Illumos #3618 ::zio dcmd does not show timestamp data
[zfs.git] / module / zfs / vdev.c
index d9689e8..662a877 100644 (file)
@@ -20,8 +20,9 @@
  */
 
 /*
- * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
+ * Copyright (c) 2012 by Delphix. All rights reserved.
  */
 
 #include <sys/zfs_context.h>
@@ -39,6 +40,9 @@
 #include <sys/zap.h>
 #include <sys/fs/zfs.h>
 #include <sys/arc.h>
+#include <sys/zil.h>
+#include <sys/dsl_scan.h>
+#include <sys/zvol.h>
 
 /*
  * Virtual device management.
@@ -53,12 +57,10 @@ static vdev_ops_t *vdev_ops_table[] = {
        &vdev_disk_ops,
        &vdev_file_ops,
        &vdev_missing_ops,
+       &vdev_hole_ops,
        NULL
 };
 
-/* maximum scrub/resilver I/O queue per leaf vdev */
-int zfs_scrub_limit = 10;
-
 /*
  * Given a vdev type, return the appropriate ops vector.
  */
@@ -83,7 +85,7 @@ vdev_default_asize(vdev_t *vd, uint64_t psize)
 {
        uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
        uint64_t csize;
-       uint64_t c;
+       int c;
 
        for (c = 0; c < vd->vdev_children; c++) {
                csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
@@ -94,40 +96,48 @@ vdev_default_asize(vdev_t *vd, uint64_t psize)
 }
 
 /*
- * Get the replaceable or attachable device size.
- * If the parent is a mirror or raidz, the replaceable size is the minimum
- * psize of all its children. For the rest, just return our own psize.
- *
- * e.g.
- *                     psize   rsize
- * root                        -       -
- *     mirror/raidz    -       -
- *         disk1       20g     20g
- *         disk2       40g     20g
- *     disk3           80g     80g
+ * Get the minimum allocatable size. We define the allocatable size as
+ * the vdev's asize rounded to the nearest metaslab. This allows us to
+ * replace or attach devices which don't have the same physical size but
+ * can still satisfy the same number of allocations.
  */
 uint64_t
-vdev_get_rsize(vdev_t *vd)
+vdev_get_min_asize(vdev_t *vd)
 {
-       vdev_t *pvd, *cvd;
-       uint64_t c, rsize;
+       vdev_t *pvd = vd->vdev_parent;
+
+       /*
+        * If our parent is NULL (inactive spare or cache) or is the root,
+        * just return our own asize.
+        */
+       if (pvd == NULL)
+               return (vd->vdev_asize);
 
-       pvd = vd->vdev_parent;
+       /*
+        * The top-level vdev just returns the allocatable size rounded
+        * to the nearest metaslab.
+        */
+       if (vd == vd->vdev_top)
+               return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 
        /*
-        * If our parent is NULL or the root, just return our own psize.
+        * The allocatable space for a raidz vdev is N * sizeof(smallest child),
+        * so each child must provide at least 1/Nth of its asize.
         */
-       if (pvd == NULL || pvd->vdev_parent == NULL)
-               return (vd->vdev_psize);
+       if (pvd->vdev_ops == &vdev_raidz_ops)
+               return (pvd->vdev_min_asize / pvd->vdev_children);
 
-       rsize = 0;
+       return (pvd->vdev_min_asize);
+}
 
-       for (c = 0; c < pvd->vdev_children; c++) {
-               cvd = pvd->vdev_child[c];
-               rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
-       }
+void
+vdev_set_min_asize(vdev_t *vd)
+{
+       int c;
+       vd->vdev_min_asize = vdev_get_min_asize(vd);
 
-       return (rsize);
+       for (c = 0; c < vd->vdev_children; c++)
+               vdev_set_min_asize(vd->vdev_child[c]);
 }
 
 vdev_t *
@@ -148,8 +158,8 @@ vdev_lookup_top(spa_t *spa, uint64_t vdev)
 vdev_t *
 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 {
-       int c;
        vdev_t *mvd;
+       int c;
 
        if (vd->vdev_guid == guid)
                return (vd);
@@ -183,7 +193,7 @@ vdev_add_child(vdev_t *pvd, vdev_t *cvd)
        pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
        newsize = pvd->vdev_children * sizeof (vdev_t *);
 
-       newchild = kmem_zalloc(newsize, KM_SLEEP);
+       newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
        if (pvd->vdev_child != NULL) {
                bcopy(pvd->vdev_child, newchild, oldsize);
                kmem_free(pvd->vdev_child, oldsize);
@@ -200,9 +210,6 @@ vdev_add_child(vdev_t *pvd, vdev_t *cvd)
         */
        for (; pvd != NULL; pvd = pvd->vdev_parent)
                pvd->vdev_guid_sum += cvd->vdev_guid_sum;
-
-       if (cvd->vdev_ops->vdev_op_leaf)
-               cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
 }
 
 void
@@ -237,9 +244,6 @@ vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
         */
        for (; pvd != NULL; pvd = pvd->vdev_parent)
                pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
-
-       if (cvd->vdev_ops->vdev_op_leaf)
-               cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
 }
 
 /*
@@ -250,7 +254,8 @@ vdev_compact_children(vdev_t *pvd)
 {
        vdev_t **newchild, *cvd;
        int oldc = pvd->vdev_children;
-       int newc, c;
+       int newc;
+       int c;
 
        ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 
@@ -258,7 +263,7 @@ vdev_compact_children(vdev_t *pvd)
                if (pvd->vdev_child[c])
                        newc++;
 
-       newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
+       newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
 
        for (c = newc = 0; c < oldc; c++) {
                if ((cvd = pvd->vdev_child[c]) != NULL) {
@@ -275,33 +280,32 @@ vdev_compact_children(vdev_t *pvd)
 /*
  * Allocate and minimally initialize a vdev_t.
  */
-static vdev_t *
+vdev_t *
 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 {
        vdev_t *vd;
+       int t;
 
-       vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
+       vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
 
        if (spa->spa_root_vdev == NULL) {
                ASSERT(ops == &vdev_root_ops);
                spa->spa_root_vdev = vd;
+               spa->spa_load_guid = spa_generate_guid(NULL);
        }
 
-       if (guid == 0) {
+       if (guid == 0 && ops != &vdev_hole_ops) {
                if (spa->spa_root_vdev == vd) {
                        /*
                         * The root vdev's guid will also be the pool guid,
                         * which must be unique among all pools.
                         */
-                       while (guid == 0 || spa_guid_exists(guid, 0))
-                               guid = spa_get_random(-1ULL);
+                       guid = spa_generate_guid(NULL);
                } else {
                        /*
                         * Any other vdev's guid must be unique within the pool.
                         */
-                       while (guid == 0 ||
-                           spa_guid_exists(spa_guid(spa), guid))
-                               guid = spa_get_random(-1ULL);
+                       guid = spa_generate_guid(spa);
                }
                ASSERT(!spa_guid_exists(spa_guid(spa), guid));
        }
@@ -312,11 +316,14 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
        vd->vdev_guid_sum = guid;
        vd->vdev_ops = ops;
        vd->vdev_state = VDEV_STATE_CLOSED;
+       vd->vdev_ishole = (ops == &vdev_hole_ops);
 
+       list_link_init(&vd->vdev_config_dirty_node);
+       list_link_init(&vd->vdev_state_dirty_node);
        mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
        mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
        mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
-       for (int t = 0; t < DTL_TYPES; t++) {
+       for (t = 0; t < DTL_TYPES; t++) {
                space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
                    &vd->vdev_dtl_lock);
        }
@@ -372,6 +379,9 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
        } else if (alloctype == VDEV_ALLOC_L2CACHE) {
                if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
                        return (EINVAL);
+       } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
+               if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
+                       return (EINVAL);
        }
 
        /*
@@ -388,6 +398,9 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
        if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
                return (ENOTSUP);
 
+       if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
+               return (ENOTSUP);
+
        /*
         * Set the nparity property for RAID-Z vdevs.
         */
@@ -395,23 +408,24 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
        if (ops == &vdev_raidz_ops) {
                if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
                    &nparity) == 0) {
-                       /*
-                        * Currently, we can only support 2 parity devices.
-                        */
-                       if (nparity == 0 || nparity > 2)
+                       if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
                                return (EINVAL);
                        /*
-                        * Older versions can only support 1 parity device.
+                        * Previous versions could only support 1 or 2 parity
+                        * device.
                         */
-                       if (nparity == 2 &&
-                           spa_version(spa) < SPA_VERSION_RAID6)
+                       if (nparity > 1 &&
+                           spa_version(spa) < SPA_VERSION_RAIDZ2)
+                               return (ENOTSUP);
+                       if (nparity > 2 &&
+                           spa_version(spa) < SPA_VERSION_RAIDZ3)
                                return (ENOTSUP);
                } else {
                        /*
                         * We require the parity to be specified for SPAs that
                         * support multiple parity levels.
                         */
-                       if (spa_version(spa) >= SPA_VERSION_RAID6)
+                       if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
                                return (EINVAL);
                        /*
                         * Otherwise, we default to 1 parity device for RAID-Z.
@@ -435,6 +449,8 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
        if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
            &vd->vdev_physpath) == 0)
                vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
+       if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
+               vd->vdev_fru = spa_strdup(vd->vdev_fru);
 
        /*
         * Set the whole_disk property.  If it's not specified, leave the value
@@ -448,9 +464,8 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
         * Look for the 'not present' flag.  This will only be set if the device
         * was not present at the time of import.
         */
-       if (!spa->spa_import_faulted)
-               (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
-                   &vd->vdev_not_present);
+       (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
+           &vd->vdev_not_present);
 
        /*
         * Get the alignment requirement.
@@ -458,43 +473,86 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 
        /*
+        * Retrieve the vdev creation time.
+        */
+       (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
+           &vd->vdev_crtxg);
+
+       /*
         * If we're a top-level vdev, try to load the allocation parameters.
         */
-       if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
+       if (parent && !parent->vdev_parent &&
+           (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
                (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
                    &vd->vdev_ms_array);
                (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
                    &vd->vdev_ms_shift);
                (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
                    &vd->vdev_asize);
+               (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
+                   &vd->vdev_removing);
+       }
+
+       if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
+               ASSERT(alloctype == VDEV_ALLOC_LOAD ||
+                   alloctype == VDEV_ALLOC_ADD ||
+                   alloctype == VDEV_ALLOC_SPLIT ||
+                   alloctype == VDEV_ALLOC_ROOTPOOL);
+               vd->vdev_mg = metaslab_group_create(islog ?
+                   spa_log_class(spa) : spa_normal_class(spa), vd);
        }
 
        /*
         * If we're a leaf vdev, try to load the DTL object and other state.
         */
        if (vd->vdev_ops->vdev_op_leaf &&
-           (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
+           (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
+           alloctype == VDEV_ALLOC_ROOTPOOL)) {
                if (alloctype == VDEV_ALLOC_LOAD) {
                        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
                            &vd->vdev_dtl_smo.smo_object);
                        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
                            &vd->vdev_unspare);
                }
+
+               if (alloctype == VDEV_ALLOC_ROOTPOOL) {
+                       uint64_t spare = 0;
+
+                       if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
+                           &spare) == 0 && spare)
+                               spa_spare_add(vd);
+               }
+
                (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
                    &vd->vdev_offline);
 
+               (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
+                   &vd->vdev_resilvering);
+
                /*
                 * When importing a pool, we want to ignore the persistent fault
                 * state, as the diagnosis made on another system may not be
-                * valid in the current context.
+                * valid in the current context.  Local vdevs will
+                * remain in the faulted state.
                 */
-               if (spa->spa_load_state == SPA_LOAD_OPEN) {
+               if (spa_load_state(spa) == SPA_LOAD_OPEN) {
                        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
                            &vd->vdev_faulted);
                        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
                            &vd->vdev_degraded);
                        (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
                            &vd->vdev_removed);
+
+                       if (vd->vdev_faulted || vd->vdev_degraded) {
+                               char *aux;
+
+                               vd->vdev_label_aux =
+                                   VDEV_AUX_ERR_EXCEEDED;
+                               if (nvlist_lookup_string(nv,
+                                   ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
+                                   strcmp(aux, "external") == 0)
+                                       vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
+                       }
                }
        }
 
@@ -511,7 +569,7 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 void
 vdev_free(vdev_t *vd)
 {
-       int c;
+       int c, t;
        spa_t *spa = vd->vdev_spa;
 
        /*
@@ -521,6 +579,7 @@ vdev_free(vdev_t *vd)
        vdev_close(vd);
 
        ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
+       ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 
        /*
         * Free all children.
@@ -534,12 +593,14 @@ vdev_free(vdev_t *vd)
        /*
         * Discard allocation state.
         */
-       if (vd == vd->vdev_top)
+       if (vd->vdev_mg != NULL) {
                vdev_metaslab_fini(vd);
+               metaslab_group_destroy(vd->vdev_mg);
+       }
 
-       ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
-       ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
-       ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
+       ASSERT0(vd->vdev_stat.vs_space);
+       ASSERT0(vd->vdev_stat.vs_dspace);
+       ASSERT0(vd->vdev_stat.vs_alloc);
 
        /*
         * Remove this vdev from its parent's child list.
@@ -560,6 +621,8 @@ vdev_free(vdev_t *vd)
                spa_strfree(vd->vdev_devid);
        if (vd->vdev_physpath)
                spa_strfree(vd->vdev_physpath);
+       if (vd->vdev_fru)
+               spa_strfree(vd->vdev_fru);
 
        if (vd->vdev_isspare)
                spa_spare_remove(vd);
@@ -570,7 +633,7 @@ vdev_free(vdev_t *vd)
        txg_list_destroy(&vd->vdev_dtl_list);
 
        mutex_enter(&vd->vdev_dtl_lock);
-       for (int t = 0; t < DTL_TYPES; t++) {
+       for (t = 0; t < DTL_TYPES; t++) {
                space_map_unload(&vd->vdev_dtl[t]);
                space_map_destroy(&vd->vdev_dtl[t]);
        }
@@ -607,6 +670,8 @@ vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
        svd->vdev_ms_shift = 0;
        svd->vdev_ms_count = 0;
 
+       if (tvd->vdev_mg)
+               ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
        tvd->vdev_mg = svd->vdev_mg;
        tvd->vdev_ms = svd->vdev_ms;
 
@@ -679,8 +744,11 @@ vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
        mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 
        mvd->vdev_asize = cvd->vdev_asize;
+       mvd->vdev_min_asize = cvd->vdev_min_asize;
+       mvd->vdev_max_asize = cvd->vdev_max_asize;
        mvd->vdev_ashift = cvd->vdev_ashift;
        mvd->vdev_state = cvd->vdev_state;
+       mvd->vdev_crtxg = cvd->vdev_crtxg;
 
        vdev_remove_child(pvd, cvd);
        vdev_add_child(pvd, mvd);
@@ -722,6 +790,7 @@ vdev_remove_parent(vdev_t *cvd)
         */
        if (mvd->vdev_top == mvd) {
                uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
+               cvd->vdev_orig_guid = cvd->vdev_guid;
                cvd->vdev_guid += guid_delta;
                cvd->vdev_guid_sum += guid_delta;
        }
@@ -741,27 +810,34 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 {
        spa_t *spa = vd->vdev_spa;
        objset_t *mos = spa->spa_meta_objset;
-       metaslab_class_t *mc;
        uint64_t m;
        uint64_t oldc = vd->vdev_ms_count;
        uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
        metaslab_t **mspp;
        int error;
 
-       if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
+       ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
+
+       /*
+        * This vdev is not being allocated from yet or is a hole.
+        */
+       if (vd->vdev_ms_shift == 0)
                return (0);
 
-       ASSERT(oldc <= newc);
+       ASSERT(!vd->vdev_ishole);
 
-       if (vd->vdev_islog)
-               mc = spa->spa_log_class;
-       else
-               mc = spa->spa_normal_class;
+       /*
+        * Compute the raidz-deflation ratio.  Note, we hard-code
+        * in 128k (1 << 17) because it is the current "typical" blocksize.
+        * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
+        * or we will inconsistently account for existing bp's.
+        */
+       vd->vdev_deflate_ratio = (1 << 17) /
+           (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 
-       if (vd->vdev_mg == NULL)
-               vd->vdev_mg = metaslab_group_create(mc, vd);
+       ASSERT(oldc <= newc);
 
-       mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
+       mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
 
        if (oldc != 0) {
                bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
@@ -776,7 +852,8 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
                if (txg == 0) {
                        uint64_t object = 0;
                        error = dmu_read(mos, vd->vdev_ms_array,
-                           m * sizeof (uint64_t), sizeof (uint64_t), &object);
+                           m * sizeof (uint64_t), sizeof (uint64_t), &object,
+                           DMU_READ_PREFETCH);
                        if (error)
                                return (error);
                        if (object != 0) {
@@ -794,6 +871,20 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
                    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
        }
 
+       if (txg == 0)
+               spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
+
+       /*
+        * If the vdev is being removed we don't activate
+        * the metaslabs since we want to ensure that no new
+        * allocations are performed on this device.
+        */
+       if (oldc == 0 && !vd->vdev_removing)
+               metaslab_group_activate(vd->vdev_mg);
+
+       if (txg == 0)
+               spa_config_exit(spa, SCL_ALLOC, FTAG);
+
        return (0);
 }
 
@@ -804,35 +895,37 @@ vdev_metaslab_fini(vdev_t *vd)
        uint64_t count = vd->vdev_ms_count;
 
        if (vd->vdev_ms != NULL) {
+               metaslab_group_passivate(vd->vdev_mg);
                for (m = 0; m < count; m++)
                        if (vd->vdev_ms[m] != NULL)
                                metaslab_fini(vd->vdev_ms[m]);
                kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
                vd->vdev_ms = NULL;
        }
+
+       ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
 }
 
 typedef struct vdev_probe_stats {
        boolean_t       vps_readable;
        boolean_t       vps_writeable;
        int             vps_flags;
-       zio_t           *vps_root;
-       vdev_t          *vps_vd;
 } vdev_probe_stats_t;
 
 static void
 vdev_probe_done(zio_t *zio)
 {
        spa_t *spa = zio->io_spa;
+       vdev_t *vd = zio->io_vd;
        vdev_probe_stats_t *vps = zio->io_private;
-       vdev_t *vd = vps->vps_vd;
+
+       ASSERT(vd->vdev_probe_zio != NULL);
 
        if (zio->io_type == ZIO_TYPE_READ) {
-               ASSERT(zio->io_vd == vd);
                if (zio->io_error == 0)
                        vps->vps_readable = 1;
                if (zio->io_error == 0 && spa_writeable(spa)) {
-                       zio_nowait(zio_write_phys(vps->vps_root, vd,
+                       zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
                            zio->io_offset, zio->io_size, zio->io_data,
                            ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
                            ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
@@ -840,13 +933,11 @@ vdev_probe_done(zio_t *zio)
                        zio_buf_free(zio->io_data, zio->io_size);
                }
        } else if (zio->io_type == ZIO_TYPE_WRITE) {
-               ASSERT(zio->io_vd == vd);
                if (zio->io_error == 0)
                        vps->vps_writeable = 1;
                zio_buf_free(zio->io_data, zio->io_size);
        } else if (zio->io_type == ZIO_TYPE_NULL) {
-               ASSERT(zio->io_vd == NULL);
-               ASSERT(zio == vps->vps_root);
+               zio_t *pio;
 
                vd->vdev_cant_read |= !vps->vps_readable;
                vd->vdev_cant_write |= !vps->vps_writeable;
@@ -860,6 +951,16 @@ vdev_probe_done(zio_t *zio)
                            spa, vd, NULL, 0, 0);
                        zio->io_error = ENXIO;
                }
+
+               mutex_enter(&vd->vdev_probe_lock);
+               ASSERT(vd->vdev_probe_zio == zio);
+               vd->vdev_probe_zio = NULL;
+               mutex_exit(&vd->vdev_probe_lock);
+
+               while ((pio = zio_walk_parents(zio)) != NULL)
+                       if (!vdev_accessible(vd, pio))
+                               pio->io_error = ENXIO;
+
                kmem_free(vps, sizeof (*vps));
        }
 }
@@ -870,53 +971,150 @@ vdev_probe_done(zio_t *zio)
  * but the first (which we leave alone in case it contains a VTOC).
  */
 zio_t *
-vdev_probe(vdev_t *vd, zio_t *pio)
+vdev_probe(vdev_t *vd, zio_t *zio)
 {
        spa_t *spa = vd->vdev_spa;
-       vdev_probe_stats_t *vps;
-       zio_t *zio;
+       vdev_probe_stats_t *vps = NULL;
+       zio_t *pio;
+       int l;
+
+       ASSERT(vd->vdev_ops->vdev_op_leaf);
+
+       /*
+        * Don't probe the probe.
+        */
+       if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
+               return (NULL);
+
+       /*
+        * To prevent 'probe storms' when a device fails, we create
+        * just one probe i/o at a time.  All zios that want to probe
+        * this vdev will become parents of the probe io.
+        */
+       mutex_enter(&vd->vdev_probe_lock);
+
+       if ((pio = vd->vdev_probe_zio) == NULL) {
+               vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
+
+               vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
+                   ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
+                   ZIO_FLAG_TRYHARD;
 
-       vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
+               if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
+                       /*
+                        * vdev_cant_read and vdev_cant_write can only
+                        * transition from TRUE to FALSE when we have the
+                        * SCL_ZIO lock as writer; otherwise they can only
+                        * transition from FALSE to TRUE.  This ensures that
+                        * any zio looking at these values can assume that
+                        * failures persist for the life of the I/O.  That's
+                        * important because when a device has intermittent
+                        * connectivity problems, we want to ensure that
+                        * they're ascribed to the device (ENXIO) and not
+                        * the zio (EIO).
+                        *
+                        * Since we hold SCL_ZIO as writer here, clear both
+                        * values so the probe can reevaluate from first
+                        * principles.
+                        */
+                       vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
+                       vd->vdev_cant_read = B_FALSE;
+                       vd->vdev_cant_write = B_FALSE;
+               }
 
-       vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
-           ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
+               vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
+                   vdev_probe_done, vps,
+                   vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
 
-       if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
                /*
-                * vdev_cant_read and vdev_cant_write can only transition
-                * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
-                * otherwise they can only transition from FALSE to TRUE.
-                * This ensures that any zio looking at these values can
-                * assume that failures persist for the life of the I/O.
-                * That's important because when a device has intermittent
-                * connectivity problems, we want to ensure that they're
-                * ascribed to the device (ENXIO) and not the zio (EIO).
-                *
-                * Since we hold SCL_ZIO as writer here, clear both values
-                * so the probe can reevaluate from first principles.
+                * We can't change the vdev state in this context, so we
+                * kick off an async task to do it on our behalf.
                 */
-               vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
-               vd->vdev_cant_read = B_FALSE;
-               vd->vdev_cant_write = B_FALSE;
+               if (zio != NULL) {
+                       vd->vdev_probe_wanted = B_TRUE;
+                       spa_async_request(spa, SPA_ASYNC_PROBE);
+               }
        }
 
-       ASSERT(vd->vdev_ops->vdev_op_leaf);
+       if (zio != NULL)
+               zio_add_child(zio, pio);
 
-       zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
+       mutex_exit(&vd->vdev_probe_lock);
 
-       vps->vps_root = zio;
-       vps->vps_vd = vd;
+       if (vps == NULL) {
+               ASSERT(zio != NULL);
+               return (NULL);
+       }
 
-       for (int l = 1; l < VDEV_LABELS; l++) {
-               zio_nowait(zio_read_phys(zio, vd,
+       for (l = 1; l < VDEV_LABELS; l++) {
+               zio_nowait(zio_read_phys(pio, vd,
                    vdev_label_offset(vd->vdev_psize, l,
-                   offsetof(vdev_label_t, vl_pad)),
-                   VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
+                   offsetof(vdev_label_t, vl_pad2)),
+                   VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
                    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
                    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
        }
 
-       return (zio);
+       if (zio == NULL)
+               return (pio);
+
+       zio_nowait(pio);
+       return (NULL);
+}
+
+static void
+vdev_open_child(void *arg)
+{
+       vdev_t *vd = arg;
+
+       vd->vdev_open_thread = curthread;
+       vd->vdev_open_error = vdev_open(vd);
+       vd->vdev_open_thread = NULL;
+}
+
+static boolean_t
+vdev_uses_zvols(vdev_t *vd)
+{
+       int c;
+
+#ifdef _KERNEL
+       if (zvol_is_zvol(vd->vdev_path))
+               return (B_TRUE);
+#endif
+
+       for (c = 0; c < vd->vdev_children; c++)
+               if (vdev_uses_zvols(vd->vdev_child[c]))
+                       return (B_TRUE);
+
+       return (B_FALSE);
+}
+
+void
+vdev_open_children(vdev_t *vd)
+{
+       taskq_t *tq;
+       int children = vd->vdev_children;
+       int c;
+
+       /*
+        * in order to handle pools on top of zvols, do the opens
+        * in a single thread so that the same thread holds the
+        * spa_namespace_lock
+        */
+       if (vdev_uses_zvols(vd)) {
+               for (c = 0; c < children; c++)
+                       vd->vdev_child[c]->vdev_open_error =
+                           vdev_open(vd->vdev_child[c]);
+               return;
+       }
+       tq = taskq_create("vdev_open", children, minclsyspri,
+           children, children, TASKQ_PREPOPULATE);
+
+       for (c = 0; c < children; c++)
+               VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
+                   TQ_SLEEP) != 0);
+
+       taskq_destroy(tq);
 }
 
 /*
@@ -927,23 +1125,33 @@ vdev_open(vdev_t *vd)
 {
        spa_t *spa = vd->vdev_spa;
        int error;
-       int c;
        uint64_t osize = 0;
-       uint64_t asize, psize;
+       uint64_t max_osize = 0;
+       uint64_t asize, max_asize, psize;
        uint64_t ashift = 0;
+       int c;
 
-       ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
-
+       ASSERT(vd->vdev_open_thread == curthread ||
+           spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
        ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
            vd->vdev_state == VDEV_STATE_CANT_OPEN ||
            vd->vdev_state == VDEV_STATE_OFFLINE);
 
        vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
+       vd->vdev_cant_read = B_FALSE;
+       vd->vdev_cant_write = B_FALSE;
+       vd->vdev_min_asize = vdev_get_min_asize(vd);
 
+       /*
+        * If this vdev is not removed, check its fault status.  If it's
+        * faulted, bail out of the open.
+        */
        if (!vd->vdev_removed && vd->vdev_faulted) {
                ASSERT(vd->vdev_children == 0);
+               ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
+                   vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
                vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
-                   VDEV_AUX_ERR_EXCEEDED);
+                   vd->vdev_label_aux);
                return (ENXIO);
        } else if (vd->vdev_offline) {
                ASSERT(vd->vdev_children == 0);
@@ -951,10 +1159,15 @@ vdev_open(vdev_t *vd)
                return (ENXIO);
        }
 
-       error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
+       error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
 
+       /*
+        * Reset the vdev_reopening flag so that we actually close
+        * the vdev on error.
+        */
+       vd->vdev_reopening = B_FALSE;
        if (zio_injection_enabled && error == 0)
-               error = zio_handle_device_injection(vd, ENXIO);
+               error = zio_handle_device_injection(vd, NULL, ENXIO);
 
        if (error) {
                if (vd->vdev_removed &&
@@ -968,22 +1181,43 @@ vdev_open(vdev_t *vd)
 
        vd->vdev_removed = B_FALSE;
 
+       /*
+        * Recheck the faulted flag now that we have confirmed that
+        * the vdev is accessible.  If we're faulted, bail.
+        */
+       if (vd->vdev_faulted) {
+               ASSERT(vd->vdev_children == 0);
+               ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
+                   vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
+               vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
+                   vd->vdev_label_aux);
+               return (ENXIO);
+       }
+
        if (vd->vdev_degraded) {
                ASSERT(vd->vdev_children == 0);
                vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
                    VDEV_AUX_ERR_EXCEEDED);
        } else {
-               vd->vdev_state = VDEV_STATE_HEALTHY;
+               vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
        }
 
-       for (c = 0; c < vd->vdev_children; c++)
+       /*
+        * For hole or missing vdevs we just return success.
+        */
+       if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
+               return (0);
+
+       for (c = 0; c < vd->vdev_children; c++) {
                if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
                        vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
                            VDEV_AUX_NONE);
                        break;
                }
+       }
 
        osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
+       max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
 
        if (vd->vdev_children == 0) {
                if (osize < SPA_MINDEVSIZE) {
@@ -993,6 +1227,8 @@ vdev_open(vdev_t *vd)
                }
                psize = osize;
                asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
+               max_asize = max_osize - (VDEV_LABEL_START_SIZE +
+                   VDEV_LABEL_END_SIZE);
        } else {
                if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
                    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
@@ -1002,70 +1238,67 @@ vdev_open(vdev_t *vd)
                }
                psize = 0;
                asize = osize;
+               max_asize = max_osize;
        }
 
        vd->vdev_psize = psize;
 
+       /*
+        * Make sure the allocatable size hasn't shrunk.
+        */
+       if (asize < vd->vdev_min_asize) {
+               vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+                   VDEV_AUX_BAD_LABEL);
+               return (EINVAL);
+       }
+
        if (vd->vdev_asize == 0) {
                /*
                 * This is the first-ever open, so use the computed values.
-                * For testing purposes, a higher ashift can be requested.
+                * For compatibility, a different ashift can be requested.
                 */
                vd->vdev_asize = asize;
-               vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
+               vd->vdev_max_asize = max_asize;
+               if (vd->vdev_ashift == 0)
+                       vd->vdev_ashift = ashift;
        } else {
                /*
-                * Make sure the alignment requirement hasn't increased.
-                */
-               if (ashift > vd->vdev_top->vdev_ashift) {
-                       vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
-                           VDEV_AUX_BAD_LABEL);
-                       return (EINVAL);
-               }
-
-               /*
-                * Make sure the device hasn't shrunk.
+                * Detect if the alignment requirement has increased.
+                * We don't want to make the pool unavailable, just
+                * post an event instead.
                 */
-               if (asize < vd->vdev_asize) {
-                       vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
-                           VDEV_AUX_BAD_LABEL);
-                       return (EINVAL);
+               if (ashift > vd->vdev_top->vdev_ashift &&
+                   vd->vdev_ops->vdev_op_leaf) {
+                       zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
+                           spa, vd, NULL, 0, 0);
                }
 
-               /*
-                * If all children are healthy and the asize has increased,
-                * then we've experienced dynamic LUN growth.
-                */
-               if (vd->vdev_state == VDEV_STATE_HEALTHY &&
-                   asize > vd->vdev_asize) {
-                       vd->vdev_asize = asize;
-               }
+               vd->vdev_max_asize = max_asize;
        }
 
        /*
+        * If all children are healthy and the asize has increased,
+        * then we've experienced dynamic LUN growth.  If automatic
+        * expansion is enabled then use the additional space.
+        */
+       if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
+           (vd->vdev_expanding || spa->spa_autoexpand))
+               vd->vdev_asize = asize;
+
+       vdev_set_min_asize(vd);
+
+       /*
         * Ensure we can issue some IO before declaring the
         * vdev open for business.
         */
        if (vd->vdev_ops->vdev_op_leaf &&
            (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
-               vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
-                   VDEV_AUX_IO_FAILURE);
+               vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
+                   VDEV_AUX_ERR_EXCEEDED);
                return (error);
        }
 
        /*
-        * If this is a top-level vdev, compute the raidz-deflation
-        * ratio.  Note, we hard-code in 128k (1<<17) because it is the
-        * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
-        * changes, this algorithm must never change, or we will
-        * inconsistently account for existing bp's.
-        */
-       if (vd->vdev_top == vd) {
-               vd->vdev_deflate_ratio = (1<<17) /
-                   (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
-       }
-
-       /*
         * If a leaf vdev has a DTL, and seems healthy, then kick off a
         * resilver.  But don't do this if we are doing a reopen for a scrub,
         * since this would just restart the scrub we are already doing.
@@ -1082,22 +1315,27 @@ vdev_open(vdev_t *vd)
  * contents.  This needs to be done before vdev_load() so that we don't
  * inadvertently do repair I/Os to the wrong device.
  *
+ * If 'strict' is false ignore the spa guid check. This is necessary because
+ * if the machine crashed during a re-guid the new guid might have been written
+ * to all of the vdev labels, but not the cached config. The strict check
+ * will be performed when the pool is opened again using the mos config.
+ *
  * This function will only return failure if one of the vdevs indicates that it
  * has since been destroyed or exported.  This is only possible if
  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
  * will be updated but the function will return 0.
  */
 int
-vdev_validate(vdev_t *vd)
+vdev_validate(vdev_t *vd, boolean_t strict)
 {
        spa_t *spa = vd->vdev_spa;
-       int c;
        nvlist_t *label;
-       uint64_t guid, top_guid;
+       uint64_t guid = 0, top_guid;
        uint64_t state;
+       int c;
 
        for (c = 0; c < vd->vdev_children; c++)
-               if (vdev_validate(vd->vdev_child[c]) != 0)
+               if (vdev_validate(vd->vdev_child[c], strict) != 0)
                        return (EBADF);
 
        /*
@@ -1106,21 +1344,43 @@ vdev_validate(vdev_t *vd)
         * overwrite the previous state.
         */
        if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
+               uint64_t aux_guid = 0;
+               nvlist_t *nvl;
+               uint64_t txg = spa_last_synced_txg(spa) != 0 ?
+                   spa_last_synced_txg(spa) : -1ULL;
 
-               if ((label = vdev_label_read_config(vd)) == NULL) {
+               if ((label = vdev_label_read_config(vd, txg)) == NULL) {
                        vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
                            VDEV_AUX_BAD_LABEL);
                        return (0);
                }
 
-               if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
-                   &guid) != 0 || guid != spa_guid(spa)) {
+               /*
+                * Determine if this vdev has been split off into another
+                * pool.  If so, then refuse to open it.
+                */
+               if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
+                   &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
+                       vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+                           VDEV_AUX_SPLIT_POOL);
+                       nvlist_free(label);
+                       return (0);
+               }
+
+               if (strict && (nvlist_lookup_uint64(label,
+                   ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
+                   guid != spa_guid(spa))) {
                        vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
                            VDEV_AUX_CORRUPT_DATA);
                        nvlist_free(label);
                        return (0);
                }
 
+               if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
+                   != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
+                   &aux_guid) != 0)
+                       aux_guid = 0;
+
                /*
                 * If this vdev just became a top-level vdev because its
                 * sibling was detached, it will have adopted the parent's
@@ -1128,12 +1388,16 @@ vdev_validate(vdev_t *vd)
                 * Fortunately, either version of the label will have the
                 * same top guid, so if we're a top-level vdev, we can
                 * safely compare to that instead.
+                *
+                * If we split this vdev off instead, then we also check the
+                * original pool's guid.  We don't want to consider the vdev
+                * corrupt if it is partway through a split operation.
                 */
                if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
                    &guid) != 0 ||
                    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
                    &top_guid) != 0 ||
-                   (vd->vdev_guid != guid &&
+                   ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
                    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
                        vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
                            VDEV_AUX_CORRUPT_DATA);
@@ -1151,7 +1415,12 @@ vdev_validate(vdev_t *vd)
 
                nvlist_free(label);
 
-               if (spa->spa_load_state == SPA_LOAD_OPEN &&
+               /*
+                * If this is a verbatim import, no need to check the
+                * state of the pool.
+                */
+               if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
+                   spa_load_state(spa) == SPA_LOAD_OPEN &&
                    state != POOL_STATE_ACTIVE)
                        return (EBADF);
 
@@ -1173,16 +1442,24 @@ vdev_validate(vdev_t *vd)
 void
 vdev_close(vdev_t *vd)
 {
-       spa_t *spa = vd->vdev_spa;
+       vdev_t *pvd = vd->vdev_parent;
+       ASSERTV(spa_t *spa = vd->vdev_spa);
 
        ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 
+       /*
+        * If our parent is reopening, then we are as well, unless we are
+        * going offline.
+        */
+       if (pvd != NULL && pvd->vdev_reopening)
+               vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
+
        vd->vdev_ops->vdev_op_close(vd);
 
        vdev_cache_purge(vd);
 
        /*
-        * We record the previous state before we close it, so  that if we are
+        * We record the previous state before we close it, so that if we are
         * doing a reopen(), we don't generate FMA ereports if we notice that
         * it's still faulted.
         */
@@ -1196,12 +1473,50 @@ vdev_close(vdev_t *vd)
 }
 
 void
+vdev_hold(vdev_t *vd)
+{
+       spa_t *spa = vd->vdev_spa;
+       int c;
+
+       ASSERT(spa_is_root(spa));
+       if (spa->spa_state == POOL_STATE_UNINITIALIZED)
+               return;
+
+       for (c = 0; c < vd->vdev_children; c++)
+               vdev_hold(vd->vdev_child[c]);
+
+       if (vd->vdev_ops->vdev_op_leaf)
+               vd->vdev_ops->vdev_op_hold(vd);
+}
+
+void
+vdev_rele(vdev_t *vd)
+{
+       int c;
+
+       ASSERT(spa_is_root(vd->vdev_spa));
+       for (c = 0; c < vd->vdev_children; c++)
+               vdev_rele(vd->vdev_child[c]);
+
+       if (vd->vdev_ops->vdev_op_leaf)
+               vd->vdev_ops->vdev_op_rele(vd);
+}
+
+/*
+ * Reopen all interior vdevs and any unopened leaves.  We don't actually
+ * reopen leaf vdevs which had previously been opened as they might deadlock
+ * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
+ * If the leaf has never been opened then open it, as usual.
+ */
+void
 vdev_reopen(vdev_t *vd)
 {
        spa_t *spa = vd->vdev_spa;
 
        ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 
+       /* set the reopening flag unless we're taking the vdev offline */
+       vd->vdev_reopening = !vd->vdev_offline;
        vdev_close(vd);
        (void) vdev_open(vd);
 
@@ -1213,14 +1528,11 @@ vdev_reopen(vdev_t *vd)
        if (vd->vdev_aux) {
                (void) vdev_validate_aux(vd);
                if (vdev_readable(vd) && vdev_writeable(vd) &&
-                   !l2arc_vdev_present(vd)) {
-                       uint64_t size = vdev_get_rsize(vd);
-                       l2arc_add_vdev(spa, vd,
-                           VDEV_LABEL_START_SIZE,
-                           size - VDEV_LABEL_START_SIZE);
-               }
+                   vd->vdev_aux == &spa->spa_l2cache &&
+                   !l2arc_vdev_present(vd))
+                       l2arc_add_vdev(spa, vd);
        } else {
-               (void) vdev_validate(vd);
+               (void) vdev_validate(vd, B_TRUE);
        }
 
        /*
@@ -1258,33 +1570,23 @@ vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
        return (0);
 }
 
-/*
- * The is the latter half of vdev_create().  It is distinct because it
- * involves initiating transactions in order to do metaslab creation.
- * For creation, we want to try to create all vdevs at once and then undo it
- * if anything fails; this is much harder if we have pending transactions.
- */
 void
-vdev_init(vdev_t *vd, uint64_t txg)
+vdev_metaslab_set_size(vdev_t *vd)
 {
        /*
         * Aim for roughly 200 metaslabs per vdev.
         */
        vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
        vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
-
-       /*
-        * Initialize the vdev's metaslabs.  This can't fail because
-        * there's nothing to read when creating all new metaslabs.
-        */
-       VERIFY(vdev_metaslab_init(vd, txg) == 0);
 }
 
 void
 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
 {
        ASSERT(vd == vd->vdev_top);
+       ASSERT(!vd->vdev_ishole);
        ASSERT(ISP2(flags));
+       ASSERT(spa_writeable(vd->vdev_spa));
 
        if (flags & VDD_METASLAB)
                (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
@@ -1299,7 +1601,7 @@ vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
  * DTLs.
  *
  * A vdev's DTL (dirty time log) is the set of transaction groups for which
- * the vdev has less than perfect replication.  There are three kinds of DTL:
+ * the vdev has less than perfect replication.  There are four kinds of DTL:
  *
  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
  *
@@ -1340,6 +1642,7 @@ vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
 
        ASSERT(t < DTL_TYPES);
        ASSERT(vd != vd->vdev_spa->spa_root_vdev);
+       ASSERT(spa_writeable(vd->vdev_spa));
 
        mutex_enter(sm->sm_lock);
        if (!space_map_contains(sm, txg, size))
@@ -1385,22 +1688,24 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
 {
        spa_t *spa = vd->vdev_spa;
        avl_tree_t reftree;
-       int minref;
+       int c, t, minref;
 
        ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 
-       for (int c = 0; c < vd->vdev_children; c++)
+       for (c = 0; c < vd->vdev_children; c++)
                vdev_dtl_reassess(vd->vdev_child[c], txg,
                    scrub_txg, scrub_done);
 
-       if (vd == spa->spa_root_vdev)
+       if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
                return;
 
        if (vd->vdev_ops->vdev_op_leaf) {
+               dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
+
                mutex_enter(&vd->vdev_dtl_lock);
                if (scrub_txg != 0 &&
-                   (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
-                       /* XXX should check scrub_done? */
+                   (spa->spa_scrub_started ||
+                   (scn && scn->scn_phys.scn_errors == 0))) {
                        /*
                         * We completed a scrub up to scrub_txg.  If we
                         * did it without rebooting, then the scrub dtl
@@ -1447,7 +1752,9 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
        }
 
        mutex_enter(&vd->vdev_dtl_lock);
-       for (int t = 0; t < DTL_TYPES; t++) {
+       for (t = 0; t < DTL_TYPES; t++) {
+               /* account for child's outage in parent's missing map */
+               int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
                if (t == DTL_SCRUB)
                        continue;                       /* leaf vdevs only */
                if (t == DTL_PARTIAL)
@@ -1457,10 +1764,10 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
                else
                        minref = vd->vdev_children;     /* any kind of mirror */
                space_map_ref_create(&reftree);
-               for (int c = 0; c < vd->vdev_children; c++) {
+               for (c = 0; c < vd->vdev_children; c++) {
                        vdev_t *cvd = vd->vdev_child[c];
                        mutex_enter(&cvd->vdev_dtl_lock);
-                       space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
+                       space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
                        mutex_exit(&cvd->vdev_dtl_lock);
                }
                space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
@@ -1483,6 +1790,8 @@ vdev_dtl_load(vdev_t *vd)
        if (smo->smo_object == 0)
                return (0);
 
+       ASSERT(!vd->vdev_ishole);
+
        if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
                return (error);
 
@@ -1510,12 +1819,13 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
        dmu_buf_t *db;
        dmu_tx_t *tx;
 
+       ASSERT(!vd->vdev_ishole);
+
        tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
 
        if (vd->vdev_detached) {
                if (smo->smo_object != 0) {
-                       int err = dmu_object_free(mos, smo->smo_object, tx);
-                       ASSERT3U(err, ==, 0);
+                       VERIFY0(dmu_object_free(mos, smo->smo_object, tx));
                        smo->smo_object = 0;
                }
                dmu_tx_commit(tx);
@@ -1545,6 +1855,7 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
 
        space_map_truncate(smo, mos, tx);
        space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
+       space_map_vacate(&smsync, NULL, NULL);
 
        space_map_destroy(&smsync);
 
@@ -1588,6 +1899,9 @@ vdev_dtl_required(vdev_t *vd)
        vd->vdev_cant_read = cant_read;
        vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
 
+       if (!required && zio_injection_enabled)
+               required = !!zio_handle_device_injection(vd, NULL, ECHILD);
+
        return (required);
 }
 
@@ -1600,6 +1914,7 @@ vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
        boolean_t needed = B_FALSE;
        uint64_t thismin = UINT64_MAX;
        uint64_t thismax = 0;
+       int c;
 
        if (vd->vdev_children == 0) {
                mutex_enter(&vd->vdev_dtl_lock);
@@ -1615,7 +1930,7 @@ vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
                }
                mutex_exit(&vd->vdev_dtl_lock);
        } else {
-               for (int c = 0; c < vd->vdev_children; c++) {
+               for (c = 0; c < vd->vdev_children; c++) {
                        vdev_t *cvd = vd->vdev_child[c];
                        uint64_t cmin, cmax;
 
@@ -1637,16 +1952,18 @@ vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
 void
 vdev_load(vdev_t *vd)
 {
+       int c;
+
        /*
         * Recursively load all children.
         */
-       for (int c = 0; c < vd->vdev_children; c++)
+       for (c = 0; c < vd->vdev_children; c++)
                vdev_load(vd->vdev_child[c]);
 
        /*
         * If this is a top-level vdev, initialize its metaslabs.
         */
-       if (vd == vd->vdev_top &&
+       if (vd == vd->vdev_top && !vd->vdev_ishole &&
            (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
            vdev_metaslab_init(vd, 0) != 0))
                vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
@@ -1677,14 +1994,14 @@ vdev_validate_aux(vdev_t *vd)
        if (!vdev_readable(vd))
                return (0);
 
-       if ((label = vdev_label_read_config(vd)) == NULL) {
+       if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
                vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
                    VDEV_AUX_CORRUPT_DATA);
                return (-1);
        }
 
        if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
-           version > SPA_VERSION ||
+           !SPA_VERSION_IS_SUPPORTED(version) ||
            nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
            guid != vd->vdev_guid ||
            nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
@@ -1703,12 +2020,55 @@ vdev_validate_aux(vdev_t *vd)
 }
 
 void
+vdev_remove(vdev_t *vd, uint64_t txg)
+{
+       spa_t *spa = vd->vdev_spa;
+       objset_t *mos = spa->spa_meta_objset;
+       dmu_tx_t *tx;
+       int m;
+
+       tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
+
+       if (vd->vdev_dtl_smo.smo_object) {
+               ASSERT0(vd->vdev_dtl_smo.smo_alloc);
+               (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
+               vd->vdev_dtl_smo.smo_object = 0;
+       }
+
+       if (vd->vdev_ms != NULL) {
+               for (m = 0; m < vd->vdev_ms_count; m++) {
+                       metaslab_t *msp = vd->vdev_ms[m];
+
+                       if (msp == NULL || msp->ms_smo.smo_object == 0)
+                               continue;
+
+                       ASSERT0(msp->ms_smo.smo_alloc);
+                       (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
+                       msp->ms_smo.smo_object = 0;
+               }
+       }
+
+       if (vd->vdev_ms_array) {
+               (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
+               vd->vdev_ms_array = 0;
+               vd->vdev_ms_shift = 0;
+       }
+       dmu_tx_commit(tx);
+}
+
+void
 vdev_sync_done(vdev_t *vd, uint64_t txg)
 {
        metaslab_t *msp;
+       boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
 
-       while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
+       ASSERT(!vd->vdev_ishole);
+
+       while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
                metaslab_sync_done(msp, txg);
+
+       if (reassess)
+               metaslab_sync_reassess(vd->vdev_mg);
 }
 
 void
@@ -1719,6 +2079,8 @@ vdev_sync(vdev_t *vd, uint64_t txg)
        metaslab_t *msp;
        dmu_tx_t *tx;
 
+       ASSERT(!vd->vdev_ishole);
+
        if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
                ASSERT(vd == vd->vdev_top);
                tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
@@ -1729,6 +2091,12 @@ vdev_sync(vdev_t *vd, uint64_t txg)
                dmu_tx_commit(tx);
        }
 
+       /*
+        * Remove the metadata associated with this vdev once it's empty.
+        */
+       if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
+               vdev_remove(vd, txg);
+
        while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
                metaslab_sync(msp, txg);
                (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
@@ -1751,11 +2119,11 @@ vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
  * not be opened, and no I/O is attempted.
  */
 int
-vdev_fault(spa_t *spa, uint64_t guid)
+vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
 {
-       vdev_t *vd;
+       vdev_t *vd, *tvd;
 
-       spa_vdev_state_enter(spa);
+       spa_vdev_state_enter(spa, SCL_NONE);
 
        if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
                return (spa_vdev_state_exit(spa, NULL, ENODEV));
@@ -1763,19 +2131,28 @@ vdev_fault(spa_t *spa, uint64_t guid)
        if (!vd->vdev_ops->vdev_op_leaf)
                return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
 
+       tvd = vd->vdev_top;
+
+       /*
+        * We don't directly use the aux state here, but if we do a
+        * vdev_reopen(), we need this value to be present to remember why we
+        * were faulted.
+        */
+       vd->vdev_label_aux = aux;
+
        /*
         * Faulted state takes precedence over degraded.
         */
+       vd->vdev_delayed_close = B_FALSE;
        vd->vdev_faulted = 1ULL;
        vd->vdev_degraded = 0ULL;
-       vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
+       vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
 
        /*
-        * If marking the vdev as faulted cause the top-level vdev to become
-        * unavailable, then back off and simply mark the vdev as degraded
-        * instead.
+        * If this device has the only valid copy of the data, then
+        * back off and simply mark the vdev as degraded instead.
         */
-       if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
+       if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
                vd->vdev_degraded = 1ULL;
                vd->vdev_faulted = 0ULL;
 
@@ -1783,12 +2160,10 @@ vdev_fault(spa_t *spa, uint64_t guid)
                 * If we reopen the device and it's not dead, only then do we
                 * mark it degraded.
                 */
-               vdev_reopen(vd);
+               vdev_reopen(tvd);
 
-               if (vdev_readable(vd)) {
-                       vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
-                           VDEV_AUX_ERR_EXCEEDED);
-               }
+               if (vdev_readable(vd))
+                       vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
        }
 
        return (spa_vdev_state_exit(spa, vd, 0));
@@ -1800,11 +2175,11 @@ vdev_fault(spa_t *spa, uint64_t guid)
  * as I/O is concerned.
  */
 int
-vdev_degrade(spa_t *spa, uint64_t guid)
+vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
 {
        vdev_t *vd;
 
-       spa_vdev_state_enter(spa);
+       spa_vdev_state_enter(spa, SCL_NONE);
 
        if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
                return (spa_vdev_state_exit(spa, NULL, ENODEV));
@@ -1821,7 +2196,7 @@ vdev_degrade(spa_t *spa, uint64_t guid)
        vd->vdev_degraded = 1ULL;
        if (!vdev_is_dead(vd))
                vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
-                   VDEV_AUX_ERR_EXCEEDED);
+                   aux);
 
        return (spa_vdev_state_exit(spa, vd, 0));
 }
@@ -1835,9 +2210,9 @@ vdev_degrade(spa_t *spa, uint64_t guid)
 int
 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
 {
-       vdev_t *vd;
+       vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
 
-       spa_vdev_state_enter(spa);
+       spa_vdev_state_enter(spa, SCL_NONE);
 
        if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
                return (spa_vdev_state_exit(spa, NULL, ENODEV));
@@ -1845,13 +2220,26 @@ vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
        if (!vd->vdev_ops->vdev_op_leaf)
                return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
 
+       tvd = vd->vdev_top;
        vd->vdev_offline = B_FALSE;
        vd->vdev_tmpoffline = B_FALSE;
        vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
        vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
-       vdev_reopen(vd->vdev_top);
+
+       /* XXX - L2ARC 1.0 does not support expansion */
+       if (!vd->vdev_aux) {
+               for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
+                       pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
+       }
+
+       vdev_reopen(tvd);
        vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
 
+       if (!vd->vdev_aux) {
+               for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
+                       pvd->vdev_expanding = B_FALSE;
+       }
+
        if (newstate)
                *newstate = vd->vdev_state;
        if ((flags & ZFS_ONLINE_UNSPARE) &&
@@ -1860,15 +2248,26 @@ vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
            vd->vdev_parent->vdev_child[0] == vd)
                vd->vdev_unspare = B_TRUE;
 
+       if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
+
+               /* XXX - L2ARC 1.0 does not support expansion */
+               if (vd->vdev_aux)
+                       return (spa_vdev_state_exit(spa, vd, ENOTSUP));
+               spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
+       }
        return (spa_vdev_state_exit(spa, vd, 0));
 }
 
-int
-vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
+static int
+vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
 {
-       vdev_t *vd;
+       vdev_t *vd, *tvd;
+       int error = 0;
+       uint64_t generation;
+       metaslab_group_t *mg;
 
-       spa_vdev_state_enter(spa);
+top:
+       spa_vdev_state_enter(spa, SCL_ALLOC);
 
        if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
                return (spa_vdev_state_exit(spa, NULL, ENODEV));
@@ -1876,29 +2275,76 @@ vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
        if (!vd->vdev_ops->vdev_op_leaf)
                return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
 
+       tvd = vd->vdev_top;
+       mg = tvd->vdev_mg;
+       generation = spa->spa_config_generation + 1;
+
        /*
         * If the device isn't already offline, try to offline it.
         */
        if (!vd->vdev_offline) {
                /*
                 * If this device has the only valid copy of some data,
-                * don't allow it to be offlined.
+                * don't allow it to be offlined. Log devices are always
+                * expendable.
                 */
-               if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
+               if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
+                   vdev_dtl_required(vd))
                        return (spa_vdev_state_exit(spa, NULL, EBUSY));
 
                /*
+                * If the top-level is a slog and it has had allocations
+                * then proceed.  We check that the vdev's metaslab group
+                * is not NULL since it's possible that we may have just
+                * added this vdev but not yet initialized its metaslabs.
+                */
+               if (tvd->vdev_islog && mg != NULL) {
+                       /*
+                        * Prevent any future allocations.
+                        */
+                       metaslab_group_passivate(mg);
+                       (void) spa_vdev_state_exit(spa, vd, 0);
+
+                       error = spa_offline_log(spa);
+
+                       spa_vdev_state_enter(spa, SCL_ALLOC);
+
+                       /*
+                        * Check to see if the config has changed.
+                        */
+                       if (error || generation != spa->spa_config_generation) {
+                               metaslab_group_activate(mg);
+                               if (error)
+                                       return (spa_vdev_state_exit(spa,
+                                           vd, error));
+                               (void) spa_vdev_state_exit(spa, vd, 0);
+                               goto top;
+                       }
+                       ASSERT0(tvd->vdev_stat.vs_alloc);
+               }
+
+               /*
                 * Offline this device and reopen its top-level vdev.
-                * If this action results in the top-level vdev becoming
-                * unusable, undo it and fail the request.
+                * If the top-level vdev is a log device then just offline
+                * it. Otherwise, if this action results in the top-level
+                * vdev becoming unusable, undo it and fail the request.
                 */
                vd->vdev_offline = B_TRUE;
-               vdev_reopen(vd->vdev_top);
-               if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
+               vdev_reopen(tvd);
+
+               if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
+                   vdev_is_dead(tvd)) {
                        vd->vdev_offline = B_FALSE;
-                       vdev_reopen(vd->vdev_top);
+                       vdev_reopen(tvd);
                        return (spa_vdev_state_exit(spa, NULL, EBUSY));
                }
+
+               /*
+                * Add the device back into the metaslab rotor so that
+                * once we online the device it's open for business.
+                */
+               if (tvd->vdev_islog && mg != NULL)
+                       metaslab_group_activate(mg);
        }
 
        vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
@@ -1906,6 +2352,18 @@ vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
        return (spa_vdev_state_exit(spa, vd, 0));
 }
 
+int
+vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
+{
+       int error;
+
+       mutex_enter(&spa->spa_vdev_top_lock);
+       error = vdev_offline_locked(spa, guid, flags);
+       mutex_exit(&spa->spa_vdev_top_lock);
+
+       return (error);
+}
+
 /*
  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
  * vdev_offline(), we assume the spa config is locked.  We also clear all
@@ -1915,6 +2373,7 @@ void
 vdev_clear(spa_t *spa, vdev_t *vd)
 {
        vdev_t *rvd = spa->spa_root_vdev;
+       int c;
 
        ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 
@@ -1925,7 +2384,7 @@ vdev_clear(spa_t *spa, vdev_t *vd)
        vd->vdev_stat.vs_write_errors = 0;
        vd->vdev_stat.vs_checksum_errors = 0;
 
-       for (int c = 0; c < vd->vdev_children; c++)
+       for (c = 0; c < vd->vdev_children; c++)
                vdev_clear(spa, vd->vdev_child[c]);
 
        /*
@@ -1937,26 +2396,53 @@ vdev_clear(spa_t *spa, vdev_t *vd)
        if (vd->vdev_faulted || vd->vdev_degraded ||
            !vdev_readable(vd) || !vdev_writeable(vd)) {
 
-               vd->vdev_faulted = vd->vdev_degraded = 0;
+               /*
+                * When reopening in reponse to a clear event, it may be due to
+                * a fmadm repair request.  In this case, if the device is
+                * still broken, we want to still post the ereport again.
+                */
+               vd->vdev_forcefault = B_TRUE;
+
+               vd->vdev_faulted = vd->vdev_degraded = 0ULL;
                vd->vdev_cant_read = B_FALSE;
                vd->vdev_cant_write = B_FALSE;
 
-               vdev_reopen(vd);
+               vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
 
-               if (vd != rvd)
+               vd->vdev_forcefault = B_FALSE;
+
+               if (vd != rvd && vdev_writeable(vd->vdev_top))
                        vdev_state_dirty(vd->vdev_top);
 
                if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
                        spa_async_request(spa, SPA_ASYNC_RESILVER);
 
-               spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
+               spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
        }
+
+       /*
+        * When clearing a FMA-diagnosed fault, we always want to
+        * unspare the device, as we assume that the original spare was
+        * done in response to the FMA fault.
+        */
+       if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
+           vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
+           vd->vdev_parent->vdev_child[0] == vd)
+               vd->vdev_unspare = B_TRUE;
 }
 
 boolean_t
 vdev_is_dead(vdev_t *vd)
 {
-       return (vd->vdev_state < VDEV_STATE_DEGRADED);
+       /*
+        * Holes and missing devices are always considered "dead".
+        * This simplifies the code since we don't have to check for
+        * these types of devices in the various code paths.
+        * Instead we rely on the fact that we skip over dead devices
+        * before issuing I/O to them.
+        */
+       return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
+           vd->vdev_ops == &vdev_missing_ops);
 }
 
 boolean_t
@@ -1985,7 +2471,7 @@ vdev_allocatable(vdev_t *vd)
         * we're asking two separate questions about it.
         */
        return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
-           !vd->vdev_cant_write);
+           !vd->vdev_cant_write && !vd->vdev_ishole);
 }
 
 boolean_t
@@ -2012,13 +2498,16 @@ void
 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
 {
        vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
+       int c, t;
 
        mutex_enter(&vd->vdev_stat_lock);
        bcopy(&vd->vdev_stat, vs, sizeof (*vs));
-       vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
        vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
        vs->vs_state = vd->vdev_state;
-       vs->vs_rsize = vdev_get_rsize(vd);
+       vs->vs_rsize = vdev_get_min_asize(vd);
+       if (vd->vdev_ops->vdev_op_leaf)
+               vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+       vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
        mutex_exit(&vd->vdev_stat_lock);
 
        /*
@@ -2026,16 +2515,16 @@ vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
         * over all top-level vdevs (i.e. the direct children of the root).
         */
        if (vd == rvd) {
-               for (int c = 0; c < rvd->vdev_children; c++) {
+               for (c = 0; c < rvd->vdev_children; c++) {
                        vdev_t *cvd = rvd->vdev_child[c];
                        vdev_stat_t *cvs = &cvd->vdev_stat;
 
                        mutex_enter(&vd->vdev_stat_lock);
-                       for (int t = 0; t < ZIO_TYPES; t++) {
+                       for (t = 0; t < ZIO_TYPES; t++) {
                                vs->vs_ops[t] += cvs->vs_ops[t];
                                vs->vs_bytes[t] += cvs->vs_bytes[t];
                        }
-                       vs->vs_scrub_examined += cvs->vs_scrub_examined;
+                       cvs->vs_scan_removing = cvd->vdev_removing;
                        mutex_exit(&vd->vdev_stat_lock);
                }
        }
@@ -2052,6 +2541,20 @@ vdev_clear_stats(vdev_t *vd)
 }
 
 void
+vdev_scan_stat_init(vdev_t *vd)
+{
+       vdev_stat_t *vs = &vd->vdev_stat;
+       int c;
+
+       for (c = 0; c < vd->vdev_children; c++)
+               vdev_scan_stat_init(vd->vdev_child[c]);
+
+       mutex_enter(&vd->vdev_stat_lock);
+       vs->vs_scan_processed = 0;
+       mutex_exit(&vd->vdev_stat_lock);
+}
+
+void
 vdev_stat_update(zio_t *zio, uint64_t psize)
 {
        spa_t *spa = zio->io_spa;
@@ -2095,8 +2598,17 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
                mutex_enter(&vd->vdev_stat_lock);
 
                if (flags & ZIO_FLAG_IO_REPAIR) {
-                       if (flags & ZIO_FLAG_SCRUB_THREAD)
-                               vs->vs_scrub_repaired += psize;
+                       if (flags & ZIO_FLAG_SCAN_THREAD) {
+                               dsl_scan_phys_t *scn_phys =
+                                   &spa->spa_dsl_pool->dp_scan->scn_phys;
+                               uint64_t *processed = &scn_phys->scn_processed;
+
+                               /* XXX cleanup? */
+                               if (vd->vdev_ops->vdev_op_leaf)
+                                       atomic_add_64(processed, psize);
+                               vs->vs_scan_processed += psize;
+                       }
+
                        if (flags & ZIO_FLAG_SELF_HEAL)
                                vs->vs_self_healed += psize;
                }
@@ -2111,27 +2623,48 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
        if (flags & ZIO_FLAG_SPECULATIVE)
                return;
 
+       /*
+        * If this is an I/O error that is going to be retried, then ignore the
+        * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
+        * hard errors, when in reality they can happen for any number of
+        * innocuous reasons (bus resets, MPxIO link failure, etc).
+        */
+       if (zio->io_error == EIO &&
+           !(zio->io_flags & ZIO_FLAG_IO_RETRY))
+               return;
+
+       /*
+        * Intent logs writes won't propagate their error to the root
+        * I/O so don't mark these types of failures as pool-level
+        * errors.
+        */
+       if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
+               return;
+
        mutex_enter(&vd->vdev_stat_lock);
-       if (type == ZIO_TYPE_READ) {
+       if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
                if (zio->io_error == ECKSUM)
                        vs->vs_checksum_errors++;
                else
                        vs->vs_read_errors++;
        }
-       if (type == ZIO_TYPE_WRITE)
+       if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
                vs->vs_write_errors++;
        mutex_exit(&vd->vdev_stat_lock);
 
        if (type == ZIO_TYPE_WRITE && txg != 0 &&
            (!(flags & ZIO_FLAG_IO_REPAIR) ||
-           (flags & ZIO_FLAG_SCRUB_THREAD))) {
+           (flags & ZIO_FLAG_SCAN_THREAD) ||
+           spa->spa_claiming)) {
                /*
-                * This is either a normal write (not a repair), or it's a
-                * repair induced by the scrub thread.  In the normal case,
-                * we commit the DTL change in the same txg as the block
-                * was born.  In the scrub-induced repair case, we know that
-                * scrubs run in first-pass syncing context, so we commit
-                * the DTL change in spa->spa_syncing_txg.
+                * This is either a normal write (not a repair), or it's
+                * a repair induced by the scrub thread, or it's a repair
+                * made by zil_claim() during spa_load() in the first txg.
+                * In the normal case, we commit the DTL change in the same
+                * txg as the block was born.  In the scrub-induced repair
+                * case, we know that scrubs run in first-pass syncing context,
+                * so we commit the DTL change in spa_syncing_txg(spa).
+                * In the zil_claim() case, we commit in spa_first_txg(spa).
                 *
                 * We currently do not make DTL entries for failed spontaneous
                 * self-healing writes triggered by normal (non-scrubbing)
@@ -2140,13 +2673,16 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
                 */
                if (vd->vdev_ops->vdev_op_leaf) {
                        uint64_t commit_txg = txg;
-                       if (flags & ZIO_FLAG_SCRUB_THREAD) {
+                       if (flags & ZIO_FLAG_SCAN_THREAD) {
                                ASSERT(flags & ZIO_FLAG_IO_REPAIR);
                                ASSERT(spa_sync_pass(spa) == 1);
                                vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
-                               commit_txg = spa->spa_syncing_txg;
+                               commit_txg = spa_syncing_txg(spa);
+                       } else if (spa->spa_claiming) {
+                               ASSERT(flags & ZIO_FLAG_IO_REPAIR);
+                               commit_txg = spa_first_txg(spa);
                        }
-                       ASSERT(commit_txg >= spa->spa_syncing_txg);
+                       ASSERT(commit_txg >= spa_syncing_txg(spa));
                        if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
                                return;
                        for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
@@ -2158,46 +2694,19 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
        }
 }
 
-void
-vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
-{
-       int c;
-       vdev_stat_t *vs = &vd->vdev_stat;
-
-       for (c = 0; c < vd->vdev_children; c++)
-               vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
-
-       mutex_enter(&vd->vdev_stat_lock);
-
-       if (type == POOL_SCRUB_NONE) {
-               /*
-                * Update completion and end time.  Leave everything else alone
-                * so we can report what happened during the previous scrub.
-                */
-               vs->vs_scrub_complete = complete;
-               vs->vs_scrub_end = gethrestime_sec();
-       } else {
-               vs->vs_scrub_type = type;
-               vs->vs_scrub_complete = 0;
-               vs->vs_scrub_examined = 0;
-               vs->vs_scrub_repaired = 0;
-               vs->vs_scrub_start = gethrestime_sec();
-               vs->vs_scrub_end = 0;
-       }
-
-       mutex_exit(&vd->vdev_stat_lock);
-}
-
 /*
- * Update the in-core space usage stats for this vdev and the root vdev.
+ * Update the in-core space usage stats for this vdev, its metaslab class,
+ * and the root vdev.
  */
 void
-vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
-    boolean_t update_root)
+vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
+    int64_t space_delta)
 {
        int64_t dspace_delta = space_delta;
        spa_t *spa = vd->vdev_spa;
        vdev_t *rvd = spa->spa_root_vdev;
+       metaslab_group_t *mg = vd->vdev_mg;
+       metaslab_class_t *mc = mg ? mg->mg_class : NULL;
 
        ASSERT(vd == vd->vdev_top);
 
@@ -2208,32 +2717,31 @@ vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
         * childrens', thus not accurate enough for us.
         */
        ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
+       ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
        dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
            vd->vdev_deflate_ratio;
 
        mutex_enter(&vd->vdev_stat_lock);
-       vd->vdev_stat.vs_space += space_delta;
        vd->vdev_stat.vs_alloc += alloc_delta;
+       vd->vdev_stat.vs_space += space_delta;
        vd->vdev_stat.vs_dspace += dspace_delta;
        mutex_exit(&vd->vdev_stat_lock);
 
-       if (update_root) {
-               ASSERT(rvd == vd->vdev_parent);
-               ASSERT(vd->vdev_ms_count != 0);
-
-               /*
-                * Don't count non-normal (e.g. intent log) space as part of
-                * the pool's capacity.
-                */
-               if (vd->vdev_mg->mg_class != spa->spa_normal_class)
-                       return;
-
+       if (mc == spa_normal_class(spa)) {
                mutex_enter(&rvd->vdev_stat_lock);
-               rvd->vdev_stat.vs_space += space_delta;
                rvd->vdev_stat.vs_alloc += alloc_delta;
+               rvd->vdev_stat.vs_space += space_delta;
                rvd->vdev_stat.vs_dspace += dspace_delta;
                mutex_exit(&rvd->vdev_stat_lock);
        }
+
+       if (mc != NULL) {
+               ASSERT(rvd == vd->vdev_parent);
+               ASSERT(vd->vdev_ms_count != 0);
+
+               metaslab_class_space_update(mc,
+                   alloc_delta, defer_delta, space_delta, dspace_delta);
+       }
 }
 
 /*
@@ -2248,9 +2756,11 @@ vdev_config_dirty(vdev_t *vd)
        vdev_t *rvd = spa->spa_root_vdev;
        int c;
 
+       ASSERT(spa_writeable(spa));
+
        /*
-        * If this is an aux vdev (as with l2cache devices), then we update the
-        * vdev config manually and set the sync flag.
+        * If this is an aux vdev (as with l2cache and spare devices), then we
+        * update the vdev config manually and set the sync flag.
         */
        if (vd->vdev_aux != NULL) {
                spa_aux_vdev_t *sav = vd->vdev_aux;
@@ -2272,8 +2782,11 @@ vdev_config_dirty(vdev_t *vd)
 
                sav->sav_sync = B_TRUE;
 
-               VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
-                   ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
+               if (nvlist_lookup_nvlist_array(sav->sav_config,
+                   ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
+                       VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
+                           ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
+               }
 
                ASSERT(c < naux);
 
@@ -2282,7 +2795,7 @@ vdev_config_dirty(vdev_t *vd)
                 * sketchy, but it will work.
                 */
                nvlist_free(aux[c]);
-               aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
+               aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
 
                return;
        }
@@ -2303,7 +2816,8 @@ vdev_config_dirty(vdev_t *vd)
        } else {
                ASSERT(vd == vd->vdev_top);
 
-               if (!list_link_active(&vd->vdev_config_dirty_node))
+               if (!list_link_active(&vd->vdev_config_dirty_node) &&
+                   !vd->vdev_ishole)
                        list_insert_head(&spa->spa_config_dirty_list, vd);
        }
 }
@@ -2332,6 +2846,7 @@ vdev_state_dirty(vdev_t *vd)
 {
        spa_t *spa = vd->vdev_spa;
 
+       ASSERT(spa_writeable(spa));
        ASSERT(vd == vd->vdev_top);
 
        /*
@@ -2344,7 +2859,7 @@ vdev_state_dirty(vdev_t *vd)
            (dsl_pool_sync_context(spa_get_dsl(spa)) &&
            spa_config_held(spa, SCL_STATE, RW_READER)));
 
-       if (!list_link_active(&vd->vdev_state_dirty_node))
+       if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
                list_insert_head(&spa->spa_state_dirty_list, vd);
 }
 
@@ -2371,13 +2886,19 @@ vdev_propagate_state(vdev_t *vd)
        vdev_t *rvd = spa->spa_root_vdev;
        int degraded = 0, faulted = 0;
        int corrupted = 0;
-       int c;
        vdev_t *child;
+       int c;
 
        if (vd->vdev_children > 0) {
                for (c = 0; c < vd->vdev_children; c++) {
                        child = vd->vdev_child[c];
 
+                       /*
+                        * Don't factor holes into the decision.
+                        */
+                       if (child->vdev_ishole)
+                               continue;
+
                        if (!vdev_readable(child) ||
                            (!vdev_writeable(child) && spa_writeable(spa))) {
                                /*
@@ -2441,15 +2962,31 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
 
        /*
         * If we are setting the vdev state to anything but an open state, then
-        * always close the underlying device.  Otherwise, we keep accessible
-        * but invalid devices open forever.  We don't call vdev_close() itself,
-        * because that implies some extra checks (offline, etc) that we don't
-        * want here.  This is limited to leaf devices, because otherwise
-        * closing the device will affect other children.
+        * always close the underlying device unless the device has requested
+        * a delayed close (i.e. we're about to remove or fault the device).
+        * Otherwise, we keep accessible but invalid devices open forever.
+        * We don't call vdev_close() itself, because that implies some extra
+        * checks (offline, etc) that we don't want here.  This is limited to
+        * leaf devices, because otherwise closing the device will affect other
+        * children.
         */
-       if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
+       if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
+           vd->vdev_ops->vdev_op_leaf)
                vd->vdev_ops->vdev_op_close(vd);
 
+       /*
+        * If we have brought this vdev back into service, we need
+        * to notify fmd so that it can gracefully repair any outstanding
+        * cases due to a missing device.  We do this in all cases, even those
+        * that probably don't correlate to a repaired fault.  This is sure to
+        * catch all cases, and we let the zfs-retire agent sort it out.  If
+        * this is a transient state it's OK, as the retire agent will
+        * double-check the state of the vdev before repairing it.
+        */
+       if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
+           vd->vdev_prevstate != state)
+               zfs_post_state_change(spa, vd);
+
        if (vd->vdev_removed &&
            state == VDEV_STATE_CANT_OPEN &&
            (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
@@ -2465,21 +3002,16 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
                vd->vdev_state = VDEV_STATE_REMOVED;
                vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
        } else if (state == VDEV_STATE_REMOVED) {
-               /*
-                * Indicate to the ZFS DE that this device has been removed, and
-                * any recent errors should be ignored.
-                */
-               zfs_post_remove(spa, vd);
                vd->vdev_removed = B_TRUE;
        } else if (state == VDEV_STATE_CANT_OPEN) {
                /*
-                * If we fail to open a vdev during an import, we mark it as
-                * "not available", which signifies that it was never there to
-                * begin with.  Failure to open such a device is not considered
-                * an error.
+                * If we fail to open a vdev during an import or recovery, we
+                * mark it as "not available", which signifies that it was
+                * never there to begin with.  Failure to open such a device
+                * is not considered an error.
                 */
-               if (spa->spa_load_state == SPA_LOAD_IMPORT &&
-                   !spa->spa_import_faulted &&
+               if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
+                   spa_load_state(spa) == SPA_LOAD_RECOVER) &&
                    vd->vdev_ops->vdev_op_leaf)
                        vd->vdev_not_present = 1;
 
@@ -2522,9 +3054,6 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
                        case VDEV_AUX_BAD_LABEL:
                                class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
                                break;
-                       case VDEV_AUX_IO_FAILURE:
-                               class = FM_EREPORT_ZFS_IO_FAILURE;
-                               break;
                        default:
                                class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
                        }
@@ -2538,19 +3067,23 @@ vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
                vd->vdev_removed = B_FALSE;
        }
 
-       if (!isopen)
-               vdev_propagate_state(vd);
+       if (!isopen && vd->vdev_parent)
+               vdev_propagate_state(vd->vdev_parent);
 }
 
 /*
  * Check the vdev configuration to ensure that it's capable of supporting
- * a root pool. Currently, we do not support RAID-Z or partial configuration.
- * In addition, only a single top-level vdev is allowed and none of the leaves
- * can be wholedisks.
+ * a root pool.
  */
 boolean_t
 vdev_is_bootable(vdev_t *vd)
 {
+#if defined(__sun__) || defined(__sun)
+       /*
+        * Currently, we do not support RAID-Z or partial configuration.
+        * In addition, only a single top-level vdev is allowed and none of the
+        * leaves can be wholedisks.
+        */
        int c;
 
        if (!vd->vdev_ops->vdev_op_leaf) {
@@ -2571,5 +3104,139 @@ vdev_is_bootable(vdev_t *vd)
                if (!vdev_is_bootable(vd->vdev_child[c]))
                        return (B_FALSE);
        }
+#endif /* __sun__ || __sun */
        return (B_TRUE);
 }
+
+/*
+ * Load the state from the original vdev tree (ovd) which
+ * we've retrieved from the MOS config object. If the original
+ * vdev was offline or faulted then we transfer that state to the
+ * device in the current vdev tree (nvd).
+ */
+void
+vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
+{
+       int c;
+
+       ASSERT(nvd->vdev_top->vdev_islog);
+       ASSERT(spa_config_held(nvd->vdev_spa,
+           SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
+       ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
+
+       for (c = 0; c < nvd->vdev_children; c++)
+               vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
+
+       if (nvd->vdev_ops->vdev_op_leaf) {
+               /*
+                * Restore the persistent vdev state
+                */
+               nvd->vdev_offline = ovd->vdev_offline;
+               nvd->vdev_faulted = ovd->vdev_faulted;
+               nvd->vdev_degraded = ovd->vdev_degraded;
+               nvd->vdev_removed = ovd->vdev_removed;
+       }
+}
+
+/*
+ * Determine if a log device has valid content.  If the vdev was
+ * removed or faulted in the MOS config then we know that
+ * the content on the log device has already been written to the pool.
+ */
+boolean_t
+vdev_log_state_valid(vdev_t *vd)
+{
+       int c;
+
+       if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
+           !vd->vdev_removed)
+               return (B_TRUE);
+
+       for (c = 0; c < vd->vdev_children; c++)
+               if (vdev_log_state_valid(vd->vdev_child[c]))
+                       return (B_TRUE);
+
+       return (B_FALSE);
+}
+
+/*
+ * Expand a vdev if possible.
+ */
+void
+vdev_expand(vdev_t *vd, uint64_t txg)
+{
+       ASSERT(vd->vdev_top == vd);
+       ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+       if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
+               VERIFY(vdev_metaslab_init(vd, txg) == 0);
+               vdev_config_dirty(vd);
+       }
+}
+
+/*
+ * Split a vdev.
+ */
+void
+vdev_split(vdev_t *vd)
+{
+       vdev_t *cvd, *pvd = vd->vdev_parent;
+
+       vdev_remove_child(pvd, vd);
+       vdev_compact_children(pvd);
+
+       cvd = pvd->vdev_child[0];
+       if (pvd->vdev_children == 1) {
+               vdev_remove_parent(cvd);
+               cvd->vdev_splitting = B_TRUE;
+       }
+       vdev_propagate_state(cvd);
+}
+
+void
+vdev_deadman(vdev_t *vd)
+{
+       int c;
+
+       for (c = 0; c < vd->vdev_children; c++) {
+               vdev_t *cvd = vd->vdev_child[c];
+
+               vdev_deadman(cvd);
+       }
+
+       if (vd->vdev_ops->vdev_op_leaf) {
+               vdev_queue_t *vq = &vd->vdev_queue;
+
+               mutex_enter(&vq->vq_lock);
+               if (avl_numnodes(&vq->vq_pending_tree) > 0) {
+                       spa_t *spa = vd->vdev_spa;
+                       zio_t *fio;
+                       uint64_t delta;
+
+                       /*
+                        * Look at the head of all the pending queues,
+                        * if any I/O has been outstanding for longer than
+                        * the spa_deadman_synctime we log a zevent.
+                        */
+                       fio = avl_first(&vq->vq_pending_tree);
+                       delta = gethrtime() - fio->io_timestamp;
+                       if (delta > spa_deadman_synctime(spa)) {
+                               zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
+                                   "delta %lluns, last io %lluns",
+                                   fio->io_timestamp, delta,
+                                   vq->vq_io_complete_ts);
+                               zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
+                                   spa, vd, fio, 0, 0);
+                       }
+               }
+               mutex_exit(&vq->vq_lock);
+       }
+}
+
+#if defined(_KERNEL) && defined(HAVE_SPL)
+EXPORT_SYMBOL(vdev_fault);
+EXPORT_SYMBOL(vdev_degrade);
+EXPORT_SYMBOL(vdev_online);
+EXPORT_SYMBOL(vdev_offline);
+EXPORT_SYMBOL(vdev_clear);
+#endif