vs_scrub_start = gethrestime_sec();
2185                 vs->vs_scrub_end = 0;
2186         }
2187
2188         mutex_exit(&vd->vdev_stat_lock);
2189 }
2190
2191 /*
2192  * Update the in-core space usage stats for this vdev and the root vdev.
2193  */
2194 void
2195 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2196     boolean_t update_root)
2197 {
2198         int64_t dspace_delta = space_delta;
2199         spa_t *spa = vd->vdev_spa;
2200         vdev_t *rvd = spa->spa_root_vdev;
2201
2202         ASSERT(vd == vd->vdev_top);
2203
2204         /*
2205          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2206          * factor.  We must calculate this here and not at the root vdev
2207          * because the root vdev's psize-to-asize is simply the max of its
2208          * childrens', thus not accurate enough for us.
2209          */
2210         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2211         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2212             vd->vdev_deflate_ratio;
2213
2214         mutex_enter(&vd->vdev_stat_lock);
2215         vd->vdev_stat.vs_space += space_delta;
2216         vd->vdev_stat.vs_alloc += alloc_delta;
2217         vd->vdev_stat.vs_dspace += dspace_delta;
2218         mutex_exit(&vd->vdev_stat_lock);
2219
2220         if (update_root) {
2221                 ASSERT(rvd == vd->vdev_parent);
2222                 ASSERT(vd->vdev_ms_count != 0);
2223
2224                 /*
2225                  * Don't count non-normal (e.g. intent log) space as part of
2226                  * the pool's capacity.
2227                  */
2228                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2229                         return;
2230
2231                 mutex_enter(&rvd->vdev_stat_lock);
2232                 rvd->vdev_stat.vs_space += space_delta;
2233                 rvd->vdev_stat.vs_alloc += alloc_delta;
2234                 rvd->vdev_stat.vs_dspace += dspace_delta;
2235                 mutex_exit(&rvd->vdev_stat_lock);
2236         }
2237 }
2238
2239 /*
2240  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2241  * so that it will be written out next time the vdev configuration is synced.
2242  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2243  */
2244 void
2245 vdev_config_dirty(vdev_t *vd)
2246 {
2247         spa_t *spa = vd->vdev_spa;
2248         vdev_t *rvd = spa->spa_root_vdev;
2249         int c;
2250
2251         /*
2252          * If this is an aux vdev (as with l2cache devices), then we update the
2253          * vdev config manually and set the sync flag.
2254          */
2255         if (vd->vdev_aux != NULL) {
2256                 spa_aux_vdev_t *sav = vd->vdev_aux;
2257                 nvlist_t **aux;
2258                 uint_t naux;
2259
2260                 for (c = 0; c < sav->sav_count; c++) {
2261                         if (sav->sav_vdevs[c] == vd)
2262                                 break;
2263                 }
2264
2265                 if (c == sav->sav_count) {
2266                         /*
2267                          * We're being removed.  There's nothing more to do.
2268                          */
2269                         ASSERT(sav->sav_sync == B_TRUE);
2270                         return;
2271                 }
2272
2273                 sav->sav_sync = B_TRUE;
2274
2275                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2276                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2277
2278                 ASSERT(c < naux);
2279
2280                 /*
2281                  * Setting the nvlist in the middle if the array is a little
2282                  * sketchy, but it will work.
2283                  */
2284                 nvlist_free(aux[c]);
2285                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2286
2287                 return;
2288         }
2289
2290         /*
2291          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2292          * must either hold SCL_CONFIG as writer, or must be the sync thread
2293          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2294          * so this is sufficient to ensure mutual exclusion.
2295          */
2296         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2297             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2298             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2299
2300         if (vd == rvd) {
2301                 for (c = 0; c < rvd->vdev_children; c++)
2302                         vdev_config_dirty(rvd->vdev_child[c]);
2303         } else {
2304                 ASSERT(vd == vd->vdev_top);
2305
2306                 if (!list_link_active(&vd->vdev_config_dirty_node))
2307                         list_insert_head(&spa->spa_config_dirty_list, vd);
2308         }
2309 }
2310
2311 void
2312 vdev_config_clean(vdev_t *vd)
2313 {
2314         spa_t *spa = vd->vdev_spa;
2315
2316         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2317             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2318             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2319
2320         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2321         list_remove(&spa->spa_config_dirty_list, vd);
2322 }
2323
2324 /*
2325  * Mark a top-level vdev's state as dirty, so that the next pass of
2326  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2327  * the state changes from larger config changes because they require
2328  * much less locking, and are often needed for administrative actions.
2329  */
2330 void
2331 vdev_state_dirty(vdev_t *vd)
2332 {
2333         spa_t *spa = vd->vdev_spa;
2334
2335         ASSERT(vd == vd->vdev_top);
2336
2337         /*
2338          * The state list is protected by the SCL_STATE lock.  The caller
2339          * must either hold SCL_STATE as writer, or must be the sync thread
2340          * (which holds SCL_STATE as reader).  There's only one sync thread,
2341          * so this is sufficient to ensure mutual exclusion.
2342          */
2343         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2344             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2345             spa_config_held(spa, SCL_STATE, RW_READER)));
2346
2347         if (!list_link_active(&vd->vdev_state_dirty_node))
2348                 list_insert_head(&spa->spa_state_dirty_list, vd);
2349 }
2350
2351 void
2352 vdev_state_clean(vdev_t *vd)
2353 {
2354         spa_t *spa = vd->vdev_spa;
2355
2356         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2357             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2358             spa_config_held(spa, SCL_STATE, RW_READER)));
2359
2360         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2361         list_remove(&spa->spa_state_dirty_list, vd);
2362 }
2363
2364 /*
2365  * Propagate vdev state up from children to parent.
2366  */
2367 void
2368 vdev_propagate_state(vdev_t *vd)
2369 {
2370         spa_t *spa = vd->vdev_spa;
2371         vdev_t *rvd = spa->spa_root_vdev;
2372         int degraded = 0, faulted = 0;
2373         int corrupted = 0;
2374         int c;
2375         vdev_t *child;
2376
2377         if (vd->vdev_children > 0) {
2378                 for (c = 0; c < vd->vdev_children; c++) {
2379                         child = vd->vdev_child[c];
2380
2381                         if (!vdev_readable(child) ||
2382                             (!vdev_writeable(child) && spa_writeable(spa))) {
2383                                 /*
2384                                  * Root special: if there is a top-level log
2385                                  * device, treat the root vdev as if it were
2386                                  * degraded.
2387                                  */
2388                                 if (child->vdev_islog && vd == rvd)
2389                                         degraded++;
2390                                 else
2391                                         faulted++;
2392                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2393                                 degraded++;
2394                         }
2395
2396                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2397                                 corrupted++;
2398                 }
2399
2400                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2401
2402                 /*
2403                  * Root special: if there is a top-level vdev that cannot be
2404                  * opened due to corrupted metadata, then propagate the root
2405                  * vdev's aux state as 'corrupt' rather than 'insufficient
2406                  * replicas'.
2407                  */
2408                 if (corrupted && vd == rvd &&
2409                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2410                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2411                             VDEV_AUX_CORRUPT_DATA);
2412         }
2413
2414         if (vd->vdev_parent)
2415                 vdev_propagate_state(vd->vdev_parent);
2416 }
2417
2418 /*
2419  * Set a vdev's state.  If this is during an open, we don't update the parent
2420  * state, because we're in the process of opening children depth-first.
2421  * Otherwise, we propagate the change to the parent.
2422  *
2423  * If this routine places a device in a faulted state, an appropriate ereport is
2424  * generated.
2425  */
2426 void
2427 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2428 {
2429         uint64_t save_state;
2430         spa_t *spa = vd->vdev_spa;
2431
2432         if (state == vd->vdev_state) {
2433                 vd->vdev_stat.vs_aux = aux;
2434                 return;
2435         }
2436
2437         save_state = vd->vdev_state;
2438
2439         vd->vdev_state = state;
2440         vd->vdev_stat.vs_aux = aux;
2441
2442         /*
2443          * If we are setting the vdev state to anything but an open state, then
2444          * always close the underlying device.  Otherwise, we keep accessible
2445          * but invalid devices open forever.  We don't call vdev_close() itself,
2446          * because that implies some extra checks (offline, etc) that we don't
2447          * want here.  This is limited to leaf devices, because otherwise
2448          * closing the device will affect other children.
2449          */
2450         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2451                 vd->vdev_ops->vdev_op_close(vd);
2452
2453         if (vd->vdev_removed &&
2454             state == VDEV_STATE_CANT_OPEN &&
2455             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2456                 /*
2457                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2458                  * device was previously marked removed and someone attempted to
2459                  * reopen it.  If this failed due to a nonexistent device, then
2460                  * keep the device in the REMOVED state.  We also let this be if
2461                  * it is one of our special test online cases, which is only
2462                  * attempting to online the device and shouldn't generate an FMA
2463                  * fault.
2464                  */
2465                 vd->vdev_state = VDEV_STATE_REMOVED;
2466                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2467         } else if (state == VDEV_STATE_REMOVED) {
2468                 /*
2469                  * Indicate to the ZFS DE that this device has been removed, and
2470                  * any recent errors should be ignored.
2471                  */
2472                 zfs_post_remove(spa, vd);
2473                 vd->vdev_removed = B_TRUE;
2474         } else if (state == VDEV_STATE_CANT_OPEN) {
2475                 /*
2476                  * If we fail to open a vdev during an import, we mark it as
2477                  * "not available", which signifies that it was never there to
2478                  * begin with.  Failure to open such a device is not considered
2479                  * an error.
2480                  */
2481                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2482                     !spa->spa_import_faulted &&
2483                     vd->vdev_ops->vdev_op_leaf)
2484                         vd->vdev_not_present = 1;
2485
2486                 /*
2487                  * Post the appropriate ereport.  If the 'prevstate' field is
2488                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2489                  * that this is part of a vdev_reopen().  In this case, we don't
2490                  * want to post the ereport if the device was already in the
2491                  * CANT_OPEN state beforehand.
2492                  *
2493                  * If the 'checkremove' flag is set, then this is an attempt to
2494                  * online the device in response to an insertion event.  If we
2495                  * hit this case, then we have detected an insertion event for a
2496                  * faulted or offline device that wasn't in the removed state.
2497                  * In this scenario, we don't post an ereport because we are
2498                  * about to replace the device, or attempt an online with
2499                  * vdev_forcefault, which will generate the fault for us.
2500                  */
2501                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2502                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2503                     vd != spa->spa_root_vdev) {
2504                         const char *class;
2505
2506                         switch (aux) {
2507                         case VDEV_AUX_OPEN_FAILED:
2508                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2509                                 break;
2510                         case VDEV_AUX_CORRUPT_DATA:
2511                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2512                                 break;
2513                         case VDEV_AUX_NO_REPLICAS:
2514                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2515                                 break;
2516                         case VDEV_AUX_BAD_GUID_SUM:
2517                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2518                                 break;
2519                         case VDEV_AUX_TOO_SMALL:
2520                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2521                                 break;
2522                         case VDEV_AUX_BAD_LABEL:
2523                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2524                                 break;
2525                         case VDEV_AUX_IO_FAILURE:
2526                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2527                                 break;
2528                         default:
2529                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2530                         }
2531
2532                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2533                 }
2534
2535                 /* Erase any notion of persistent removed state */
2536                 vd->vdev_removed = B_FALSE;
2537         } else {
2538                 vd->vdev_removed = B_FALSE;
2539         }
2540
2541         if (!isopen)
2542                 vdev_propagate_state(vd);
2543 }
2544
2545 /*
2546  * Check the vdev configuration to ensure that it's capable of supporting
2547  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2548  * In addition, only a single top-level vdev is allowed and none of the leaves
2549  * can be wholedisks.
2550  */
2551 boolean_t
2552 vdev_is_bootable(vdev_t *vd)
2553 {
2554         int c;
2555
2556         if (!vd->vdev_ops->vdev_op_leaf) {
2557                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2558
2559                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2560                     vd->vdev_children > 1) {
2561                         return (B_FALSE);
2562                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2563                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2564                         return (B_FALSE);
2565                 }
2566         } else if (vd->vdev_wholedisk == 1) {
2567                 return (B_FALSE);
2568         }
2569
2570         for (c = 0; c < vd->vdev_children; c++) {
2571                 if (!vdev_is_bootable(vd->vdev_child[c]))
2572                         return (B_FALSE);
2573         }
2574         return (B_TRUE);
2575 }