dnl # dnl # 3.1 API change dnl # The super_block structure now stores a per-filesystem shrinker. dnl # This interface is preferable because it can be used to specifically dnl # target only the zfs filesystem for pruning. dnl # AC_DEFUN([ZFS_AC_KERNEL_SHRINK], [ AC_MSG_CHECKING([whether super_block has s_shrink]) ZFS_LINUX_TRY_COMPILE([ #include int shrink(struct shrinker *s, struct shrink_control *sc) { return 0; } static const struct super_block sb __attribute__ ((unused)) = { .s_shrink.shrink = shrink, .s_shrink.seeks = DEFAULT_SEEKS, .s_shrink.batch = 0, }; ],[ ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_SHRINK, 1, [struct super_block has s_shrink]) ],[ AC_MSG_RESULT(no) ]) ]) dnl # dnl # 3.3 API change dnl # The super_block structure was changed to use an hlist_node instead dnl # of a list_head for the .s_instance linkage. dnl # dnl # This was done in part to resolve a race in the iterate_supers_type() dnl # function which was introduced in Linux 3.0 kernel. The iterator dnl # was supposed to provide a safe way to call an arbitrary function on dnl # all super blocks of a specific type. Unfortunately, because a dnl # list_head was used it was possible for iterate_supers_type() to dnl # get stuck spinning a super block which was just deactivated. dnl # dnl # This can occur because when the list head is removed from the dnl # fs_supers list it is reinitialized to point to itself. If the dnl # iterate_supers_type() function happened to be processing the dnl # removed list_head it will get stuck spinning on that list_head. dnl # dnl # To resolve the issue for existing 3.0 - 3.2 kernels we detect when dnl # a list_head is used. Then to prevent the spinning from occurring dnl # the .next pointer is set to the fs_supers list_head which ensures dnl # the iterate_supers_type() function will always terminate. dnl # AC_DEFUN([ZFS_AC_KERNEL_S_INSTANCES_LIST_HEAD], [ AC_MSG_CHECKING([whether super_block has s_instances list_head]) ZFS_LINUX_TRY_COMPILE([ #include ],[ struct super_block sb __attribute__ ((unused)); INIT_LIST_HEAD(&sb.s_instances); ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_S_INSTANCES_LIST_HEAD, 1, [struct super_block has s_instances list_head]) ],[ AC_MSG_RESULT(no) ]) ]) AC_DEFUN([ZFS_AC_KERNEL_NR_CACHED_OBJECTS], [ AC_MSG_CHECKING([whether sops->nr_cached_objects() exists]) ZFS_LINUX_TRY_COMPILE([ #include int nr_cached_objects(struct super_block *sb) { return 0; } static const struct super_operations sops __attribute__ ((unused)) = { .nr_cached_objects = nr_cached_objects, }; ],[ ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_NR_CACHED_OBJECTS, 1, [sops->nr_cached_objects() exists]) ],[ AC_MSG_RESULT(no) ]) ]) AC_DEFUN([ZFS_AC_KERNEL_FREE_CACHED_OBJECTS], [ AC_MSG_CHECKING([whether sops->free_cached_objects() exists]) ZFS_LINUX_TRY_COMPILE([ #include void free_cached_objects(struct super_block *sb, int x) { return; } static const struct super_operations sops __attribute__ ((unused)) = { .free_cached_objects = free_cached_objects, }; ],[ ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_FREE_CACHED_OBJECTS, 1, [sops->free_cached_objects() exists]) ],[ AC_MSG_RESULT(no) ]) ])