c44e4f67f068773a8a002bc6349c5b9b5ca41638
[zfs.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/zvol.h>
46
47 /*
48  * Virtual device management.
49  */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52         &vdev_root_ops,
53         &vdev_raidz_ops,
54         &vdev_mirror_ops,
55         &vdev_replacing_ops,
56         &vdev_spare_ops,
57         &vdev_disk_ops,
58         &vdev_file_ops,
59         &vdev_missing_ops,
60         &vdev_hole_ops,
61         NULL
62 };
63
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70         vdev_ops_t *ops, **opspp;
71
72         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73                 if (strcmp(ops->vdev_op_type, type) == 0)
74                         break;
75
76         return (ops);
77 }
78
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87         uint64_t csize;
88         int c;
89
90         for (c = 0; c < vd->vdev_children; c++) {
91                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92                 asize = MAX(asize, csize);
93         }
94
95         return (asize);
96 }
97
98 /*
99  * Get the minimum allocatable size. We define the allocatable size as
100  * the vdev's asize rounded to the nearest metaslab. This allows us to
101  * replace or attach devices which don't have the same physical size but
102  * can still satisfy the same number of allocations.
103  */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107         vdev_t *pvd = vd->vdev_parent;
108
109         /*
110          * If our parent is NULL (inactive spare or cache) or is the root,
111          * just return our own asize.
112          */
113         if (pvd == NULL)
114                 return (vd->vdev_asize);
115
116         /*
117          * The top-level vdev just returns the allocatable size rounded
118          * to the nearest metaslab.
119          */
120         if (vd == vd->vdev_top)
121                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123         /*
124          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125          * so each child must provide at least 1/Nth of its asize.
126          */
127         if (pvd->vdev_ops == &vdev_raidz_ops)
128                 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130         return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136         int c;
137         vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139         for (c = 0; c < vd->vdev_children; c++)
140                 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146         vdev_t *rvd = spa->spa_root_vdev;
147
148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150         if (vdev < rvd->vdev_children) {
151                 ASSERT(rvd->vdev_child[vdev] != NULL);
152                 return (rvd->vdev_child[vdev]);
153         }
154
155         return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161         vdev_t *mvd;
162         int c;
163
164         if (vd->vdev_guid == guid)
165                 return (vd);
166
167         for (c = 0; c < vd->vdev_children; c++)
168                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169                     NULL)
170                         return (mvd);
171
172         return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178         size_t oldsize, newsize;
179         uint64_t id = cvd->vdev_id;
180         vdev_t **newchild;
181
182         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183         ASSERT(cvd->vdev_parent == NULL);
184
185         cvd->vdev_parent = pvd;
186
187         if (pvd == NULL)
188                 return;
189
190         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192         oldsize = pvd->vdev_children * sizeof (vdev_t *);
193         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194         newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196         newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
197         if (pvd->vdev_child != NULL) {
198                 bcopy(pvd->vdev_child, newchild, oldsize);
199                 kmem_free(pvd->vdev_child, oldsize);
200         }
201
202         pvd->vdev_child = newchild;
203         pvd->vdev_child[id] = cvd;
204
205         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208         /*
209          * Walk up all ancestors to update guid sum.
210          */
211         for (; pvd != NULL; pvd = pvd->vdev_parent)
212                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218         int c;
219         uint_t id = cvd->vdev_id;
220
221         ASSERT(cvd->vdev_parent == pvd);
222
223         if (pvd == NULL)
224                 return;
225
226         ASSERT(id < pvd->vdev_children);
227         ASSERT(pvd->vdev_child[id] == cvd);
228
229         pvd->vdev_child[id] = NULL;
230         cvd->vdev_parent = NULL;
231
232         for (c = 0; c < pvd->vdev_children; c++)
233                 if (pvd->vdev_child[c])
234                         break;
235
236         if (c == pvd->vdev_children) {
237                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238                 pvd->vdev_child = NULL;
239                 pvd->vdev_children = 0;
240         }
241
242         /*
243          * Walk up all ancestors to update guid sum.
244          */
245         for (; pvd != NULL; pvd = pvd->vdev_parent)
246                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255         vdev_t **newchild, *cvd;
256         int oldc = pvd->vdev_children;
257         int newc;
258         int c;
259
260         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262         for (c = newc = 0; c < oldc; c++)
263                 if (pvd->vdev_child[c])
264                         newc++;
265
266         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
267
268         for (c = newc = 0; c < oldc; c++) {
269                 if ((cvd = pvd->vdev_child[c]) != NULL) {
270                         newchild[newc] = cvd;
271                         cvd->vdev_id = newc++;
272                 }
273         }
274
275         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276         pvd->vdev_child = newchild;
277         pvd->vdev_children = newc;
278 }
279
280 /*
281  * Allocate and minimally initialize a vdev_t.
282  */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286         vdev_t *vd;
287         int t;
288
289         vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
290
291         if (spa->spa_root_vdev == NULL) {
292                 ASSERT(ops == &vdev_root_ops);
293                 spa->spa_root_vdev = vd;
294                 spa->spa_load_guid = spa_generate_guid(NULL);
295         }
296
297         if (guid == 0 && ops != &vdev_hole_ops) {
298                 if (spa->spa_root_vdev == vd) {
299                         /*
300                          * The root vdev's guid will also be the pool guid,
301                          * which must be unique among all pools.
302                          */
303                         guid = spa_generate_guid(NULL);
304                 } else {
305                         /*
306                          * Any other vdev's guid must be unique within the pool.
307                          */
308                         guid = spa_generate_guid(spa);
309                 }
310                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311         }
312
313         vd->vdev_spa = spa;
314         vd->vdev_id = id;
315         vd->vdev_guid = guid;
316         vd->vdev_guid_sum = guid;
317         vd->vdev_ops = ops;
318         vd->vdev_state = VDEV_STATE_CLOSED;
319         vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321         list_link_init(&vd->vdev_config_dirty_node);
322         list_link_init(&vd->vdev_state_dirty_node);
323         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326         for (t = 0; t < DTL_TYPES; t++) {
327                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328                     &vd->vdev_dtl_lock);
329         }
330         txg_list_create(&vd->vdev_ms_list,
331             offsetof(struct metaslab, ms_txg_node));
332         txg_list_create(&vd->vdev_dtl_list,
333             offsetof(struct vdev, vdev_dtl_node));
334         vd->vdev_stat.vs_timestamp = gethrtime();
335         vdev_queue_init(vd);
336         vdev_cache_init(vd);
337
338         return (vd);
339 }
340
341 /*
342  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
343  * creating a new vdev or loading an existing one - the behavior is slightly
344  * different for each case.
345  */
346 int
347 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348     int alloctype)
349 {
350         vdev_ops_t *ops;
351         char *type;
352         uint64_t guid = 0, islog, nparity;
353         vdev_t *vd;
354
355         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358                 return (EINVAL);
359
360         if ((ops = vdev_getops(type)) == NULL)
361                 return (EINVAL);
362
363         /*
364          * If this is a load, get the vdev guid from the nvlist.
365          * Otherwise, vdev_alloc_common() will generate one for us.
366          */
367         if (alloctype == VDEV_ALLOC_LOAD) {
368                 uint64_t label_id;
369
370                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371                     label_id != id)
372                         return (EINVAL);
373
374                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375                         return (EINVAL);
376         } else if (alloctype == VDEV_ALLOC_SPARE) {
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378                         return (EINVAL);
379         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         }
386
387         /*
388          * The first allocated vdev must be of type 'root'.
389          */
390         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391                 return (EINVAL);
392
393         /*
394          * Determine whether we're a log vdev.
395          */
396         islog = 0;
397         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399                 return (ENOTSUP);
400
401         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402                 return (ENOTSUP);
403
404         /*
405          * Set the nparity property for RAID-Z vdevs.
406          */
407         nparity = -1ULL;
408         if (ops == &vdev_raidz_ops) {
409                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410                     &nparity) == 0) {
411                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412                                 return (EINVAL);
413                         /*
414                          * Previous versions could only support 1 or 2 parity
415                          * device.
416                          */
417                         if (nparity > 1 &&
418                             spa_version(spa) < SPA_VERSION_RAIDZ2)
419                                 return (ENOTSUP);
420                         if (nparity > 2 &&
421                             spa_version(spa) < SPA_VERSION_RAIDZ3)
422                                 return (ENOTSUP);
423                 } else {
424                         /*
425                          * We require the parity to be specified for SPAs that
426                          * support multiple parity levels.
427                          */
428                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429                                 return (EINVAL);
430                         /*
431                          * Otherwise, we default to 1 parity device for RAID-Z.
432                          */
433                         nparity = 1;
434                 }
435         } else {
436                 nparity = 0;
437         }
438         ASSERT(nparity != -1ULL);
439
440         vd = vdev_alloc_common(spa, id, guid, ops);
441
442         vd->vdev_islog = islog;
443         vd->vdev_nparity = nparity;
444
445         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446                 vd->vdev_path = spa_strdup(vd->vdev_path);
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450             &vd->vdev_physpath) == 0)
451                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455         /*
456          * Set the whole_disk property.  If it's not specified, leave the value
457          * as -1.
458          */
459         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460             &vd->vdev_wholedisk) != 0)
461                 vd->vdev_wholedisk = -1ULL;
462
463         /*
464          * Look for the 'not present' flag.  This will only be set if the device
465          * was not present at the time of import.
466          */
467         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468             &vd->vdev_not_present);
469
470         /*
471          * Get the alignment requirement.
472          */
473         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475         /*
476          * Retrieve the vdev creation time.
477          */
478         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479             &vd->vdev_crtxg);
480
481         /*
482          * If we're a top-level vdev, try to load the allocation parameters.
483          */
484         if (parent && !parent->vdev_parent &&
485             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487                     &vd->vdev_ms_array);
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489                     &vd->vdev_ms_shift);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491                     &vd->vdev_asize);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493                     &vd->vdev_removing);
494         }
495
496         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498                     alloctype == VDEV_ALLOC_ADD ||
499                     alloctype == VDEV_ALLOC_SPLIT ||
500                     alloctype == VDEV_ALLOC_ROOTPOOL);
501                 vd->vdev_mg = metaslab_group_create(islog ?
502                     spa_log_class(spa) : spa_normal_class(spa), vd);
503         }
504
505         /*
506          * If we're a leaf vdev, try to load the DTL object and other state.
507          */
508         if (vd->vdev_ops->vdev_op_leaf &&
509             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510             alloctype == VDEV_ALLOC_ROOTPOOL)) {
511                 if (alloctype == VDEV_ALLOC_LOAD) {
512                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513                             &vd->vdev_dtl_smo.smo_object);
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515                             &vd->vdev_unspare);
516                 }
517
518                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519                         uint64_t spare = 0;
520
521                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522                             &spare) == 0 && spare)
523                                 spa_spare_add(vd);
524                 }
525
526                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527                     &vd->vdev_offline);
528
529                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530                     &vd->vdev_resilvering);
531
532                 /*
533                  * When importing a pool, we want to ignore the persistent fault
534                  * state, as the diagnosis made on another system may not be
535                  * valid in the current context.  Local vdevs will
536                  * remain in the faulted state.
537                  */
538                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540                             &vd->vdev_faulted);
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542                             &vd->vdev_degraded);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544                             &vd->vdev_removed);
545
546                         if (vd->vdev_faulted || vd->vdev_degraded) {
547                                 char *aux;
548
549                                 vd->vdev_label_aux =
550                                     VDEV_AUX_ERR_EXCEEDED;
551                                 if (nvlist_lookup_string(nv,
552                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553                                     strcmp(aux, "external") == 0)
554                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555                         }
556                 }
557         }
558
559         /*
560          * Add ourselves to the parent's list of children.
561          */
562         vdev_add_child(parent, vd);
563
564         *vdp = vd;
565
566         return (0);
567 }
568
569 void
570 vdev_free(vdev_t *vd)
571 {
572         int c, t;
573         spa_t *spa = vd->vdev_spa;
574
575         /*
576          * vdev_free() implies closing the vdev first.  This is simpler than
577          * trying to ensure complicated semantics for all callers.
578          */
579         vdev_close(vd);
580
581         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
582         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
583
584         /*
585          * Free all children.
586          */
587         for (c = 0; c < vd->vdev_children; c++)
588                 vdev_free(vd->vdev_child[c]);
589
590         ASSERT(vd->vdev_child == NULL);
591         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592
593         /*
594          * Discard allocation state.
595          */
596         if (vd->vdev_mg != NULL) {
597                 vdev_metaslab_fini(vd);
598                 metaslab_group_destroy(vd->vdev_mg);
599         }
600
601         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
602         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
603         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
604
605         /*
606          * Remove this vdev from its parent's child list.
607          */
608         vdev_remove_child(vd->vdev_parent, vd);
609
610         ASSERT(vd->vdev_parent == NULL);
611
612         /*
613          * Clean up vdev structure.
614          */
615         vdev_queue_fini(vd);
616         vdev_cache_fini(vd);
617
618         if (vd->vdev_path)
619                 spa_strfree(vd->vdev_path);
620         if (vd->vdev_devid)
621                 spa_strfree(vd->vdev_devid);
622         if (vd->vdev_physpath)
623                 spa_strfree(vd->vdev_physpath);
624         if (vd->vdev_fru)
625                 spa_strfree(vd->vdev_fru);
626
627         if (vd->vdev_isspare)
628                 spa_spare_remove(vd);
629         if (vd->vdev_isl2cache)
630                 spa_l2cache_remove(vd);
631
632         txg_list_destroy(&vd->vdev_ms_list);
633         txg_list_destroy(&vd->vdev_dtl_list);
634
635         mutex_enter(&vd->vdev_dtl_lock);
636         for (t = 0; t < DTL_TYPES; t++) {
637                 space_map_unload(&vd->vdev_dtl[t]);
638                 space_map_destroy(&vd->vdev_dtl[t]);
639         }
640         mutex_exit(&vd->vdev_dtl_lock);
641
642         mutex_destroy(&vd->vdev_dtl_lock);
643         mutex_destroy(&vd->vdev_stat_lock);
644         mutex_destroy(&vd->vdev_probe_lock);
645
646         if (vd == spa->spa_root_vdev)
647                 spa->spa_root_vdev = NULL;
648
649         kmem_free(vd, sizeof (vdev_t));
650 }
651
652 /*
653  * Transfer top-level vdev state from svd to tvd.
654  */
655 static void
656 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657 {
658         spa_t *spa = svd->vdev_spa;
659         metaslab_t *msp;
660         vdev_t *vd;
661         int t;
662
663         ASSERT(tvd == tvd->vdev_top);
664
665         tvd->vdev_ms_array = svd->vdev_ms_array;
666         tvd->vdev_ms_shift = svd->vdev_ms_shift;
667         tvd->vdev_ms_count = svd->vdev_ms_count;
668
669         svd->vdev_ms_array = 0;
670         svd->vdev_ms_shift = 0;
671         svd->vdev_ms_count = 0;
672
673         if (tvd->vdev_mg)
674                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
675         tvd->vdev_mg = svd->vdev_mg;
676         tvd->vdev_ms = svd->vdev_ms;
677
678         svd->vdev_mg = NULL;
679         svd->vdev_ms = NULL;
680
681         if (tvd->vdev_mg != NULL)
682                 tvd->vdev_mg->mg_vd = tvd;
683
684         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688         svd->vdev_stat.vs_alloc = 0;
689         svd->vdev_stat.vs_space = 0;
690         svd->vdev_stat.vs_dspace = 0;
691
692         for (t = 0; t < TXG_SIZE; t++) {
693                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699         }
700
701         if (list_link_active(&svd->vdev_config_dirty_node)) {
702                 vdev_config_clean(svd);
703                 vdev_config_dirty(tvd);
704         }
705
706         if (list_link_active(&svd->vdev_state_dirty_node)) {
707                 vdev_state_clean(svd);
708                 vdev_state_dirty(tvd);
709         }
710
711         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712         svd->vdev_deflate_ratio = 0;
713
714         tvd->vdev_islog = svd->vdev_islog;
715         svd->vdev_islog = 0;
716 }
717
718 static void
719 vdev_top_update(vdev_t *tvd, vdev_t *vd)
720 {
721         int c;
722
723         if (vd == NULL)
724                 return;
725
726         vd->vdev_top = tvd;
727
728         for (c = 0; c < vd->vdev_children; c++)
729                 vdev_top_update(tvd, vd->vdev_child[c]);
730 }
731
732 /*
733  * Add a mirror/replacing vdev above an existing vdev.
734  */
735 vdev_t *
736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737 {
738         spa_t *spa = cvd->vdev_spa;
739         vdev_t *pvd = cvd->vdev_parent;
740         vdev_t *mvd;
741
742         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743
744         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745
746         mvd->vdev_asize = cvd->vdev_asize;
747         mvd->vdev_min_asize = cvd->vdev_min_asize;
748         mvd->vdev_max_asize = cvd->vdev_max_asize;
749         mvd->vdev_ashift = cvd->vdev_ashift;
750         mvd->vdev_state = cvd->vdev_state;
751         mvd->vdev_crtxg = cvd->vdev_crtxg;
752
753         vdev_remove_child(pvd, cvd);
754         vdev_add_child(pvd, mvd);
755         cvd->vdev_id = mvd->vdev_children;
756         vdev_add_child(mvd, cvd);
757         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758
759         if (mvd == mvd->vdev_top)
760                 vdev_top_transfer(cvd, mvd);
761
762         return (mvd);
763 }
764
765 /*
766  * Remove a 1-way mirror/replacing vdev from the tree.
767  */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771         vdev_t *mvd = cvd->vdev_parent;
772         vdev_t *pvd = mvd->vdev_parent;
773
774         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775
776         ASSERT(mvd->vdev_children == 1);
777         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778             mvd->vdev_ops == &vdev_replacing_ops ||
779             mvd->vdev_ops == &vdev_spare_ops);
780         cvd->vdev_ashift = mvd->vdev_ashift;
781
782         vdev_remove_child(mvd, cvd);
783         vdev_remove_child(pvd, mvd);
784
785         /*
786          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787          * Otherwise, we could have detached an offline device, and when we
788          * go to import the pool we'll think we have two top-level vdevs,
789          * instead of a different version of the same top-level vdev.
790          */
791         if (mvd->vdev_top == mvd) {
792                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793                 cvd->vdev_orig_guid = cvd->vdev_guid;
794                 cvd->vdev_guid += guid_delta;
795                 cvd->vdev_guid_sum += guid_delta;
796         }
797         cvd->vdev_id = mvd->vdev_id;
798         vdev_add_child(pvd, cvd);
799         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800
801         if (cvd == cvd->vdev_top)
802                 vdev_top_transfer(mvd, cvd);
803
804         ASSERT(mvd->vdev_children == 0);
805         vdev_free(mvd);
806 }
807
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811         spa_t *spa = vd->vdev_spa;
812         objset_t *mos = spa->spa_meta_objset;
813         uint64_t m;
814         uint64_t oldc = vd->vdev_ms_count;
815         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816         metaslab_t **mspp;
817         int error;
818
819         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820
821         /*
822          * This vdev is not being allocated from yet or is a hole.
823          */
824         if (vd->vdev_ms_shift == 0)
825                 return (0);
826
827         ASSERT(!vd->vdev_ishole);
828
829         /*
830          * Compute the raidz-deflation ratio.  Note, we hard-code
831          * in 128k (1 << 17) because it is the current "typical" blocksize.
832          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833          * or we will inconsistently account for existing bp's.
834          */
835         vd->vdev_deflate_ratio = (1 << 17) /
836             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837
838         ASSERT(oldc <= newc);
839
840         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
841
842         if (oldc != 0) {
843                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845         }
846
847         vd->vdev_ms = mspp;
848         vd->vdev_ms_count = newc;
849
850         for (m = oldc; m < newc; m++) {
851                 space_map_obj_t smo = { 0, 0, 0 };
852                 if (txg == 0) {
853                         uint64_t object = 0;
854                         error = dmu_read(mos, vd->vdev_ms_array,
855                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
856                             DMU_READ_PREFETCH);
857                         if (error)
858                                 return (error);
859                         if (object != 0) {
860                                 dmu_buf_t *db;
861                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
862                                 if (error)
863                                         return (error);
864                                 ASSERT3U(db->db_size, >=, sizeof (smo));
865                                 bcopy(db->db_data, &smo, sizeof (smo));
866                                 ASSERT3U(smo.smo_object, ==, object);
867                                 dmu_buf_rele(db, FTAG);
868                         }
869                 }
870                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
871                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
872         }
873
874         if (txg == 0)
875                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
876
877         /*
878          * If the vdev is being removed we don't activate
879          * the metaslabs since we want to ensure that no new
880          * allocations are performed on this device.
881          */
882         if (oldc == 0 && !vd->vdev_removing)
883                 metaslab_group_activate(vd->vdev_mg);
884
885         if (txg == 0)
886                 spa_config_exit(spa, SCL_ALLOC, FTAG);
887
888         return (0);
889 }
890
891 void
892 vdev_metaslab_fini(vdev_t *vd)
893 {
894         uint64_t m;
895         uint64_t count = vd->vdev_ms_count;
896
897         if (vd->vdev_ms != NULL) {
898                 metaslab_group_passivate(vd->vdev_mg);
899                 for (m = 0; m < count; m++)
900                         if (vd->vdev_ms[m] != NULL)
901                                 metaslab_fini(vd->vdev_ms[m]);
902                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
903                 vd->vdev_ms = NULL;
904         }
905
906         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
907 }
908
909 typedef struct vdev_probe_stats {
910         boolean_t       vps_readable;
911         boolean_t       vps_writeable;
912         int             vps_flags;
913 } vdev_probe_stats_t;
914
915 static void
916 vdev_probe_done(zio_t *zio)
917 {
918         spa_t *spa = zio->io_spa;
919         vdev_t *vd = zio->io_vd;
920         vdev_probe_stats_t *vps = zio->io_private;
921
922         ASSERT(vd->vdev_probe_zio != NULL);
923
924         if (zio->io_type == ZIO_TYPE_READ) {
925                 if (zio->io_error == 0)
926                         vps->vps_readable = 1;
927                 if (zio->io_error == 0 && spa_writeable(spa)) {
928                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
929                             zio->io_offset, zio->io_size, zio->io_data,
930                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932                 } else {
933                         zio_buf_free(zio->io_data, zio->io_size);
934                 }
935         } else if (zio->io_type == ZIO_TYPE_WRITE) {
936                 if (zio->io_error == 0)
937                         vps->vps_writeable = 1;
938                 zio_buf_free(zio->io_data, zio->io_size);
939         } else if (zio->io_type == ZIO_TYPE_NULL) {
940                 zio_t *pio;
941
942                 vd->vdev_cant_read |= !vps->vps_readable;
943                 vd->vdev_cant_write |= !vps->vps_writeable;
944
945                 if (vdev_readable(vd) &&
946                     (vdev_writeable(vd) || !spa_writeable(spa))) {
947                         zio->io_error = 0;
948                 } else {
949                         ASSERT(zio->io_error != 0);
950                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
951                             spa, vd, NULL, 0, 0);
952                         zio->io_error = ENXIO;
953                 }
954
955                 mutex_enter(&vd->vdev_probe_lock);
956                 ASSERT(vd->vdev_probe_zio == zio);
957                 vd->vdev_probe_zio = NULL;
958                 mutex_exit(&vd->vdev_probe_lock);
959
960                 while ((pio = zio_walk_parents(zio)) != NULL)
961                         if (!vdev_accessible(vd, pio))
962                                 pio->io_error = ENXIO;
963
964                 kmem_free(vps, sizeof (*vps));
965         }
966 }
967
968 /*
969  * Determine whether this device is accessible by reading and writing
970  * to several known locations: the pad regions of each vdev label
971  * but the first (which we leave alone in case it contains a VTOC).
972  */
973 zio_t *
974 vdev_probe(vdev_t *vd, zio_t *zio)
975 {
976         spa_t *spa = vd->vdev_spa;
977         vdev_probe_stats_t *vps = NULL;
978         zio_t *pio;
979         int l;
980
981         ASSERT(vd->vdev_ops->vdev_op_leaf);
982
983         /*
984          * Don't probe the probe.
985          */
986         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
987                 return (NULL);
988
989         /*
990          * To prevent 'probe storms' when a device fails, we create
991          * just one probe i/o at a time.  All zios that want to probe
992          * this vdev will become parents of the probe io.
993          */
994         mutex_enter(&vd->vdev_probe_lock);
995
996         if ((pio = vd->vdev_probe_zio) == NULL) {
997                 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
998
999                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1000                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1001                     ZIO_FLAG_TRYHARD;
1002
1003                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1004                         /*
1005                          * vdev_cant_read and vdev_cant_write can only
1006                          * transition from TRUE to FALSE when we have the
1007                          * SCL_ZIO lock as writer; otherwise they can only
1008                          * transition from FALSE to TRUE.  This ensures that
1009                          * any zio looking at these values can assume that
1010                          * failures persist for the life of the I/O.  That's
1011                          * important because when a device has intermittent
1012                          * connectivity problems, we want to ensure that
1013                          * they're ascribed to the device (ENXIO) and not
1014                          * the zio (EIO).
1015                          *
1016                          * Since we hold SCL_ZIO as writer here, clear both
1017                          * values so the probe can reevaluate from first
1018                          * principles.
1019                          */
1020                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1021                         vd->vdev_cant_read = B_FALSE;
1022                         vd->vdev_cant_write = B_FALSE;
1023                 }
1024
1025                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1026                     vdev_probe_done, vps,
1027                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1028
1029                 /*
1030                  * We can't change the vdev state in this context, so we
1031                  * kick off an async task to do it on our behalf.
1032                  */
1033                 if (zio != NULL) {
1034                         vd->vdev_probe_wanted = B_TRUE;
1035                         spa_async_request(spa, SPA_ASYNC_PROBE);
1036                 }
1037         }
1038
1039         if (zio != NULL)
1040                 zio_add_child(zio, pio);
1041
1042         mutex_exit(&vd->vdev_probe_lock);
1043
1044         if (vps == NULL) {
1045                 ASSERT(zio != NULL);
1046                 return (NULL);
1047         }
1048
1049         for (l = 1; l < VDEV_LABELS; l++) {
1050                 zio_nowait(zio_read_phys(pio, vd,
1051                     vdev_label_offset(vd->vdev_psize, l,
1052                     offsetof(vdev_label_t, vl_pad2)),
1053                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1054                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1055                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1056         }
1057
1058         if (zio == NULL)
1059                 return (pio);
1060
1061         zio_nowait(pio);
1062         return (NULL);
1063 }
1064
1065 static void
1066 vdev_open_child(void *arg)
1067 {
1068         vdev_t *vd = arg;
1069
1070         vd->vdev_open_thread = curthread;
1071         vd->vdev_open_error = vdev_open(vd);
1072         vd->vdev_open_thread = NULL;
1073 }
1074
1075 static boolean_t
1076 vdev_uses_zvols(vdev_t *vd)
1077 {
1078         int c;
1079
1080 #ifdef _KERNEL
1081         if (zvol_is_zvol(vd->vdev_path))
1082                 return (B_TRUE);
1083 #endif
1084
1085         for (c = 0; c < vd->vdev_children; c++)
1086                 if (vdev_uses_zvols(vd->vdev_child[c]))
1087                         return (B_TRUE);
1088
1089         return (B_FALSE);
1090 }
1091
1092 void
1093 vdev_open_children(vdev_t *vd)
1094 {
1095         taskq_t *tq;
1096         int children = vd->vdev_children;
1097         int c;
1098
1099         /*
1100          * in order to handle pools on top of zvols, do the opens
1101          * in a single thread so that the same thread holds the
1102          * spa_namespace_lock
1103          */
1104         if (vdev_uses_zvols(vd)) {
1105                 for (c = 0; c < children; c++)
1106                         vd->vdev_child[c]->vdev_open_error =
1107                             vdev_open(vd->vdev_child[c]);
1108                 return;
1109         }
1110         tq = taskq_create("vdev_open", children, minclsyspri,
1111             children, children, TASKQ_PREPOPULATE);
1112
1113         for (c = 0; c < children; c++)
1114                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1115                     TQ_SLEEP) != 0);
1116
1117         taskq_destroy(tq);
1118 }
1119
1120 /*
1121  * Prepare a virtual device for access.
1122  */
1123 int
1124 vdev_open(vdev_t *vd)
1125 {
1126         spa_t *spa = vd->vdev_spa;
1127         int error;
1128         uint64_t osize = 0;
1129         uint64_t max_osize = 0;
1130         uint64_t asize, max_asize, psize;
1131         uint64_t ashift = 0;
1132         int c;
1133
1134         ASSERT(vd->vdev_open_thread == curthread ||
1135             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1136         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1137             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1138             vd->vdev_state == VDEV_STATE_OFFLINE);
1139
1140         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1141         vd->vdev_cant_read = B_FALSE;
1142         vd->vdev_cant_write = B_FALSE;
1143         vd->vdev_min_asize = vdev_get_min_asize(vd);
1144
1145         /*
1146          * If this vdev is not removed, check its fault status.  If it's
1147          * faulted, bail out of the open.
1148          */
1149         if (!vd->vdev_removed && vd->vdev_faulted) {
1150                 ASSERT(vd->vdev_children == 0);
1151                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1152                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1153                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1154                     vd->vdev_label_aux);
1155                 return (ENXIO);
1156         } else if (vd->vdev_offline) {
1157                 ASSERT(vd->vdev_children == 0);
1158                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1159                 return (ENXIO);
1160         }
1161
1162         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1163
1164         /*
1165          * Reset the vdev_reopening flag so that we actually close
1166          * the vdev on error.
1167          */
1168         vd->vdev_reopening = B_FALSE;
1169         if (zio_injection_enabled && error == 0)
1170                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1171
1172         if (error) {
1173                 if (vd->vdev_removed &&
1174                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1175                         vd->vdev_removed = B_FALSE;
1176
1177                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178                     vd->vdev_stat.vs_aux);
1179                 return (error);
1180         }
1181
1182         vd->vdev_removed = B_FALSE;
1183
1184         /*
1185          * Recheck the faulted flag now that we have confirmed that
1186          * the vdev is accessible.  If we're faulted, bail.
1187          */
1188         if (vd->vdev_faulted) {
1189                 ASSERT(vd->vdev_children == 0);
1190                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193                     vd->vdev_label_aux);
1194                 return (ENXIO);
1195         }
1196
1197         if (vd->vdev_degraded) {
1198                 ASSERT(vd->vdev_children == 0);
1199                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200                     VDEV_AUX_ERR_EXCEEDED);
1201         } else {
1202                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1203         }
1204
1205         /*
1206          * For hole or missing vdevs we just return success.
1207          */
1208         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1209                 return (0);
1210
1211         for (c = 0; c < vd->vdev_children; c++) {
1212                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1213                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1214                             VDEV_AUX_NONE);
1215                         break;
1216                 }
1217         }
1218
1219         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1220         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1221
1222         if (vd->vdev_children == 0) {
1223                 if (osize < SPA_MINDEVSIZE) {
1224                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225                             VDEV_AUX_TOO_SMALL);
1226                         return (EOVERFLOW);
1227                 }
1228                 psize = osize;
1229                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1230                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1231                     VDEV_LABEL_END_SIZE);
1232         } else {
1233                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1234                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1235                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236                             VDEV_AUX_TOO_SMALL);
1237                         return (EOVERFLOW);
1238                 }
1239                 psize = 0;
1240                 asize = osize;
1241                 max_asize = max_osize;
1242         }
1243
1244         vd->vdev_psize = psize;
1245
1246         /*
1247          * Make sure the allocatable size hasn't shrunk.
1248          */
1249         if (asize < vd->vdev_min_asize) {
1250                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251                     VDEV_AUX_BAD_LABEL);
1252                 return (EINVAL);
1253         }
1254
1255         if (vd->vdev_asize == 0) {
1256                 /*
1257                  * This is the first-ever open, so use the computed values.
1258                  * For compatibility, a different ashift can be requested.
1259                  */
1260                 vd->vdev_asize = asize;
1261                 vd->vdev_max_asize = max_asize;
1262                 if (vd->vdev_ashift == 0)
1263                         vd->vdev_ashift = ashift;
1264         } else {
1265                 /*
1266                  * Detect if the alignment requirement has increased.
1267                  * We don't want to make the pool unavailable, just
1268                  * post an event instead.
1269                  */
1270                 if (ashift > vd->vdev_top->vdev_ashift &&
1271                     vd->vdev_ops->vdev_op_leaf) {
1272                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1273                             spa, vd, NULL, 0, 0);
1274                 }
1275
1276                 vd->vdev_max_asize = max_asize;
1277         }
1278
1279         /*
1280          * If all children are healthy and the asize has increased,
1281          * then we've experienced dynamic LUN growth.  If automatic
1282          * expansion is enabled then use the additional space.
1283          */
1284         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1285             (vd->vdev_expanding || spa->spa_autoexpand))
1286                 vd->vdev_asize = asize;
1287
1288         vdev_set_min_asize(vd);
1289
1290         /*
1291          * Ensure we can issue some IO before declaring the
1292          * vdev open for business.
1293          */
1294         if (vd->vdev_ops->vdev_op_leaf &&
1295             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1296                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1297                     VDEV_AUX_ERR_EXCEEDED);
1298                 return (error);
1299         }
1300
1301         /*
1302          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1303          * resilver.  But don't do this if we are doing a reopen for a scrub,
1304          * since this would just restart the scrub we are already doing.
1305          */
1306         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1307             vdev_resilver_needed(vd, NULL, NULL))
1308                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1309
1310         return (0);
1311 }
1312
1313 /*
1314  * Called once the vdevs are all opened, this routine validates the label
1315  * contents.  This needs to be done before vdev_load() so that we don't
1316  * inadvertently do repair I/Os to the wrong device.
1317  *
1318  * If 'strict' is false ignore the spa guid check. This is necessary because
1319  * if the machine crashed during a re-guid the new guid might have been written
1320  * to all of the vdev labels, but not the cached config. The strict check
1321  * will be performed when the pool is opened again using the mos config.
1322  *
1323  * This function will only return failure if one of the vdevs indicates that it
1324  * has since been destroyed or exported.  This is only possible if
1325  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1326  * will be updated but the function will return 0.
1327  */
1328 int
1329 vdev_validate(vdev_t *vd, boolean_t strict)
1330 {
1331         spa_t *spa = vd->vdev_spa;
1332         nvlist_t *label;
1333         uint64_t guid = 0, top_guid;
1334         uint64_t state;
1335         int c;
1336
1337         for (c = 0; c < vd->vdev_children; c++)
1338                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1339                         return (EBADF);
1340
1341         /*
1342          * If the device has already failed, or was marked offline, don't do
1343          * any further validation.  Otherwise, label I/O will fail and we will
1344          * overwrite the previous state.
1345          */
1346         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1347                 uint64_t aux_guid = 0;
1348                 nvlist_t *nvl;
1349                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1350                     spa_last_synced_txg(spa) : -1ULL;
1351
1352                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1353                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354                             VDEV_AUX_BAD_LABEL);
1355                         return (0);
1356                 }
1357
1358                 /*
1359                  * Determine if this vdev has been split off into another
1360                  * pool.  If so, then refuse to open it.
1361                  */
1362                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1363                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1364                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1365                             VDEV_AUX_SPLIT_POOL);
1366                         nvlist_free(label);
1367                         return (0);
1368                 }
1369
1370                 if (strict && (nvlist_lookup_uint64(label,
1371                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1372                     guid != spa_guid(spa))) {
1373                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1374                             VDEV_AUX_CORRUPT_DATA);
1375                         nvlist_free(label);
1376                         return (0);
1377                 }
1378
1379                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1380                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1381                     &aux_guid) != 0)
1382                         aux_guid = 0;
1383
1384                 /*
1385                  * If this vdev just became a top-level vdev because its
1386                  * sibling was detached, it will have adopted the parent's
1387                  * vdev guid -- but the label may or may not be on disk yet.
1388                  * Fortunately, either version of the label will have the
1389                  * same top guid, so if we're a top-level vdev, we can
1390                  * safely compare to that instead.
1391                  *
1392                  * If we split this vdev off instead, then we also check the
1393                  * original pool's guid.  We don't want to consider the vdev
1394                  * corrupt if it is partway through a split operation.
1395                  */
1396                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1397                     &guid) != 0 ||
1398                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1399                     &top_guid) != 0 ||
1400                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1401                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1402                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1403                             VDEV_AUX_CORRUPT_DATA);
1404                         nvlist_free(label);
1405                         return (0);
1406                 }
1407
1408                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1409                     &state) != 0) {
1410                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1411                             VDEV_AUX_CORRUPT_DATA);
1412                         nvlist_free(label);
1413                         return (0);
1414                 }
1415
1416                 nvlist_free(label);
1417
1418                 /*
1419                  * If this is a verbatim import, no need to check the
1420                  * state of the pool.
1421                  */
1422                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1423                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1424                     state != POOL_STATE_ACTIVE)
1425                         return (EBADF);
1426
1427                 /*
1428                  * If we were able to open and validate a vdev that was
1429                  * previously marked permanently unavailable, clear that state
1430                  * now.
1431                  */
1432                 if (vd->vdev_not_present)
1433                         vd->vdev_not_present = 0;
1434         }
1435
1436         return (0);
1437 }
1438
1439 /*
1440  * Close a virtual device.
1441  */
1442 void
1443 vdev_close(vdev_t *vd)
1444 {
1445         vdev_t *pvd = vd->vdev_parent;
1446         ASSERTV(spa_t *spa = vd->vdev_spa);
1447
1448         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1449
1450         /*
1451          * If our parent is reopening, then we are as well, unless we are
1452          * going offline.
1453          */
1454         if (pvd != NULL && pvd->vdev_reopening)
1455                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1456
1457         vd->vdev_ops->vdev_op_close(vd);
1458
1459         vdev_cache_purge(vd);
1460
1461         /*
1462          * We record the previous state before we close it, so that if we are
1463          * doing a reopen(), we don't generate FMA ereports if we notice that
1464          * it's still faulted.
1465          */
1466         vd->vdev_prevstate = vd->vdev_state;
1467
1468         if (vd->vdev_offline)
1469                 vd->vdev_state = VDEV_STATE_OFFLINE;
1470         else
1471                 vd->vdev_state = VDEV_STATE_CLOSED;
1472         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1473 }
1474
1475 void
1476 vdev_hold(vdev_t *vd)
1477 {
1478         spa_t *spa = vd->vdev_spa;
1479         int c;
1480
1481         ASSERT(spa_is_root(spa));
1482         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1483                 return;
1484
1485         for (c = 0; c < vd->vdev_children; c++)
1486                 vdev_hold(vd->vdev_child[c]);
1487
1488         if (vd->vdev_ops->vdev_op_leaf)
1489                 vd->vdev_ops->vdev_op_hold(vd);
1490 }
1491
1492 void
1493 vdev_rele(vdev_t *vd)
1494 {
1495         int c;
1496
1497         ASSERT(spa_is_root(vd->vdev_spa));
1498         for (c = 0; c < vd->vdev_children; c++)
1499                 vdev_rele(vd->vdev_child[c]);
1500
1501         if (vd->vdev_ops->vdev_op_leaf)
1502                 vd->vdev_ops->vdev_op_rele(vd);
1503 }
1504
1505 /*
1506  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1507  * reopen leaf vdevs which had previously been opened as they might deadlock
1508  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1509  * If the leaf has never been opened then open it, as usual.
1510  */
1511 void
1512 vdev_reopen(vdev_t *vd)
1513 {
1514         spa_t *spa = vd->vdev_spa;
1515
1516         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1517
1518         /* set the reopening flag unless we're taking the vdev offline */
1519         vd->vdev_reopening = !vd->vdev_offline;
1520         vdev_close(vd);
1521         (void) vdev_open(vd);
1522
1523         /*
1524          * Call vdev_validate() here to make sure we have the same device.
1525          * Otherwise, a device with an invalid label could be successfully
1526          * opened in response to vdev_reopen().
1527          */
1528         if (vd->vdev_aux) {
1529                 (void) vdev_validate_aux(vd);
1530                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1531                     vd->vdev_aux == &spa->spa_l2cache &&
1532                     !l2arc_vdev_present(vd))
1533                         l2arc_add_vdev(spa, vd);
1534         } else {
1535                 (void) vdev_validate(vd, B_TRUE);
1536         }
1537
1538         /*
1539          * Reassess parent vdev's health.
1540          */
1541         vdev_propagate_state(vd);
1542 }
1543
1544 int
1545 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1546 {
1547         int error;
1548
1549         /*
1550          * Normally, partial opens (e.g. of a mirror) are allowed.
1551          * For a create, however, we want to fail the request if
1552          * there are any components we can't open.
1553          */
1554         error = vdev_open(vd);
1555
1556         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1557                 vdev_close(vd);
1558                 return (error ? error : ENXIO);
1559         }
1560
1561         /*
1562          * Recursively initialize all labels.
1563          */
1564         if ((error = vdev_label_init(vd, txg, isreplacing ?
1565             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1566                 vdev_close(vd);
1567                 return (error);
1568         }
1569
1570         return (0);
1571 }
1572
1573 void
1574 vdev_metaslab_set_size(vdev_t *vd)
1575 {
1576         /*
1577          * Aim for roughly 200 metaslabs per vdev.
1578          */
1579         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1580         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1581 }
1582
1583 void
1584 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1585 {
1586         ASSERT(vd == vd->vdev_top);
1587         ASSERT(!vd->vdev_ishole);
1588         ASSERT(ISP2(flags));
1589         ASSERT(spa_writeable(vd->vdev_spa));
1590
1591         if (flags & VDD_METASLAB)
1592                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1593
1594         if (flags & VDD_DTL)
1595                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1596
1597         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1598 }
1599
1600 /*
1601  * DTLs.
1602  *
1603  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1604  * the vdev has less than perfect replication.  There are four kinds of DTL:
1605  *
1606  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1607  *
1608  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1609  *
1610  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1611  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1612  *      txgs that was scrubbed.
1613  *
1614  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1615  *      persistent errors or just some device being offline.
1616  *      Unlike the other three, the DTL_OUTAGE map is not generally
1617  *      maintained; it's only computed when needed, typically to
1618  *      determine whether a device can be detached.
1619  *
1620  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1621  * either has the data or it doesn't.
1622  *
1623  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1624  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1625  * if any child is less than fully replicated, then so is its parent.
1626  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1627  * comprising only those txgs which appear in 'maxfaults' or more children;
1628  * those are the txgs we don't have enough replication to read.  For example,
1629  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1630  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1631  * two child DTL_MISSING maps.
1632  *
1633  * It should be clear from the above that to compute the DTLs and outage maps
1634  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1635  * Therefore, that is all we keep on disk.  When loading the pool, or after
1636  * a configuration change, we generate all other DTLs from first principles.
1637  */
1638 void
1639 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1640 {
1641         space_map_t *sm = &vd->vdev_dtl[t];
1642
1643         ASSERT(t < DTL_TYPES);
1644         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1645         ASSERT(spa_writeable(vd->vdev_spa));
1646
1647         mutex_enter(sm->sm_lock);
1648         if (!space_map_contains(sm, txg, size))
1649                 space_map_add(sm, txg, size);
1650         mutex_exit(sm->sm_lock);
1651 }
1652
1653 boolean_t
1654 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1655 {
1656         space_map_t *sm = &vd->vdev_dtl[t];
1657         boolean_t dirty = B_FALSE;
1658
1659         ASSERT(t < DTL_TYPES);
1660         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1661
1662         mutex_enter(sm->sm_lock);
1663         if (sm->sm_space != 0)
1664                 dirty = space_map_contains(sm, txg, size);
1665         mutex_exit(sm->sm_lock);
1666
1667         return (dirty);
1668 }
1669
1670 boolean_t
1671 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1672 {
1673         space_map_t *sm = &vd->vdev_dtl[t];
1674         boolean_t empty;
1675
1676         mutex_enter(sm->sm_lock);
1677         empty = (sm->sm_space == 0);
1678         mutex_exit(sm->sm_lock);
1679
1680         return (empty);
1681 }
1682
1683 /*
1684  * Reassess DTLs after a config change or scrub completion.
1685  */
1686 void
1687 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1688 {
1689         spa_t *spa = vd->vdev_spa;
1690         avl_tree_t reftree;
1691         int c, t, minref;
1692
1693         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1694
1695         for (c = 0; c < vd->vdev_children; c++)
1696                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1697                     scrub_txg, scrub_done);
1698
1699         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1700                 return;
1701
1702         if (vd->vdev_ops->vdev_op_leaf) {
1703                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1704
1705                 mutex_enter(&vd->vdev_dtl_lock);
1706                 if (scrub_txg != 0 &&
1707                     (spa->spa_scrub_started ||
1708                     (scn && scn->scn_phys.scn_errors == 0))) {
1709                         /*
1710                          * We completed a scrub up to scrub_txg.  If we
1711                          * did it without rebooting, then the scrub dtl
1712                          * will be valid, so excise the old region and
1713                          * fold in the scrub dtl.  Otherwise, leave the
1714                          * dtl as-is if there was an error.
1715                          *
1716                          * There's little trick here: to excise the beginning
1717                          * of the DTL_MISSING map, we put it into a reference
1718                          * tree and then add a segment with refcnt -1 that
1719                          * covers the range [0, scrub_txg).  This means
1720                          * that each txg in that range has refcnt -1 or 0.
1721                          * We then add DTL_SCRUB with a refcnt of 2, so that
1722                          * entries in the range [0, scrub_txg) will have a
1723                          * positive refcnt -- either 1 or 2.  We then convert
1724                          * the reference tree into the new DTL_MISSING map.
1725                          */
1726                         space_map_ref_create(&reftree);
1727                         space_map_ref_add_map(&reftree,
1728                             &vd->vdev_dtl[DTL_MISSING], 1);
1729                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1730                         space_map_ref_add_map(&reftree,
1731                             &vd->vdev_dtl[DTL_SCRUB], 2);
1732                         space_map_ref_generate_map(&reftree,
1733                             &vd->vdev_dtl[DTL_MISSING], 1);
1734                         space_map_ref_destroy(&reftree);
1735                 }
1736                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1737                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1738                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1739                 if (scrub_done)
1740                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1741                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1742                 if (!vdev_readable(vd))
1743                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1744                 else
1745                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1746                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1747                 mutex_exit(&vd->vdev_dtl_lock);
1748
1749                 if (txg != 0)
1750                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1751                 return;
1752         }
1753
1754         mutex_enter(&vd->vdev_dtl_lock);
1755         for (t = 0; t < DTL_TYPES; t++) {
1756                 /* account for child's outage in parent's missing map */
1757                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1758                 if (t == DTL_SCRUB)
1759                         continue;                       /* leaf vdevs only */
1760                 if (t == DTL_PARTIAL)
1761                         minref = 1;                     /* i.e. non-zero */
1762                 else if (vd->vdev_nparity != 0)
1763                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1764                 else
1765                         minref = vd->vdev_children;     /* any kind of mirror */
1766                 space_map_ref_create(&reftree);
1767                 for (c = 0; c < vd->vdev_children; c++) {
1768                         vdev_t *cvd = vd->vdev_child[c];
1769                         mutex_enter(&cvd->vdev_dtl_lock);
1770                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1771                         mutex_exit(&cvd->vdev_dtl_lock);
1772                 }
1773                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1774                 space_map_ref_destroy(&reftree);
1775         }
1776         mutex_exit(&vd->vdev_dtl_lock);
1777 }
1778
1779 static int
1780 vdev_dtl_load(vdev_t *vd)
1781 {
1782         spa_t *spa = vd->vdev_spa;
1783         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1784         objset_t *mos = spa->spa_meta_objset;
1785         dmu_buf_t *db;
1786         int error;
1787
1788         ASSERT(vd->vdev_children == 0);
1789
1790         if (smo->smo_object == 0)
1791                 return (0);
1792
1793         ASSERT(!vd->vdev_ishole);
1794
1795         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1796                 return (error);
1797
1798         ASSERT3U(db->db_size, >=, sizeof (*smo));
1799         bcopy(db->db_data, smo, sizeof (*smo));
1800         dmu_buf_rele(db, FTAG);
1801
1802         mutex_enter(&vd->vdev_dtl_lock);
1803         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1804             NULL, SM_ALLOC, smo, mos);
1805         mutex_exit(&vd->vdev_dtl_lock);
1806
1807         return (error);
1808 }
1809
1810 void
1811 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1812 {
1813         spa_t *spa = vd->vdev_spa;
1814         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1815         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1816         objset_t *mos = spa->spa_meta_objset;
1817         space_map_t smsync;
1818         kmutex_t smlock;
1819         dmu_buf_t *db;
1820         dmu_tx_t *tx;
1821
1822         ASSERT(!vd->vdev_ishole);
1823
1824         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1825
1826         if (vd->vdev_detached) {
1827                 if (smo->smo_object != 0) {
1828                         VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
1829                         smo->smo_object = 0;
1830                 }
1831                 dmu_tx_commit(tx);
1832                 return;
1833         }
1834
1835         if (smo->smo_object == 0) {
1836                 ASSERT(smo->smo_objsize == 0);
1837                 ASSERT(smo->smo_alloc == 0);
1838                 smo->smo_object = dmu_object_alloc(mos,
1839                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1840                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1841                 ASSERT(smo->smo_object != 0);
1842                 vdev_config_dirty(vd->vdev_top);
1843         }
1844
1845         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1846
1847         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1848             &smlock);
1849
1850         mutex_enter(&smlock);
1851
1852         mutex_enter(&vd->vdev_dtl_lock);
1853         space_map_walk(sm, space_map_add, &smsync);
1854         mutex_exit(&vd->vdev_dtl_lock);
1855
1856         space_map_truncate(smo, mos, tx);
1857         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1858
1859         space_map_destroy(&smsync);
1860
1861         mutex_exit(&smlock);
1862         mutex_destroy(&smlock);
1863
1864         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1865         dmu_buf_will_dirty(db, tx);
1866         ASSERT3U(db->db_size, >=, sizeof (*smo));
1867         bcopy(smo, db->db_data, sizeof (*smo));
1868         dmu_buf_rele(db, FTAG);
1869
1870         dmu_tx_commit(tx);
1871 }
1872
1873 /*
1874  * Determine whether the specified vdev can be offlined/detached/removed
1875  * without losing data.
1876  */
1877 boolean_t
1878 vdev_dtl_required(vdev_t *vd)
1879 {
1880         spa_t *spa = vd->vdev_spa;
1881         vdev_t *tvd = vd->vdev_top;
1882         uint8_t cant_read = vd->vdev_cant_read;
1883         boolean_t required;
1884
1885         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886
1887         if (vd == spa->spa_root_vdev || vd == tvd)
1888                 return (B_TRUE);
1889
1890         /*
1891          * Temporarily mark the device as unreadable, and then determine
1892          * whether this results in any DTL outages in the top-level vdev.
1893          * If not, we can safely offline/detach/remove the device.
1894          */
1895         vd->vdev_cant_read = B_TRUE;
1896         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1897         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1898         vd->vdev_cant_read = cant_read;
1899         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900
1901         if (!required && zio_injection_enabled)
1902                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1903
1904         return (required);
1905 }
1906
1907 /*
1908  * Determine if resilver is needed, and if so the txg range.
1909  */
1910 boolean_t
1911 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1912 {
1913         boolean_t needed = B_FALSE;
1914         uint64_t thismin = UINT64_MAX;
1915         uint64_t thismax = 0;
1916         int c;
1917
1918         if (vd->vdev_children == 0) {
1919                 mutex_enter(&vd->vdev_dtl_lock);
1920                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1921                     vdev_writeable(vd)) {
1922                         space_seg_t *ss;
1923
1924                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1925                         thismin = ss->ss_start - 1;
1926                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1927                         thismax = ss->ss_end;
1928                         needed = B_TRUE;
1929                 }
1930                 mutex_exit(&vd->vdev_dtl_lock);
1931         } else {
1932                 for (c = 0; c < vd->vdev_children; c++) {
1933                         vdev_t *cvd = vd->vdev_child[c];
1934                         uint64_t cmin, cmax;
1935
1936                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1937                                 thismin = MIN(thismin, cmin);
1938                                 thismax = MAX(thismax, cmax);
1939                                 needed = B_TRUE;
1940                         }
1941                 }
1942         }
1943
1944         if (needed && minp) {
1945                 *minp = thismin;
1946                 *maxp = thismax;
1947         }
1948         return (needed);
1949 }
1950
1951 void
1952 vdev_load(vdev_t *vd)
1953 {
1954         int c;
1955
1956         /*
1957          * Recursively load all children.
1958          */
1959         for (c = 0; c < vd->vdev_children; c++)
1960                 vdev_load(vd->vdev_child[c]);
1961
1962         /*
1963          * If this is a top-level vdev, initialize its metaslabs.
1964          */
1965         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1966             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1967             vdev_metaslab_init(vd, 0) != 0))
1968                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1969                     VDEV_AUX_CORRUPT_DATA);
1970
1971         /*
1972          * If this is a leaf vdev, load its DTL.
1973          */
1974         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1975                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1976                     VDEV_AUX_CORRUPT_DATA);
1977 }
1978
1979 /*
1980  * The special vdev case is used for hot spares and l2cache devices.  Its
1981  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1982  * we make sure that we can open the underlying device, then try to read the
1983  * label, and make sure that the label is sane and that it hasn't been
1984  * repurposed to another pool.
1985  */
1986 int
1987 vdev_validate_aux(vdev_t *vd)
1988 {
1989         nvlist_t *label;
1990         uint64_t guid, version;
1991         uint64_t state;
1992
1993         if (!vdev_readable(vd))
1994                 return (0);
1995
1996         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1997                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1998                     VDEV_AUX_CORRUPT_DATA);
1999                 return (-1);
2000         }
2001
2002         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2003             !SPA_VERSION_IS_SUPPORTED(version) ||
2004             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2005             guid != vd->vdev_guid ||
2006             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2007                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2008                     VDEV_AUX_CORRUPT_DATA);
2009                 nvlist_free(label);
2010                 return (-1);
2011         }
2012
2013         /*
2014          * We don't actually check the pool state here.  If it's in fact in
2015          * use by another pool, we update this fact on the fly when requested.
2016          */
2017         nvlist_free(label);
2018         return (0);
2019 }
2020
2021 void
2022 vdev_remove(vdev_t *vd, uint64_t txg)
2023 {
2024         spa_t *spa = vd->vdev_spa;
2025         objset_t *mos = spa->spa_meta_objset;
2026         dmu_tx_t *tx;
2027         int m;
2028
2029         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2030
2031         if (vd->vdev_dtl_smo.smo_object) {
2032                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2033                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2034                 vd->vdev_dtl_smo.smo_object = 0;
2035         }
2036
2037         if (vd->vdev_ms != NULL) {
2038                 for (m = 0; m < vd->vdev_ms_count; m++) {
2039                         metaslab_t *msp = vd->vdev_ms[m];
2040
2041                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2042                                 continue;
2043
2044                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2045                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2046                         msp->ms_smo.smo_object = 0;
2047                 }
2048         }
2049
2050         if (vd->vdev_ms_array) {
2051                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2052                 vd->vdev_ms_array = 0;
2053                 vd->vdev_ms_shift = 0;
2054         }
2055         dmu_tx_commit(tx);
2056 }
2057
2058 void
2059 vdev_sync_done(vdev_t *vd, uint64_t txg)
2060 {
2061         metaslab_t *msp;
2062         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2063
2064         ASSERT(!vd->vdev_ishole);
2065
2066         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2067                 metaslab_sync_done(msp, txg);
2068
2069         if (reassess)
2070                 metaslab_sync_reassess(vd->vdev_mg);
2071 }
2072
2073 void
2074 vdev_sync(vdev_t *vd, uint64_t txg)
2075 {
2076         spa_t *spa = vd->vdev_spa;
2077         vdev_t *lvd;
2078         metaslab_t *msp;
2079         dmu_tx_t *tx;
2080
2081         ASSERT(!vd->vdev_ishole);
2082
2083         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2084                 ASSERT(vd == vd->vdev_top);
2085                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2086                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2087                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2088                 ASSERT(vd->vdev_ms_array != 0);
2089                 vdev_config_dirty(vd);
2090                 dmu_tx_commit(tx);
2091         }
2092
2093         /*
2094          * Remove the metadata associated with this vdev once it's empty.
2095          */
2096         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2097                 vdev_remove(vd, txg);
2098
2099         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2100                 metaslab_sync(msp, txg);
2101                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2102         }
2103
2104         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2105                 vdev_dtl_sync(lvd, txg);
2106
2107         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2108 }
2109
2110 uint64_t
2111 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2112 {
2113         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2114 }
2115
2116 /*
2117  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2118  * not be opened, and no I/O is attempted.
2119  */
2120 int
2121 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2122 {
2123         vdev_t *vd, *tvd;
2124
2125         spa_vdev_state_enter(spa, SCL_NONE);
2126
2127         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2128                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2129
2130         if (!vd->vdev_ops->vdev_op_leaf)
2131                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2132
2133         tvd = vd->vdev_top;
2134
2135         /*
2136          * We don't directly use the aux state here, but if we do a
2137          * vdev_reopen(), we need this value to be present to remember why we
2138          * were faulted.
2139          */
2140         vd->vdev_label_aux = aux;
2141
2142         /*
2143          * Faulted state takes precedence over degraded.
2144          */
2145         vd->vdev_delayed_close = B_FALSE;
2146         vd->vdev_faulted = 1ULL;
2147         vd->vdev_degraded = 0ULL;
2148         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2149
2150         /*
2151          * If this device has the only valid copy of the data, then
2152          * back off and simply mark the vdev as degraded instead.
2153          */
2154         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2155                 vd->vdev_degraded = 1ULL;
2156                 vd->vdev_faulted = 0ULL;
2157
2158                 /*
2159                  * If we reopen the device and it's not dead, only then do we
2160                  * mark it degraded.
2161                  */
2162                 vdev_reopen(tvd);
2163
2164                 if (vdev_readable(vd))
2165                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2166         }
2167
2168         return (spa_vdev_state_exit(spa, vd, 0));
2169 }
2170
2171 /*
2172  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2173  * user that something is wrong.  The vdev continues to operate as normal as far
2174  * as I/O is concerned.
2175  */
2176 int
2177 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2178 {
2179         vdev_t *vd;
2180
2181         spa_vdev_state_enter(spa, SCL_NONE);
2182
2183         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2184                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2185
2186         if (!vd->vdev_ops->vdev_op_leaf)
2187                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2188
2189         /*
2190          * If the vdev is already faulted, then don't do anything.
2191          */
2192         if (vd->vdev_faulted || vd->vdev_degraded)
2193                 return (spa_vdev_state_exit(spa, NULL, 0));
2194
2195         vd->vdev_degraded = 1ULL;
2196         if (!vdev_is_dead(vd))
2197                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2198                     aux);
2199
2200         return (spa_vdev_state_exit(spa, vd, 0));
2201 }
2202
2203 /*
2204  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2205  * any attached spare device should be detached when the device finishes
2206  * resilvering.  Second, the online should be treated like a 'test' online case,
2207  * so no FMA events are generated if the device fails to open.
2208  */
2209 int
2210 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2211 {
2212         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2213
2214         spa_vdev_state_enter(spa, SCL_NONE);
2215
2216         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2217                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2218
2219         if (!vd->vdev_ops->vdev_op_leaf)
2220                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2221
2222         tvd = vd->vdev_top;
2223         vd->vdev_offline = B_FALSE;
2224         vd->vdev_tmpoffline = B_FALSE;
2225         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2226         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2227
2228         /* XXX - L2ARC 1.0 does not support expansion */
2229         if (!vd->vdev_aux) {
2230                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2231                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2232         }
2233
2234         vdev_reopen(tvd);
2235         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2236
2237         if (!vd->vdev_aux) {
2238                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2239                         pvd->vdev_expanding = B_FALSE;
2240         }
2241
2242         if (newstate)
2243                 *newstate = vd->vdev_state;
2244         if ((flags & ZFS_ONLINE_UNSPARE) &&
2245             !vdev_is_dead(vd) && vd->vdev_parent &&
2246             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2247             vd->vdev_parent->vdev_child[0] == vd)
2248                 vd->vdev_unspare = B_TRUE;
2249
2250         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2251
2252                 /* XXX - L2ARC 1.0 does not support expansion */
2253                 if (vd->vdev_aux)
2254                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2255                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2256         }
2257         return (spa_vdev_state_exit(spa, vd, 0));
2258 }
2259
2260 static int
2261 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2262 {
2263         vdev_t *vd, *tvd;
2264         int error = 0;
2265         uint64_t generation;
2266         metaslab_group_t *mg;
2267
2268 top:
2269         spa_vdev_state_enter(spa, SCL_ALLOC);
2270
2271         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2272                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2273
2274         if (!vd->vdev_ops->vdev_op_leaf)
2275                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2276
2277         tvd = vd->vdev_top;
2278         mg = tvd->vdev_mg;
2279         generation = spa->spa_config_generation + 1;
2280
2281         /*
2282          * If the device isn't already offline, try to offline it.
2283          */
2284         if (!vd->vdev_offline) {
2285                 /*
2286                  * If this device has the only valid copy of some data,
2287                  * don't allow it to be offlined. Log devices are always
2288                  * expendable.
2289                  */
2290                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2291                     vdev_dtl_required(vd))
2292                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2293
2294                 /*
2295                  * If the top-level is a slog and it has had allocations
2296                  * then proceed.  We check that the vdev's metaslab group
2297                  * is not NULL since it's possible that we may have just
2298                  * added this vdev but not yet initialized its metaslabs.
2299                  */
2300                 if (tvd->vdev_islog && mg != NULL) {
2301                         /*
2302                          * Prevent any future allocations.
2303                          */
2304                         metaslab_group_passivate(mg);
2305                         (void) spa_vdev_state_exit(spa, vd, 0);
2306
2307                         error = spa_offline_log(spa);
2308
2309                         spa_vdev_state_enter(spa, SCL_ALLOC);
2310
2311                         /*
2312                          * Check to see if the config has changed.
2313                          */
2314                         if (error || generation != spa->spa_config_generation) {
2315                                 metaslab_group_activate(mg);
2316                                 if (error)
2317                                         return (spa_vdev_state_exit(spa,
2318                                             vd, error));
2319                                 (void) spa_vdev_state_exit(spa, vd, 0);
2320                                 goto top;
2321                         }
2322                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2323                 }
2324
2325                 /*
2326                  * Offline this device and reopen its top-level vdev.
2327                  * If the top-level vdev is a log device then just offline
2328                  * it. Otherwise, if this action results in the top-level
2329                  * vdev becoming unusable, undo it and fail the request.
2330                  */
2331                 vd->vdev_offline = B_TRUE;
2332                 vdev_reopen(tvd);
2333
2334                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2335                     vdev_is_dead(tvd)) {
2336                         vd->vdev_offline = B_FALSE;
2337                         vdev_reopen(tvd);
2338                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2339                 }
2340
2341                 /*
2342                  * Add the device back into the metaslab rotor so that
2343                  * once we online the device it's open for business.
2344                  */
2345                 if (tvd->vdev_islog && mg != NULL)
2346                         metaslab_group_activate(mg);
2347         }
2348
2349         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2350
2351         return (spa_vdev_state_exit(spa, vd, 0));
2352 }
2353
2354 int
2355 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2356 {
2357         int error;
2358
2359         mutex_enter(&spa->spa_vdev_top_lock);
2360         error = vdev_offline_locked(spa, guid, flags);
2361         mutex_exit(&spa->spa_vdev_top_lock);
2362
2363         return (error);
2364 }
2365
2366 /*
2367  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2368  * vdev_offline(), we assume the spa config is locked.  We also clear all
2369  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2370  */
2371 void
2372 vdev_clear(spa_t *spa, vdev_t *vd)
2373 {
2374         vdev_t *rvd = spa->spa_root_vdev;
2375         int c;
2376
2377         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2378
2379         if (vd == NULL)
2380                 vd = rvd;
2381
2382         vd->vdev_stat.vs_read_errors = 0;
2383         vd->vdev_stat.vs_write_errors = 0;
2384         vd->vdev_stat.vs_checksum_errors = 0;
2385
2386         for (c = 0; c < vd->vdev_children; c++)
2387                 vdev_clear(spa, vd->vdev_child[c]);
2388
2389         /*
2390          * If we're in the FAULTED state or have experienced failed I/O, then
2391          * clear the persistent state and attempt to reopen the device.  We
2392          * also mark the vdev config dirty, so that the new faulted state is
2393          * written out to disk.
2394          */
2395         if (vd->vdev_faulted || vd->vdev_degraded ||
2396             !vdev_readable(vd) || !vdev_writeable(vd)) {
2397
2398                 /*
2399                  * When reopening in reponse to a clear event, it may be due to
2400                  * a fmadm repair request.  In this case, if the device is
2401                  * still broken, we want to still post the ereport again.
2402                  */
2403                 vd->vdev_forcefault = B_TRUE;
2404
2405                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2406                 vd->vdev_cant_read = B_FALSE;
2407                 vd->vdev_cant_write = B_FALSE;
2408
2409                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2410
2411                 vd->vdev_forcefault = B_FALSE;
2412
2413                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2414                         vdev_state_dirty(vd->vdev_top);
2415
2416                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2417                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2418
2419                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2420         }
2421
2422         /*
2423          * When clearing a FMA-diagnosed fault, we always want to
2424          * unspare the device, as we assume that the original spare was
2425          * done in response to the FMA fault.
2426          */
2427         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2428             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2429             vd->vdev_parent->vdev_child[0] == vd)
2430                 vd->vdev_unspare = B_TRUE;
2431 }
2432
2433 boolean_t
2434 vdev_is_dead(vdev_t *vd)
2435 {
2436         /*
2437          * Holes and missing devices are always considered "dead".
2438          * This simplifies the code since we don't have to check for
2439          * these types of devices in the various code paths.
2440          * Instead we rely on the fact that we skip over dead devices
2441          * before issuing I/O to them.
2442          */
2443         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2444             vd->vdev_ops == &vdev_missing_ops);
2445 }
2446
2447 boolean_t
2448 vdev_readable(vdev_t *vd)
2449 {
2450         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2451 }
2452
2453 boolean_t
2454 vdev_writeable(vdev_t *vd)
2455 {
2456         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2457 }
2458
2459 boolean_t
2460 vdev_allocatable(vdev_t *vd)
2461 {
2462         uint64_t state = vd->vdev_state;
2463
2464         /*
2465          * We currently allow allocations from vdevs which may be in the
2466          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2467          * fails to reopen then we'll catch it later when we're holding
2468          * the proper locks.  Note that we have to get the vdev state
2469          * in a local variable because although it changes atomically,
2470          * we're asking two separate questions about it.
2471          */
2472         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2473             !vd->vdev_cant_write && !vd->vdev_ishole);
2474 }
2475
2476 boolean_t
2477 vdev_accessible(vdev_t *vd, zio_t *zio)
2478 {
2479         ASSERT(zio->io_vd == vd);
2480
2481         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2482                 return (B_FALSE);
2483
2484         if (zio->io_type == ZIO_TYPE_READ)
2485                 return (!vd->vdev_cant_read);
2486
2487         if (zio->io_type == ZIO_TYPE_WRITE)
2488                 return (!vd->vdev_cant_write);
2489
2490         return (B_TRUE);
2491 }
2492
2493 /*
2494  * Get statistics for the given vdev.
2495  */
2496 void
2497 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2498 {
2499         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2500         int c, t;
2501
2502         mutex_enter(&vd->vdev_stat_lock);
2503         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2504         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2505         vs->vs_state = vd->vdev_state;
2506         vs->vs_rsize = vdev_get_min_asize(vd);
2507         if (vd->vdev_ops->vdev_op_leaf)
2508                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2509         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2510         mutex_exit(&vd->vdev_stat_lock);
2511
2512         /*
2513          * If we're getting stats on the root vdev, aggregate the I/O counts
2514          * over all top-level vdevs (i.e. the direct children of the root).
2515          */
2516         if (vd == rvd) {
2517                 for (c = 0; c < rvd->vdev_children; c++) {
2518                         vdev_t *cvd = rvd->vdev_child[c];
2519                         vdev_stat_t *cvs = &cvd->vdev_stat;
2520
2521                         mutex_enter(&vd->vdev_stat_lock);
2522                         for (t = 0; t < ZIO_TYPES; t++) {
2523                                 vs->vs_ops[t] += cvs->vs_ops[t];
2524                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2525                         }
2526                         cvs->vs_scan_removing = cvd->vdev_removing;
2527                         mutex_exit(&vd->vdev_stat_lock);
2528                 }
2529         }
2530 }
2531
2532 void
2533 vdev_clear_stats(vdev_t *vd)
2534 {
2535         mutex_enter(&vd->vdev_stat_lock);
2536         vd->vdev_stat.vs_space = 0;
2537         vd->vdev_stat.vs_dspace = 0;
2538         vd->vdev_stat.vs_alloc = 0;
2539         mutex_exit(&vd->vdev_stat_lock);
2540 }
2541
2542 void
2543 vdev_scan_stat_init(vdev_t *vd)
2544 {
2545         vdev_stat_t *vs = &vd->vdev_stat;
2546         int c;
2547
2548         for (c = 0; c < vd->vdev_children; c++)
2549                 vdev_scan_stat_init(vd->vdev_child[c]);
2550
2551         mutex_enter(&vd->vdev_stat_lock);
2552         vs->vs_scan_processed = 0;
2553         mutex_exit(&vd->vdev_stat_lock);
2554 }
2555
2556 void
2557 vdev_stat_update(zio_t *zio, uint64_t psize)
2558 {
2559         spa_t *spa = zio->io_spa;
2560         vdev_t *rvd = spa->spa_root_vdev;
2561         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2562         vdev_t *pvd;
2563         uint64_t txg = zio->io_txg;
2564         vdev_stat_t *vs = &vd->vdev_stat;
2565         zio_type_t type = zio->io_type;
2566         int flags = zio->io_flags;
2567
2568         /*
2569          * If this i/o is a gang leader, it didn't do any actual work.
2570          */
2571         if (zio->io_gang_tree)
2572                 return;
2573
2574         if (zio->io_error == 0) {
2575                 /*
2576                  * If this is a root i/o, don't count it -- we've already
2577                  * counted the top-level vdevs, and vdev_get_stats() will
2578                  * aggregate them when asked.  This reduces contention on
2579                  * the root vdev_stat_lock and implicitly handles blocks
2580                  * that compress away to holes, for which there is no i/o.
2581                  * (Holes never create vdev children, so all the counters
2582                  * remain zero, which is what we want.)
2583                  *
2584                  * Note: this only applies to successful i/o (io_error == 0)
2585                  * because unlike i/o counts, errors are not additive.
2586                  * When reading a ditto block, for example, failure of
2587                  * one top-level vdev does not imply a root-level error.
2588                  */
2589                 if (vd == rvd)
2590                         return;
2591
2592                 ASSERT(vd == zio->io_vd);
2593
2594                 if (flags & ZIO_FLAG_IO_BYPASS)
2595                         return;
2596
2597                 mutex_enter(&vd->vdev_stat_lock);
2598
2599                 if (flags & ZIO_FLAG_IO_REPAIR) {
2600                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2601                                 dsl_scan_phys_t *scn_phys =
2602                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2603                                 uint64_t *processed = &scn_phys->scn_processed;
2604
2605                                 /* XXX cleanup? */
2606                                 if (vd->vdev_ops->vdev_op_leaf)
2607                                         atomic_add_64(processed, psize);
2608                                 vs->vs_scan_processed += psize;
2609                         }
2610
2611                         if (flags & ZIO_FLAG_SELF_HEAL)
2612                                 vs->vs_self_healed += psize;
2613                 }
2614
2615                 vs->vs_ops[type]++;
2616                 vs->vs_bytes[type] += psize;
2617
2618                 mutex_exit(&vd->vdev_stat_lock);
2619                 return;
2620         }
2621
2622         if (flags & ZIO_FLAG_SPECULATIVE)
2623                 return;
2624
2625         /*
2626          * If this is an I/O error that is going to be retried, then ignore the
2627          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2628          * hard errors, when in reality they can happen for any number of
2629          * innocuous reasons (bus resets, MPxIO link failure, etc).
2630          */
2631         if (zio->io_error == EIO &&
2632             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2633                 return;
2634
2635         /*
2636          * Intent logs writes won't propagate their error to the root
2637          * I/O so don't mark these types of failures as pool-level
2638          * errors.
2639          */
2640         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2641                 return;
2642
2643         mutex_enter(&vd->vdev_stat_lock);
2644         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2645                 if (zio->io_error == ECKSUM)
2646                         vs->vs_checksum_errors++;
2647                 else
2648                         vs->vs_read_errors++;
2649         }
2650         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2651                 vs->vs_write_errors++;
2652         mutex_exit(&vd->vdev_stat_lock);
2653
2654         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2655             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2656             (flags & ZIO_FLAG_SCAN_THREAD) ||
2657             spa->spa_claiming)) {
2658                 /*
2659                  * This is either a normal write (not a repair), or it's
2660                  * a repair induced by the scrub thread, or it's a repair
2661                  * made by zil_claim() during spa_load() in the first txg.
2662                  * In the normal case, we commit the DTL change in the same
2663                  * txg as the block was born.  In the scrub-induced repair
2664                  * case, we know that scrubs run in first-pass syncing context,
2665                  * so we commit the DTL change in spa_syncing_txg(spa).
2666                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2667                  *
2668                  * We currently do not make DTL entries for failed spontaneous
2669                  * self-healing writes triggered by normal (non-scrubbing)
2670                  * reads, because we have no transactional context in which to
2671                  * do so -- and it's not clear that it'd be desirable anyway.
2672                  */
2673                 if (vd->vdev_ops->vdev_op_leaf) {
2674                         uint64_t commit_txg = txg;
2675                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2676                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2677                                 ASSERT(spa_sync_pass(spa) == 1);
2678                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2679                                 commit_txg = spa_syncing_txg(spa);
2680                         } else if (spa->spa_claiming) {
2681                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2682                                 commit_txg = spa_first_txg(spa);
2683                         }
2684                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2685                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2686                                 return;
2687                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2688                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2689                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2690                 }
2691                 if (vd != rvd)
2692                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2693         }
2694 }
2695
2696 /*
2697  * Update the in-core space usage stats for this vdev, its metaslab class,
2698  * and the root vdev.
2699  */
2700 void
2701 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2702     int64_t space_delta)
2703 {
2704         int64_t dspace_delta = space_delta;
2705         spa_t *spa = vd->vdev_spa;
2706         vdev_t *rvd = spa->spa_root_vdev;
2707         metaslab_group_t *mg = vd->vdev_mg;
2708         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2709
2710         ASSERT(vd == vd->vdev_top);
2711
2712         /*
2713          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2714          * factor.  We must calculate this here and not at the root vdev
2715          * because the root vdev's psize-to-asize is simply the max of its
2716          * childrens', thus not accurate enough for us.
2717          */
2718         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2719         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2720         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2721             vd->vdev_deflate_ratio;
2722
2723         mutex_enter(&vd->vdev_stat_lock);
2724         vd->vdev_stat.vs_alloc += alloc_delta;
2725         vd->vdev_stat.vs_space += space_delta;
2726         vd->vdev_stat.vs_dspace += dspace_delta;
2727         mutex_exit(&vd->vdev_stat_lock);
2728
2729         if (mc == spa_normal_class(spa)) {
2730                 mutex_enter(&rvd->vdev_stat_lock);
2731                 rvd->vdev_stat.vs_alloc += alloc_delta;
2732                 rvd->vdev_stat.vs_space += space_delta;
2733                 rvd->vdev_stat.vs_dspace += dspace_delta;
2734                 mutex_exit(&rvd->vdev_stat_lock);
2735         }
2736
2737         if (mc != NULL) {
2738                 ASSERT(rvd == vd->vdev_parent);
2739                 ASSERT(vd->vdev_ms_count != 0);
2740
2741                 metaslab_class_space_update(mc,
2742                     alloc_delta, defer_delta, space_delta, dspace_delta);
2743         }
2744 }
2745
2746 /*
2747  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2748  * so that it will be written out next time the vdev configuration is synced.
2749  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2750  */
2751 void
2752 vdev_config_dirty(vdev_t *vd)
2753 {
2754         spa_t *spa = vd->vdev_spa;
2755         vdev_t *rvd = spa->spa_root_vdev;
2756         int c;
2757
2758         ASSERT(spa_writeable(spa));
2759
2760         /*
2761          * If this is an aux vdev (as with l2cache and spare devices), then we
2762          * update the vdev config manually and set the sync flag.
2763          */
2764         if (vd->vdev_aux != NULL) {
2765                 spa_aux_vdev_t *sav = vd->vdev_aux;
2766                 nvlist_t **aux;
2767                 uint_t naux;
2768
2769                 for (c = 0; c < sav->sav_count; c++) {
2770                         if (sav->sav_vdevs[c] == vd)
2771                                 break;
2772                 }
2773
2774                 if (c == sav->sav_count) {
2775                         /*
2776                          * We're being removed.  There's nothing more to do.
2777                          */
2778                         ASSERT(sav->sav_sync == B_TRUE);
2779                         return;
2780                 }
2781
2782                 sav->sav_sync = B_TRUE;
2783
2784                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2785                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2786                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2787                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2788                 }
2789
2790                 ASSERT(c < naux);
2791
2792                 /*
2793                  * Setting the nvlist in the middle if the array is a little
2794                  * sketchy, but it will work.
2795                  */
2796                 nvlist_free(aux[c]);
2797                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2798
2799                 return;
2800         }
2801
2802         /*
2803          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2804          * must either hold SCL_CONFIG as writer, or must be the sync thread
2805          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2806          * so this is sufficient to ensure mutual exclusion.
2807          */
2808         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2809             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2810             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2811
2812         if (vd == rvd) {
2813                 for (c = 0; c < rvd->vdev_children; c++)
2814                         vdev_config_dirty(rvd->vdev_child[c]);
2815         } else {
2816                 ASSERT(vd == vd->vdev_top);
2817
2818                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2819                     !vd->vdev_ishole)
2820                         list_insert_head(&spa->spa_config_dirty_list, vd);
2821         }
2822 }
2823
2824 void
2825 vdev_config_clean(vdev_t *vd)
2826 {
2827         spa_t *spa = vd->vdev_spa;
2828
2829         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2830             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2832
2833         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2834         list_remove(&spa->spa_config_dirty_list, vd);
2835 }
2836
2837 /*
2838  * Mark a top-level vdev's state as dirty, so that the next pass of
2839  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2840  * the state changes from larger config changes because they require
2841  * much less locking, and are often needed for administrative actions.
2842  */
2843 void
2844 vdev_state_dirty(vdev_t *vd)
2845 {
2846         spa_t *spa = vd->vdev_spa;
2847
2848         ASSERT(spa_writeable(spa));
2849         ASSERT(vd == vd->vdev_top);
2850
2851         /*
2852          * The state list is protected by the SCL_STATE lock.  The caller
2853          * must either hold SCL_STATE as writer, or must be the sync thread
2854          * (which holds SCL_STATE as reader).  There's only one sync thread,
2855          * so this is sufficient to ensure mutual exclusion.
2856          */
2857         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2858             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2859             spa_config_held(spa, SCL_STATE, RW_READER)));
2860
2861         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2862                 list_insert_head(&spa->spa_state_dirty_list, vd);
2863 }
2864
2865 void
2866 vdev_state_clean(vdev_t *vd)
2867 {
2868         spa_t *spa = vd->vdev_spa;
2869
2870         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2871             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2872             spa_config_held(spa, SCL_STATE, RW_READER)));
2873
2874         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2875         list_remove(&spa->spa_state_dirty_list, vd);
2876 }
2877
2878 /*
2879  * Propagate vdev state up from children to parent.
2880  */
2881 void
2882 vdev_propagate_state(vdev_t *vd)
2883 {
2884         spa_t *spa = vd->vdev_spa;
2885         vdev_t *rvd = spa->spa_root_vdev;
2886         int degraded = 0, faulted = 0;
2887         int corrupted = 0;
2888         vdev_t *child;
2889         int c;
2890
2891         if (vd->vdev_children > 0) {
2892                 for (c = 0; c < vd->vdev_children; c++) {
2893                         child = vd->vdev_child[c];
2894
2895                         /*
2896                          * Don't factor holes into the decision.
2897                          */
2898                         if (child->vdev_ishole)
2899                                 continue;
2900
2901                         if (!vdev_readable(child) ||
2902                             (!vdev_writeable(child) && spa_writeable(spa))) {
2903                                 /*
2904                                  * Root special: if there is a top-level log
2905                                  * device, treat the root vdev as if it were
2906                                  * degraded.
2907                                  */
2908                                 if (child->vdev_islog && vd == rvd)
2909                                         degraded++;
2910                                 else
2911                                         faulted++;
2912                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2913                                 degraded++;
2914                         }
2915
2916                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2917                                 corrupted++;
2918                 }
2919
2920                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2921
2922                 /*
2923                  * Root special: if there is a top-level vdev that cannot be
2924                  * opened due to corrupted metadata, then propagate the root
2925                  * vdev's aux state as 'corrupt' rather than 'insufficient
2926                  * replicas'.
2927                  */
2928                 if (corrupted && vd == rvd &&
2929                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2930                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2931                             VDEV_AUX_CORRUPT_DATA);
2932         }
2933
2934         if (vd->vdev_parent)
2935                 vdev_propagate_state(vd->vdev_parent);
2936 }
2937
2938 /*
2939  * Set a vdev's state.  If this is during an open, we don't update the parent
2940  * state, because we're in the process of opening children depth-first.
2941  * Otherwise, we propagate the change to the parent.
2942  *
2943  * If this routine places a device in a faulted state, an appropriate ereport is
2944  * generated.
2945  */
2946 void
2947 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2948 {
2949         uint64_t save_state;
2950         spa_t *spa = vd->vdev_spa;
2951
2952         if (state == vd->vdev_state) {
2953                 vd->vdev_stat.vs_aux = aux;
2954                 return;
2955         }
2956
2957         save_state = vd->vdev_state;
2958
2959         vd->vdev_state = state;
2960         vd->vdev_stat.vs_aux = aux;
2961
2962         /*
2963          * If we are setting the vdev state to anything but an open state, then
2964          * always close the underlying device unless the device has requested
2965          * a delayed close (i.e. we're about to remove or fault the device).
2966          * Otherwise, we keep accessible but invalid devices open forever.
2967          * We don't call vdev_close() itself, because that implies some extra
2968          * checks (offline, etc) that we don't want here.  This is limited to
2969          * leaf devices, because otherwise closing the device will affect other
2970          * children.
2971          */
2972         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2973             vd->vdev_ops->vdev_op_leaf)
2974                 vd->vdev_ops->vdev_op_close(vd);
2975
2976         /*
2977          * If we have brought this vdev back into service, we need
2978          * to notify fmd so that it can gracefully repair any outstanding
2979          * cases due to a missing device.  We do this in all cases, even those
2980          * that probably don't correlate to a repaired fault.  This is sure to
2981          * catch all cases, and we let the zfs-retire agent sort it out.  If
2982          * this is a transient state it's OK, as the retire agent will
2983          * double-check the state of the vdev before repairing it.
2984          */
2985         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2986             vd->vdev_prevstate != state)
2987                 zfs_post_state_change(spa, vd);
2988
2989         if (vd->vdev_removed &&
2990             state == VDEV_STATE_CANT_OPEN &&
2991             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2992                 /*
2993                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2994                  * device was previously marked removed and someone attempted to
2995                  * reopen it.  If this failed due to a nonexistent device, then
2996                  * keep the device in the REMOVED state.  We also let this be if
2997                  * it is one of our special test online cases, which is only
2998                  * attempting to online the device and shouldn't generate an FMA
2999                  * fault.
3000                  */
3001                 vd->vdev_state = VDEV_STATE_REMOVED;
3002                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3003         } else if (state == VDEV_STATE_REMOVED) {
3004                 vd->vdev_removed = B_TRUE;
3005         } else if (state == VDEV_STATE_CANT_OPEN) {
3006                 /*
3007                  * If we fail to open a vdev during an import or recovery, we
3008                  * mark it as "not available", which signifies that it was
3009                  * never there to begin with.  Failure to open such a device
3010                  * is not considered an error.
3011                  */
3012                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3013                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3014                     vd->vdev_ops->vdev_op_leaf)
3015                         vd->vdev_not_present = 1;
3016
3017                 /*
3018                  * Post the appropriate ereport.  If the 'prevstate' field is
3019                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3020                  * that this is part of a vdev_reopen().  In this case, we don't
3021                  * want to post the ereport if the device was already in the
3022                  * CANT_OPEN state beforehand.
3023                  *
3024                  * If the 'checkremove' flag is set, then this is an attempt to
3025                  * online the device in response to an insertion event.  If we
3026                  * hit this case, then we have detected an insertion event for a
3027                  * faulted or offline device that wasn't in the removed state.
3028                  * In this scenario, we don't post an ereport because we are
3029                  * about to replace the device, or attempt an online with
3030                  * vdev_forcefault, which will generate the fault for us.
3031                  */
3032                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3033                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3034                     vd != spa->spa_root_vdev) {
3035                         const char *class;
3036
3037                         switch (aux) {
3038                         case VDEV_AUX_OPEN_FAILED:
3039                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3040                                 break;
3041                         case VDEV_AUX_CORRUPT_DATA:
3042                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3043                                 break;
3044                         case VDEV_AUX_NO_REPLICAS:
3045                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3046                                 break;
3047                         case VDEV_AUX_BAD_GUID_SUM:
3048                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3049                                 break;
3050                         case VDEV_AUX_TOO_SMALL:
3051                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3052                                 break;
3053                         case VDEV_AUX_BAD_LABEL:
3054                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3055                                 break;
3056                         default:
3057                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3058                         }
3059
3060                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3061                 }
3062
3063                 /* Erase any notion of persistent removed state */
3064                 vd->vdev_removed = B_FALSE;
3065         } else {
3066                 vd->vdev_removed = B_FALSE;
3067         }
3068
3069         if (!isopen && vd->vdev_parent)
3070                 vdev_propagate_state(vd->vdev_parent);
3071 }
3072
3073 /*
3074  * Check the vdev configuration to ensure that it's capable of supporting
3075  * a root pool.
3076  */
3077 boolean_t
3078 vdev_is_bootable(vdev_t *vd)
3079 {
3080 #if defined(__sun__) || defined(__sun)
3081         /*
3082          * Currently, we do not support RAID-Z or partial configuration.
3083          * In addition, only a single top-level vdev is allowed and none of the
3084          * leaves can be wholedisks.
3085          */
3086         int c;
3087
3088         if (!vd->vdev_ops->vdev_op_leaf) {
3089                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3090
3091                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3092                     vd->vdev_children > 1) {
3093                         return (B_FALSE);
3094                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3095                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3096                         return (B_FALSE);
3097                 }
3098         } else if (vd->vdev_wholedisk == 1) {
3099                 return (B_FALSE);
3100         }
3101
3102         for (c = 0; c < vd->vdev_children; c++) {
3103                 if (!vdev_is_bootable(vd->vdev_child[c]))
3104                         return (B_FALSE);
3105         }
3106 #endif /* __sun__ || __sun */
3107         return (B_TRUE);
3108 }
3109
3110 /*
3111  * Load the state from the original vdev tree (ovd) which
3112  * we've retrieved from the MOS config object. If the original
3113  * vdev was offline or faulted then we transfer that state to the
3114  * device in the current vdev tree (nvd).
3115  */
3116 void
3117 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3118 {
3119         int c;
3120
3121         ASSERT(nvd->vdev_top->vdev_islog);
3122         ASSERT(spa_config_held(nvd->vdev_spa,
3123             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3124         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3125
3126         for (c = 0; c < nvd->vdev_children; c++)
3127                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3128
3129         if (nvd->vdev_ops->vdev_op_leaf) {
3130                 /*
3131                  * Restore the persistent vdev state
3132                  */
3133                 nvd->vdev_offline = ovd->vdev_offline;
3134                 nvd->vdev_faulted = ovd->vdev_faulted;
3135                 nvd->vdev_degraded = ovd->vdev_degraded;
3136                 nvd->vdev_removed = ovd->vdev_removed;
3137         }
3138 }
3139
3140 /*
3141  * Determine if a log device has valid content.  If the vdev was
3142  * removed or faulted in the MOS config then we know that
3143  * the content on the log device has already been written to the pool.
3144  */
3145 boolean_t
3146 vdev_log_state_valid(vdev_t *vd)
3147 {
3148         int c;
3149
3150         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3151             !vd->vdev_removed)
3152                 return (B_TRUE);
3153
3154         for (c = 0; c < vd->vdev_children; c++)
3155                 if (vdev_log_state_valid(vd->vdev_child[c]))
3156                         return (B_TRUE);
3157
3158         return (B_FALSE);
3159 }
3160
3161 /*
3162  * Expand a vdev if possible.
3163  */
3164 void
3165 vdev_expand(vdev_t *vd, uint64_t txg)
3166 {
3167         ASSERT(vd->vdev_top == vd);
3168         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3169
3170         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3171                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3172                 vdev_config_dirty(vd);
3173         }
3174 }
3175
3176 /*
3177  * Split a vdev.
3178  */
3179 void
3180 vdev_split(vdev_t *vd)
3181 {
3182         vdev_t *cvd, *pvd = vd->vdev_parent;
3183
3184         vdev_remove_child(pvd, vd);
3185         vdev_compact_children(pvd);
3186
3187         cvd = pvd->vdev_child[0];
3188         if (pvd->vdev_children == 1) {
3189                 vdev_remove_parent(cvd);
3190                 cvd->vdev_splitting = B_TRUE;
3191         }
3192         vdev_propagate_state(cvd);
3193 }
3194
3195 void
3196 vdev_deadman(vdev_t *vd)
3197 {
3198         int c;
3199
3200         for (c = 0; c < vd->vdev_children; c++) {
3201                 vdev_t *cvd = vd->vdev_child[c];
3202
3203                 vdev_deadman(cvd);
3204         }
3205
3206         if (vd->vdev_ops->vdev_op_leaf) {
3207                 vdev_queue_t *vq = &vd->vdev_queue;
3208
3209                 mutex_enter(&vq->vq_lock);
3210                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3211                         spa_t *spa = vd->vdev_spa;
3212                         zio_t *fio;
3213                         uint64_t delta;
3214
3215                         /*
3216                          * Look at the head of all the pending queues,
3217                          * if any I/O has been outstanding for longer than
3218                          * the spa_deadman_synctime we log a zevent.
3219                          */
3220                         fio = avl_first(&vq->vq_pending_tree);
3221                         delta = ddi_get_lbolt64() - fio->io_timestamp;
3222                         if (delta > NSEC_TO_TICK(spa_deadman_synctime(spa))) {
3223                                 zfs_dbgmsg("SLOW IO: zio timestamp %llu, "
3224                                     "delta %llu, last io %llu",
3225                                     fio->io_timestamp, delta,
3226                                     vq->vq_io_complete_ts);
3227                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3228                                     spa, vd, fio, 0, 0);
3229                         }
3230                 }
3231                 mutex_exit(&vq->vq_lock);
3232         }
3233 }
3234
3235 #if defined(_KERNEL) && defined(HAVE_SPL)
3236 EXPORT_SYMBOL(vdev_fault);
3237 EXPORT_SYMBOL(vdev_degrade);
3238 EXPORT_SYMBOL(vdev_online);
3239 EXPORT_SYMBOL(vdev_offline);
3240 EXPORT_SYMBOL(vdev_clear);
3241 #endif